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Preface

This textbook is designed to introduce the reader to the Representation Theory of
Algebras as painlessly as possible. It concentrates on the Auslander—Reiten theory,
the radical of a module category and related topics. The only prerequisites are some
module theory and homological algebra such as are usually taught in a beginner’s
graduate course, and can be acquired in most of the textbooks in the field.

Representation theory in its broad sense is that part of mathematics that aims at
representing abstract mathematical objects as concretely as possible. In this book,
we are interested in the Representation Theory of Algebras, by which we mean finite
dimensional algebras over a field. Since the works of E. Noether in the 1930s, this is
understood as characterising the algebra by means of its module category. That is, it
aims at understanding not only the modules, but also the morphisms between them.
One is looking for invariants allowing to classify them, but also for algorithms in
order to compute them. One may thus view representation theory as an advanced
form of linear algebra, in which modern tools such as homological algebra are
available.

Since the late 1960s, the theory started growing fast owing to the introduction
of almost split sequences by Maurice Auslander and Idun Reiten, and of quivers
and their representations by Pierre Gabriel and his school. As the years passed, it
became increasingly difficult for beginners to make their way into the field because
of the need to master several different results and techniques.

Our book was born out of an unexpected encounter. In 2007, the second author
gave a course on the radical of a module category in a Workshop on Representation
Theory of Algebras, which took place in Montevideo (Uruguay). In 2013, the first
author gave a course on the Auslander—Reiten theory in a CIMPA Research School
on the Algebraic and Geometric Aspects of Representation Theory, in Curitiba
(Brazil). It was quickly apparent that these courses were complementary and, when
put together, would form the socle of a good introductory course in representation
theory.

We started writing this book, setting ourselves the following constraints: we
wanted to be able to cover the contents completely in a one-semester course, and
we also wanted to make it as easy as possible for the student, by avoiding the use of
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several different techniques or points of view. We have favoured the point of view
saying that to understand a module category, one should concentrate on morphisms,
and more precisely, morphisms lying in the radical of the module category. Because
of these constraints, it was not possible to be encyclopaedic in this work. Perhaps
the most obvious omissions are representations of quivers, Gabriel’s theorem and
covering techniques. We apologise to the reader, pointing out that other books deal
with these topics. We do, however, believe that the present volume provides the
reader with a solid basis in representation theory, allowing him or her to pursue
readings in other directions.

We now briefly describe the contents of the book. Throughout, the word
“algebra” stands for a finite dimensional algebra over a commutative field, and
the word “module” for a finitely generated right module. The book consists of six
chapters. Chapter I is of an introductory nature, it is divided into two sections. In
the first section we recall, mostly without proofs, the results of module theory that
will be useful in the sequel. Therefore, it can be left out, provided that the reader
has the relevant knowledge. The second section, in which all proofs are given, deals
with the quiver of a finite dimensional algebra, and classes of examples such as
hereditary algebras or Nakayama algebras. In Chapter II, we start by introducing
and giving several characterisations of the radical of a module category, which lead
us to the definitions of irreducible morphisms and almost split sequences. We prove
their existence and then study their relation with the factorisation of a morphism
lying in the radical. Chapter III is devoted to construction techniques for almost
split sequences and hence irreducible morphisms. With this knowledge, we are able
to define and show how to construct the Auslander—Reiten quiver of an algebra
(Chapter IV) or at least some of its components. Chapter IV also contains a short
discussion on how deep a morphism lies inside the radical of the module category
and a description of the module category of the Kronecker algebra. In Chapter V,
we discuss the relation between the representation theory of an algebra and that of
the endomorphism algebra of a well-chosen module. Auslander’s projectivisation
technique is presented, as well as a short introduction to tilting theory. The last
Chapter VI concentrates on representation-finite algebras. Several characterisations
of this class are given, and we end the book with a proof of the so-called Four Terms
in the Middle theorem. Throughout the book, several examples are solved in detail.
We have included a set of exercises at the end of each section.

At the end of the volume, we have also included a short bibliography divided
into three parts: the first part consists of standard textbooks on noncommutative
algebra and homological algebra, to which the reader is referred for the results we
use from these areas. The second part is a short list of textbooks on (parts of) the
representation theory of algebras, and finally the last part is a list of some of the
original papers containing the results that are presented here. This bibliography is
not complete and we apologise in advance in case some important papers do not
appear in it.

The material contained in this textbook is complementary. We believe that it can
be covered in a one-semester course. In the case of a shorter course, we believe that
the following sections and subsections can be given less emphasis in a first reading:
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Chapter II, Subsection II.1.3.

Chapter 111, Section II1.4.

Chapter IV, Subsection IV.2.3, Sections IV.3 and IV.4.
Chapter V, Section V.2.

Chapter VI, Sections VI.2 and VI1.4.

This book has developed from the two courses mentioned above and also from
several lectures given to graduate students at the universities of Sherbrooke and Sao
Paulo over a period of several years. It is a pleasure to acknowledge our debt to
these students. Their questions, criticisms and suggestions have given us invaluable
feedback. We thank in particular Marcia Aguiar, Edson Alvares, Mélissa Barbe-
Marcoux, Véronique Bazier-Matte, Guillaume Douville, Marcelo Lanzilotta, Jean-
Philippe Morin, Charles Paquette and Sonia Trepode.

We also warmly thank Marion Henry for her precious help in getting our
manuscript into shape.

The authors gratefully acknowledge financial support from CNPq and FAPESP,
Brazil, and from NSERC, Canada.

Ibrahim Assem Sherbrooke, QC, Canada
Flavio U. Coelho Sdo Paulo, Sao Paulo, Brazil
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Chapter I ®
Modules, algebras and quivers oy

In this book, we assume that the reader has some familiarity with the classical theory
of algebras and modules, category theory and homological algebra, such as can be
gained from most textbooks in these areas. The first section of this chapter is devoted
to recalling, mostly without proofs, some of the fundamental definitions and results
from module theory needed later in the book. On the other hand, throughout this
book, we shall continuously need to illustrate our results with examples. Therefore,
in the second section, we give a concise introduction to the notion of quiver of an
algebra, and explain how it can be used to compute examples. We also introduce two
classes of algebras that are extensively used later on; namely, Nakayama algebras
and hereditary algebras. In this second section, in contrast to the first, complete
proofs are given.

I.1 Modules over finite dimensional algebras

I.1.1 Algebras and modules

Because our objects of study are the categories of modules over algebras, it is natural
to start by saying what we mean by algebra. Throughout this book, the letter k
denotes a commutative field, and the word “ring” stands for an associative ring with
an identity.

A k-algebra A is a ring together with a k-vector space structure, in such a way
that these structures are compatible, that is, if a, b € A and A € k, then

a(Ab) = A(ab) = (Aa)b.

© Springer Nature Switzerland AG 2020 1
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The algebra A is said to be finite dimensional if its dimension as a k-vector
space is finite. Throughout this book, unless otherwise specified, the word algebra
always means a finite dimensional k-algebra.

Let A, B be algebras. A map ¢: A —> B is a morphism of algebras if

(a) ¢ is a morphism of rings; and
(b) ¢ is a k-linear map.

This allows a category to be defined whose objects are the k-algebras and whose
morphisms are the algebra morphisms.

Example I.1.1. 1Tt is easy to verify that the set

k00O @;; 0 0 O

kkO0O arran 0 O ..
= s «a;; € kforall i,

kOkO ay 0 az 0 |G SEOTARLT

kkkk Q41 04D 043 Ol44

endowed with the usual addition and multiplication of matrices is a k-algebra. This
algebra is nine-dimensional.

Example 1.1.2. Let V be a finite dimensional k-vector space and Endg V the set of
endomorphisms of V, that is, k-linear maps from V to V. Then, Endg V, endowed
with the usual addition and composition of linear maps, is a k-algebra. Its dimension
is (dimg V)2

Example 1.1.3. Let A be an algebra. We define the opposite algebra A° to have as
elements those of A, but with the product of a, b € A defined as follows: a X, b =
ba (where ba denotes the product of b, a in A).

Classically, representing an algebra means to understand its operations by means
of matrix operations, and thus to study its structure using properties of matrices.
Formally, given an algebra A, a (k-linear) representation of A is a pair (V, ¢),
where V is a finite dimensional k-vector space and ¢ : A — Endy V is a morphism
of algebras. Now, it is easy to see that the data of a representation (V, @) is
equivalent to endowing V with an A-module structure, see Exercise 1.1.3.

Definition 1.1.4. Let A be a k-algebra. A (right) A-module M is a k-vector space
M together with a scalar multiplication M x A —> M, denoted as (x, a) — xa
(forx € M, a € A) such that, forevery x,y € M,a,b € A and A € k, we have:

(@ (x+y)a=xa+ ya;

(b) x(a+ b) = xa + xb;

(c) x(ab) = (xa)b;

d) (Ax)a = A(xa) = x(ha);

(e) x1 = x, where 1 denotes the identity of A.

The notation M, indicates that M has an A-module structure (scalar multi-
plication) on the right. One defines left A-modules similarly. Equivalently, left
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A-modules are right modules over the opposite algebra A°” of A. Unless otherwise
specified, we only deal with right modules.

Given modules M and N,amap f: M —> N is called A-linear, or a morphism
of A-modules, if the map is k-linear and f(xa) = f(x)a forallx € M, a € A.
This defines a category whose objects are the A-modules, and whose morphisms are
the A-linear maps.

We denote by Hom4 (M, N) the k-vector space consisting of all A-linear maps
from M to N.If M = N, then we write End M or End4 M for this space, which in
this case is an algebra, called the endomorphism algebra of M.

An A-module M is called finitely generated if there exist d > 0 and an
epimorphism A‘f‘ —> M. This implies that the images of the vectors of the
canonical basis of A are generators of M.

Lemma I.1.5. An A-module is finitely generated if and only if its underlying k-
vector space is finite dimensional.

Proof. Suppose that M is a finitely generated A-module. Then there exist d > 0
and an epimorphism Afg —> M. Because dimgA < 0o, we have dimgA? < oo and
thus dimg M < oo. The converse is obvious. |

We denote by mod A the category whose objects are the finitely generated right
A-modules, and whose morphisms are the A-linear maps. Whenever we want to
consider finitely generated left A-modules, we consider them to be right modules
over A°? and denote their category by mod A°”.

Example 1.1.6. Let A be as in Example I.1.1 above and consider the set of row
vectors

M=&OKkO0)={(A0u0): r, ek}

It is easily verified that, for every x € M and a € A, the usual matrix product xa
is an element of M. Therefore, M is an A-module, clearly finitely generated, and
dimgM = 2.

I1.1.2 The radical and indecomposability

Let A be an algebra and M an A-module. A submodule L of M is maximal if
L # M and, if L’ is a proper submodule of M containing L, then L' = L. We
define the radical of M, denoted by rad M, to be the intersection of all maximal
submodules of M. In particular, rad A is the radical of the module A4. It can be
proved that rad A is a two-sided ideal of A that can be characterised as being the set

{a € A: 1 — ax is right invertible, for each x € A}

and also the set
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{a € A: 1 — xa is left invertible, for each x € A}.

In addition, for every finitely generated A-module M, we have rad M = M - rad A.
Because we are considering finite dimensional algebras, we have the following
result.

Theorem L.1.7. Let A be an algebra. Then, its radical is the unique two-sided ideal
I of A satisfying the following conditions:

(a) I isnil (that is, each element of I is nilpotent); and
(b) A/I is a semisimple algebra. O

Example 1.1.8. Let A be the algebra of Example 1.1.1 and M the module of
Example I.1.6. Consider the set

0000
k00O
k000 | —
kkkO

It is easily verified that [ is a two-sided ideal of A. Clearly, I is nil. Because A/l =
k* is semisimple, we get I = rad A. Also,

radM =M -rad A = (k000).

We have the following useful lemma.

Lemma 1.1.9. Let M, N be modules and f: M —> N an epimorphism. Then.
f@ad M) =rad N.

Proof. Indeed, we have

f@adM) = f(M-radA) = f(M)-radA =N -radA =rad N.

Of particular interest is the following class of algebras.
Definition I.1.10. An algebra is called local if it has a unique maximal ideal.
Theorem L.1.11. The following are equivalent for an algebra A:

(a) A islocal;

(b) rad A is a maximal two-sided ideal;

(c) The set of all noninvertible elements of A forms a two-sided ideal;

(d) Foreacha € A, we have that a or 1 — a is invertible. |

If A is local, then the ideal consisting of all noninvertible elements is exactly the
radical. Thus, every element of a local algebra is either nilpotent or invertible.
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Local algebras yield a criterion allowing us to determine whether or not a given
finitely generated module M is indecomposable.

Definition I.1.12. A module M is indecomposable if it is nonzero and M = M’ &
M" implies M’ =0 or M" = 0.

Proposition 1.1.13. A finitely generated module M is indecomposable if and only
if its endomorphism algebra End M is local. O

The interest in this proposition comes mainly from the following theorem,
sometimes called Unique Decomposition Theorem and attributed to Remak, Krull,
Schmidt and Azumaya.

Theorem 1.1.14. Let M be a finitely generated module. Then:

(a) There exists a direct sum decomposition M = @' | M; with all the M;
indecomposable.

(b) This decomposition is unique up to isomorphism: if M = @/ M; = @?:11\71'
with the M;, N; indecomposable, then m = n and there is a permutation ¢ of
{1, ..., m} such that M; = Ny ;) for alli. O

Let f: M —> N be an A-linear map. Decomposing M = @' | M; and
N = ’]’.ZIN j with the M;, N; indecomposable and letting ¢;: M; — M
and p;: N — N; be the injection and the projection associated with these

decompositions respectively, we can write f in matrix form as

S =Pjfq1<izm1<j<n

with each p; fg;: M; —> N; a morphism between indecomposable modules.

For an algebra A, denote by ind A a full subcategory of mod A having
as objects a complete set of representatives of the isoclasses (= isomorphism classes)
of indecomposable A-modules. Clearly, the subcategory ind A is unique up to
equivalence. The above reasoning shows that the category mod A is completely
determined by the knowledge of ind A.

Throughout this book, we never distinguish between isomorphic objects; thus,
when we speak about “all” modules, we mean all isoclasses of modules.

I1.1.3 Idempotents, projectives and injectives

Let A be an algebra. An A-module P is called projective if the covariant functor
Homy (P, —) : mod A — modK is (right) exact, that is, if for every epimorphism
f : M — N, the induced map Homu (P, f) : Homy (P, M) — Homyu (P, N)
is surjective. It follows easily from this definition that, if f : M — P is an
epimorphism with P projective, then there exists a morphism g : P —> M such
that fg = 1p. We then say that f is a retraction and g is a section. A morphism is
said to split if it is a section or a retraction.
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A finitely generated A-module P is projective if and only if it is a direct summand
of a finitely generated free A-module. An element e € A is said to be idempotent if
¢? = e. Idempotents play an important role in understanding algebras and modules.

For instance, let us decompose A 4 into indecomposable summands
Ap=P1®...0 P,.

In particular, each of the P; is an indecomposable projective A-module. Then there
exists a set of idempotents {ey, ..., e,} such that the ¢; are orthogonal, that is,
ejej = 0fori # j, primitive, that is, ¢; = ¢] + ¢ with ¢], ¢/ orthogonal implies
e/ =0ore/ =0, complete, thatis, | = e; + e+ ...+ e,, and such that P; = ¢; A
for each i. Conversely, with every set {eq, ...e,} of complete primitive orthogonal

idempotents is associated a decomposition of A 4 into indecomposable summands.

Example I.1.15. Let A be as in Example 1.1.1. Denoting by e;; the matrix having
a coefficient 1 in position (i, j) and O in all other positions, it is easy to see that
{e11, €22, €33, eas} forms a complete set of primitive orthogonal idempotents of A.
Thus, the indecomposable projective modules are the e;; A, fori € {1, 2, 3, 4}. For
instance, the module M of Example 1.1.6 can be written as M = e33A and, in
particular, is indecomposable projective.

The algebra A is called basic if, in the above decomposition, P; Z P; fori # j.
In this case, the P; form a complete set of representatives of the isoclasses of
indecomposable projective A-modules. We can restrict our study to that of basic
algebras. Indeed, let A be arbitrary, and P the direct sum of a complete set of
representatives of the isoclasses of the indecomposable projective A-modules. Set
B = End P4. Then, B is basic and it follows from the classical Morita theorem
that the categories mod A and mod B are equivalent. We may thus assume, from the
start, that A = B, that is, that A is basic.

Another reduction is possible. A k-algebra A is called connected if A is nonzero
and A = A1 x Ap implies A1 = 0 or A = 0, that is, A is indecomposable as a ring.
Connectedness is characterised by means of idempotents. An idempotent e € A
is called central if it belongs to the centre of A, that is, it commutes with every
element of A.

For the proof of the next proposition, we refer to Exercise 1.1.2.

Proposition I.1.16. A K-algebra is connected if and only if its only central idempo-
tents are 0 and 1. O

The following proposition shows that we may, without loss of generality, restrict
ourselves to the study of connected algebras.

Proposition I.1.17. Suppose that A = Ay x Aj. Then the category mod A is
equivalent to the product category mod A1 x mod Aj. O

One of the most important properties of finite dimensional algebras is the
existence of a duality functor D = Homg(—,Kk): mod A — mod A°P. Let
M be an A-module, then the underlying k-vector space of DM = Homg (M, K) is
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the dual space of M and its left A-module structure is defined as follows: if a € A
and f € DM, then af € DM is the linear form defined by

(af)(x) = f(xa)

for x € M. Similarly, D defines a functor from mod A°” to mod A, and it is easily
seen that, because we deal with finite dimensional modules, the composition D? =
D o D is functorially isomorphic to the identity functor.

Under the duality D, projective modules correspond to so-called injective mod-
ules. An A-module 7 is called injective if the contravariant functor Homa (—, I) is
(right) exact, that is, if, for every monomorphism f : M — N, the induced map
Homa (f, I) : Homu (N, I) — Homyu (M, I) is surjective. Thus, an A-module /
is injective if and only if its dual DI is a projective A°’-module. If f : I — M is
a monomorphism with I injective, then g : M — I exists such that gf = 1y, so
that f is a section (and g a retraction).

Let P be an indecomposable projective A-module. Then a primitive idempotent
e € A exists such that P = eA. We associate with the idempotent e the A-module
I = D(Ae) (dual of the corresponding indecomposable projective left A-module).
Then, I is an indecomposable injective right A-module and every indecomposable
injective module is of this form. The modules P and I are related by the fact that
the simple module top P = P/rad P of P is isomorphic to the simple socle soc /
of I. Then, if {e1A, ..., e, A} is a complete set of representatives of the isoclasses
of indecomposable projective A-modules, we get that {D(Aey),...,D(Ae,)} is a
complete set of representatives of the isoclasses of the indecomposable injective A-
modules. Setting S; = ¢; A/rad(e; A) = soc(DAe;), we get that {S1,...,S,}isa
complete set of representatives of the isoclasses of simple A-modules.

Further, the indecomposable projective module P; is a projective cover of S;. A
projective module P is called a projective cover of a module M if there exists an
epimorphism f : P —> M such that, if /' : P’ —> M is an epimorphism with P’
projective, then there exists an epimorphism g : P’ —> P such that /' = fg. The
epimorphism p is called a projective cover morphism.

Dually, the indecomposable injective module I; is an injective envelope of S;,
that is, this module verifies the dual property. See Exercise I1.2.1 for characterisa-
tions of projective covers and injective envelopes.

This correspondence between projectives and injectives is in fact functorial. We
define the Nakayama functor to be the functor

va=—®4DA: modA — modA.

Clearly, this functor is right exact. Note that v4 = D Homyu (—, A).

Lemma 1.1.18. The Nakayama functor induces an equivalence between the full
subcategories of mod A consisting of the indecomposable projective and the
indecomposable injective modules.
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Proof. Consider the functor v;l = Homy (DA, —): modA — mod A, and let
e € A be a primitive idempotent of A. It suffices to prove that, if P = eA and
1 = D(Ae), we have v4 P = I and v;ll = P. But this follows from the functorial
isomorphisms

vaP =eA®4 DA = e(DA) =D(Ae) =1 and

v, I = Homy (DA, D(Ae)) = Hom e (Ae, A) = eA = P.

The following lemma is extremely useful.
Lemma 1.1.19. Let e € A be a primitive idempotent, P = eA and I = D(Ae). For
every A-module M, we have isomorphisms of K-vector spaces
Me = Homy (P, M) = DHoma (M, I).

Proof. This follows from the functorial isomorphisms

DHomy (M, I) = DHomy (M, D(Ae)) = D Homyer (Ae, DM)
>~ D(eDM) = (D’M)e = Me
= Homy(eA, M) = Homu (P, M). O

I.1.4 The Grothendieck group and composition series

Let A be an algebra and .% the free abelian group having as a basis the set of
isoclasses M of all finitely generated A-modules. Further, let %’ be the subgroup
of .7 generated by all expressions of the form L + N — M, whenever there exists a
short exact sequence

0O—L—M-—N—90

in mod A. The Grothendieck group K((A) of A is the quotient group .7 /.7".

We denote by [M] the image of M in Ky(A).

Let {S1, ..., S,} be a complete set of representatives of the isoclasses of simple
A-modules. In this subsection, we prove that Ko(A) is free abelian with basis
{[S11, ..., [Sn]}, and thus is isomorphic to Z".

A composition series of length [ for an A-module M is a sequence of
submodules

O=MoCcMyC...CM =M
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such that, for each i, the quotient M;;1/M;, called a composition factor, is simple.
Because M is finite dimensional, such a series always exists, the lengths of all such
series are equal, and their common value is called the composition length or briefly
the length of M, denoted as /(M). Also, the number p; (M) of composition factors
of M that are isomorphic to some S; only depends on M and S;, and not on the
particular composition series under consideration. This follows from the classical
Jordan—Holder theorem.

Because finitely generated modules have finite length, we have the following
lemma, which generalises a well-known property of finite dimensional vector
spaces.

Lemma 1.1.20. Let M be a (finitely generated) A-module and f € End M. If f is
injective or surjective, then f is bijective. O

We next define a map dim: .# — Z" by setting, for each module M,
dim[M] = (1 (M), ..., upn(M)).

The vector dim[M], which we write simply as dim M, is called the dimension
vector of the module M.

Lemma 1.1.21. The map dim: .% —> Z" induces a morphism of groups
dim: Ko(A) — Z".

Proof. It suffices to show that, if 0 — L — M — N — 0 is a short exact
sequence in mod A, then dim M = dim L + dim N, which is equivalent to proving
that p; (M) = u; (L) + pi(N) for each i.

We may assume that L C M and N =M/L.Let0=LoC L1 C...CLy=1L
and 0 = My/L C M/L C ... C M;/L = M/L be composition series for each of
L and N respectively. Then,

O=LopcLyCc...CLg=L=MyCMyC...CM;=M

is a composition series for M. The statement follows. O

Theorem 1.1.22. The group Ko(A) is free abelian with basis {[S1], ..., [Sn]} and
the morphism dim: Ko(A) —> Z" is an isomorphism of groups.

Proof. Let M be an A-module. It follows from the existence of composition series
and the definition of K(A) that

[M] =" i (MSi].

i=1

Therefore, {[S1],...,[S,]} is a generating set for the group Ko(A). Because of
Lemma I.1.21, the map dim: Ko(A) —> Z" is a morphism of groups. Now, the
images of the elements of the generating set {[S1], ..., [S,]} are the vectors of the
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canonical basis of Z". Therefore, this generating set is linearly independent, that is,
it is a basis of Ky(A). O

There is an important particular case. If A is basic, then the endomorphism
algebra End S of every simple module S is an overfield of k. If k is algebraically
closed, then End S = k and dimgS = 1. In particular, for every A-module M, we
have [(M) = dimy M.

Corollary 1.1.23. Let A be a basic algebra over an algebraically closed field k.
Then, for every i with 1 < i < m and every A-module M, we have u;(M) =
dimg Hom g (P;, M), where P; is the indecomposable projective A-module such that
P;/rad P; = §;.

Proof. For each i, the composition of dim: Ko(A) —> Z" with the i"" projection
morphism Z" — Z is a morphism of groups mapping [M] € Ko(A) on u; (M) €
Z. In addition,

0 i#j
(S =
wi(S;) { 1 i=].
On the other hand, if 0 — L — M — N — 0 is a short exact sequence,
exactness of the functor Hom4 (P;, —) yields a short exact sequence

0 — Homy(P;, L) — Homy (P;, M) — Homu(P;, N) — 0

so that dimkx Homy (P;, —): Ko(A) — Z is also a morphism of groups. Because
each simple module is one-dimensional (see above), we have

dimi Hom (P, ;) = {0 7

1i=j.
The morphisms w; and dimg Homg4 (P;, —) thus coincide on a basis of the free
abelian group Ko(A). Therefore, they are equal. O

Example 1.1.24. Let A be as in Example 1.1.1. Because {e11, €22, €33, €44} is a
complete set of primitive orthogonal idempotents, we have four isoclasses of simple
modules, so that Ko(A) = Z* Also, let M = e33A be the indecomposable
projective module of Example 1.1.6. Its simple top is S3 = e33A/rad(e3zA).
Now, rad(ez3A) is one-dimensional and thus simple, and it is easily seen that
right multiplication by the matrix ej3 yields an isomorphism S; —> rad(e33A).
Therefore, the (unique) composition series for M is 0 C S C M, and dimM =
(1,0, 1, 0). In particular, we have [(M) = dimxk M = 2.
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Exercises for Section 1.1

Exercise I.1.1. Let A be a k-algebra. Prove that the map ¢ : kK —> A given by
A+ 1-A (for A € K) is an injective morphism of rings whose image is contained in
the centre of A.

Exercise I.1.2. Let A be a finite dimensional k-algebra and ¢ € A a central
idempotent. Prove the following statements:

(a) eA has a natural algebra structure, with identity e, and
(b) We have an algebra isomorphism A = eA x (1 — e)A.

Deduce Proposition I.1.16: an algebra is connected if and only if 0 and 1 are its only
central idempotents.

Exercise I.1.3. Let A be a finite dimensional k-algebra and (V, ¢), (W, ) be
representations of A. A morphism from (V, ¢) to (W, ¥) is a k-linear map f :
V. — W such that fe(a) = ¥(a)f for every a € A. The composition of
morphisms is the ordinary composition of k-linear maps. Prove that the resulting
category of representations is equivalent to the category Mod A of all A-modules
(not necessarily finitely generated).

Exercise I.1.4. Let A be a finite dimensional k-algebra and0 — L — M —>
N — 0 be an exact sequence of A-modules. Prove that M is finitely generated if
and only if L and N are finitely generated.

Exercise 1.1.5. Let M, M>, M3 be submodules of an A-module M. Prove that, if
My C M,, then MyN (M + M3) = M+ (M, N M3). This is the so-called modular
law.

Exercise 1.1.6 (Nakayama’s lemma). Let M be a finitely generated A-module,
and N a submodule of M. Prove that N C rad M if and only if, for every submodule
L of M suchthat N+ L = M, wehave L = M.

Exercise I.1.7. Let A = K[r]/ (t"), where n > 1, Kk[¢] is the polynomial algebra
in one indeterminate ¢ and (t") is the ideal of k[r] generated by the n'" power 7".
Compute the radical of A and show that A is local.

Exercise I.1.8. Let e € A be an idempotent. Prove that e is primitive if and only if
the algebra eAe is local.

Exercise I.1.9. Let e € A be an idempotent. Prove that rad(eA) = e - rad A.

Exercise I.1.10. Let e, eo € A be primitive idempotents such that P = ejA
is not isomorphic to P, = e»A. Prove that Homy (P1, P2) # O if and only if
ey(rad A)e; # 0.
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Exercise I.1.11. Prove that an algebra A is local if and only if its radical is equal to
the set {x € A: xA # A}.

Exercise I.1.12. Letl =e¢; +---+ ¢, = f1 + -+ fu be decompositions of the
identity 1 of A into primitive orthogonal idempotents. Prove that m = n and that
there exists a € A invertible such that, up to permutation, we have, f; = a~'e;a,
for every i.

Exercise I.1.13. Let A be an algebra, and I an ideal of A. Prove that rad(A/I) =
(radA+1)/1.

Exercise I.1.14. Let A be an algebra.
(a) Let I, J be ideals of A. Prove that

1T ={) xiyilxi € 1, yi € J}

is an ideal of A contained in / N J. Prove that, in general, IJ # I N J.

(b) Forn > 1, we define rad"*! A to be the radical of the module rad” A. Prove
that rad"t! A = rad” A - rad A. Deduce that each rad” A is a nilpotent ideal of
A.

(c) Let A = @521 P; be a decomposition of A into indecomposable projective A-
modules. Prove that, for each n > 1, we have a decomposition of A/ rad” A into
indecomposable projective A-modules : A/rad" A = @'_, (P;/rad" P;).

Exercise I.1.15. Let A be the lower triangular matrix algebra

spe ey _[(w b

= — o2 . . .

A_<00k0>_ 0 0 as 0 caj; € kforalli, j
k k k k 4] 04 043 044

with the usual matrix operations. Compute rad A and give a complete set of
representatives of the isoclasses of indecomposable projective and indecomposable
injective modules. Compute the dimension vector of each of these modules.

Exercise I.1.16. Let A be the lower triangular matrix algebra

k 000 app O 8 8
=(kkO0O0)_ w1 axn R .
A= (k k k 0>— ws am oy 0 | % e kforall i, j
k k k k 04l 4 043 044

and e;; denote the matrix having coefficient 1 in position (7, j), and 0 elsewhere.
Prove that

T Y =
Jjj .
rad? A 0 otherwise.

o (radA ) o ik if (i, j) € {(4,3),(3,2), (2, 1)}
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.2 Quivers and algebras

1.2.1 Path algebras and their quotients

Quivers provide an unlimited source of examples of all levels of difficulty. A quiver
is a graphical object in which one can encode much of the structural information of
an algebra. Viewing an algebra as a quiver (with some relations) not only allows us
to visualise the properties of the algebra itself but also gives concrete descriptions
of its modules. It is, for instance, particularly easy to describe the simple, projective
and injective modules. In this section, we review those properties of quivers that are
needed in the sequel. In contrast to Section 1.1, all relevant proofs are given.

Definition 1.2.1. A quiver Q = (Qo, Q1, s, t) is a quadruple consisting of two
sets: Qp, whose elements are called points, and Q1, whose elements are called
arrows, as well as two maps s,7: Q1 —> Qg, which associate with each arrow
o € Qg the points s(«), () € Qo, called its source and its target respectively.

An arrow « of source x and target y is denoted by x LN yora:x — y.
The quiver itself is denoted briefly as Q = (Qg, Q1) or simply Q. A quiver Q =
(Qo, Q1) is called finite if both Oy and Q; are finite sets.

A subquiver Q" = (Qy. Q). s",t") of 0 = (Qo, Q1,s,1) is a quiver such that
0, S Qo, Q) S Q1 and the restrictions of s and 7 are s" and 1’ respectively,
that is, s|Q/1 =, t|Q/1 = t’ (in other words, if «: x —> y belongs to Q’, then
s'(@) = s(a) and '(@) = t(«)). The subquiver Q' is called full if Q| = {a €
O1:s(@), t(w) € Q6}. Thus, a full subquiver is completely determined by its set of
points.

Let O = (Qo, O1,s,1) be a quiver. A path a3 ...« of source x, target y
and length / in Q is a sequence of / arrows such that s(«1) = x, f(;) = y and
t(a;) = s(aj41) for all i such that 1 <i < [. Such a path is represented as:

o o) o
X=X —> X3 —> X3 —> ... —> Xj4+] = ).

We agree to associate with each point x € Qg a path €, of length zero, from x to
x, and call it the stationary or trivial path at x. A quiver Q is called acyclic if there
is no path in Q of length at least one from one of its points to itself (called cycle).
Cycles of length exactly one are called loops.

With every arrow o € (1, we associate a formal inverse o~ !, with source # ()
and target s(«). A walk in Q of length [ > 0 is a sequence

aflar .. a)

where for each i, we have o; € Q| and v; € {41, —1} and for each i < [, we
have {s(;), t(a;)} N {s(ti+1), t(xti+1)} # . A quiver Q is connected if for every

x,y € Qo, there exists a walk o} ay” ... ;" such that x = s(er;") and y = #(e}").
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One sometimes calls underlying graph of a quiver the structure obtained from it
by forgetting the orientation of the arrows (even if such a structure is generally not,
strictly speaking, a graph). In this terminology, a quiver is connected if and only if
its underlying graph is connected too.

Example 1.2.2. Here is an example of a quiver

aCl I B
7
ké%

One can see that this quiver contains a path Sy a3 Bu from 1 to 4 of length 8.
The quiver also contains cycles of arbitrary length from 1 to 1, such as the o for all
i>1.

The usual composition of paths in a quiver can be used to define an algebraic
structure.

Definition 1.2.3. Let Q be a quiver. The path algebra kQ of Q is defined as
follows. The underlying k-vector space kQ has as a basis the set of all paths in
0, including the stationary ones. The product of the basis elements «; ...q; and
B1 ... Bm is defined by:

0 otherwise.

(al...mxﬁl...ﬂm):{“1'““”31“"3"1 i1 (o) = s (A1)

The product is then extended by distributivity to the whole of kQ.

This defines an associative algebra, in which each stationary path €,, with x €
Qo, is an idempotent and thus, if Qg is finite, then Z €, is the identity. However,
x€Qo
kQ can be infinite dimensional, as shown in the example below.

Example 1.2.4. Let A be the path algebra of the quiver

QC.x

Then A admits as a basis the unique stationary path €, (which is therefore the
identity of A) and all the cycles &' through x, with i > 1. Its elements are thus linear
combinations of the o’ with coefficients in k and multiplication is induced from the
rule o’/ = o't/ Therefore, A is isomorphic to the algebra of polynomials in one
indeterminate K[7].

This example shows that the existence of an oriented cycle in a quiver implies that
the path algebra is infinite dimensional. Because, in this book, we are only interested
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in finite dimensional algebras, we deduce that, starting from the path algebra of a
quiver, we need to “’kill” all cycles or, more generally, paths that are long enough. We
need a notation. In a path algebra kQ, let kQ ™ be the ideal generated by the arrows.
Then, kQ™ contains all paths of positive length. For m > 2, kQ™ = (kQ™)™
denotes the m'" power of kQ, that is, the ideal generated by the paths of length m.
It contains all paths of length greater than, or equal to m.

Definition 1.2.5. Let Q be a finite quiver. An ideal I of kQ is called admissible if
there exists m > 2 such that

kQ+m cIcC kQ+2,

In this case, the pair (Q, I) is called a bound quiver and the algebra A = kQ/I a
bound quiver algebra.

The adjective “bound” refers to the verb “to bind”.
The finiteness of Q above ensures that kQ has an identity Z €. The condition
x€Qo
saying that I C kQ%? says that / only contains linear combinations of paths of
length at least two. Finally, saying that there exists m > 2 such that kQ™" C I
amounts to saying that every path of length larger than or equal to m (that is, every
path long enough) is contained in /.

Example 1.2.6. Let Q be the quiver

The ideal < B3, @B > generated by A3 and «f is admissible: indeed, one sees
easily that kO™ € I € kQ*2. On the other hand, neither of the ideals < 8 > nor
< af > is admissible: indeed, < B >Z kQ1?, whereas f™ ¢< af > for every
m > 2.

The conditions defining admissibility ensure that the quotient of a path algebra
by an admissible ideal is finite dimensional. Actually, we have the following result.

Proposition 1.2.7. Let Q be a finite connected quiver and I an admissible ideal of
kQ. Then A = kQ/I is a basic and connected finite dimensional algebra having
{ex = ex + 1: x € Qop} as a complete set of primitive orthogonal idempotents. In
addition, rad A = kQ%1/I.

Proof. Because Q is finite, the path algebra kQ is an associative algebra having
as identity 1 = erQo €x. Therefore, A is also associative with identity 1 =
er 0, €x> where e, = €, + 1. We claim that A is finite dimensional.

By hypothesis, there exists m > 2 such that kQ" C I. Hence, there exists a
surjective morphism of algebras kQ/kQ+" — kQ/I = A. Now, kQ/kQ*™ is
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spanned as a vector space by (the residual classes of) all paths in the finite quiver O
of length strictly less than m. It is thus finite dimensional. Hence, so is A.

We now prove that {e,: x € Qp} forms a complete set of primitive orthogonal
idempotents. Clearly, in kQ, {ex: x € Qp} forms a set of orthogonal idempotents.
Therefore, in A, {e,: x € Qo} also forms a set of orthogonal idempotents. Because
1=, 0, ¢x» itonly remains to show that the e, are primitive. Now, an idempotent
e € ey Ae, can be written in the form e = Ae, +w+ 1 where A € Kk, and w is a linear
combination of cycles through x. Then, e2=e yields A2 =Nex+r—Dw+w? e
I. Because I C kQ+2, we must have A2 — A = 0 and therefore A = Q or A = 1.
Assume first that A = 0, then e = w + I idempotent gives w' — w € I for all i.
However, there exists m > 2 suchthatkQ1™ C [ andso w™ € I. Then, w"—w € I
implies w € I and so e = 0 4 [ is the zero of ex Ae,. Similarly, if A = 1, we get
that e = e,.

We next prove that A is connected. If this is not the case, then, because of
Proposition I.1.16, A contains a central idempotent ¢ # 0, 1. We have

c=1-¢c-1= Zex -C- Zey = Z excey=Zexc,

x€Qo Y€Qo x,y€Q0 x€Qo

using that the e, are orthogonal idempotents and that ¢ is central. Because ey is
primitive and e,c is an idempotent in e, Aey, we have either exc = e, or exc = 0.
Let Q) = {x € Qo: exc =0} and O = {x € Qo: exc = e;}. Because ¢ # 0, 1,
both Qf and Qj are nonempty, and Qo9 = Q;, U Qg and Q; N Q; = #. Because
Q is connected, there exist x € Q6 and y € Qg , which are neighbours in Q. We
may even assume without loss of generality that there exists an arrow o: x —> y.
But then exAey = exAeyc = excAey = 0, whereas 0 # a + I = €;aey + 1 =
ex(a + Iey € ey Aey, a contradiction. Thus, A is connected.

To compute the radical of A, we first observe that kQ1™ C I, with m as above,
implies that (kQT/I)™ = 0in A, that is, the ideal kQ /I of A is nilpotent (hence
nil). In addition,

A _ &Q/D KO g
kQ*/I) — (kQ*/I)  kQT

is a product of copies of k. Therefore, A is basic with radical equal to kQ*/I. O

For instance, if Q is a finite acyclic quiver, then the lengths of paths in Q are
bounded; hence, every ideal I C kQJr2 is admissible. In particular, the zero ideal
is admissible and so the path algebra kQ itself is a basic and connected finite
dimensional algebra with radical kQ ™.

Admissible ideals are most commonly defined by means of their generators. A
relation in a quiver Q is a linear combination of paths of length at least two, all
these paths having the same source and the same target. Thus, a relation from x to
yin Q is an element of kQ of the form
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k
p= Z)»iwi
i=1

where the X; are nonzero scalars, and the w; paths of length at least two from x
to y, say. Thus, every relation is an element of kQ 2. If k = 1, then p is called a
zero-relation. If it is of the form p = w; — wy (Where w, wy are paths with same
end points), then it is a commutativity relation.

Proposition 1.2.8. Let Q be a finite connected quiver and 1 an admissible ideal
of KQ. Then there exists a finite set of relations in KQ 2, which generates I as an
ideal.

Proof. We first show that I is finitely generated as an ideal of kQ. Let m > 2 be
such that kQ ™ C I. We have a short exact sequence of kQ-modules

+m
0— kQ _)I_>kQ+m_)

Now, kQ™ is generated, as an ideal, by the paths of length exactly m (thus, it
contains all paths of length greater than or equal to m). Because Q is a finite
quiver, kQ1™ is thus finitely generated. On the other hand, I/kQ*™ is contained
in the finite dimensional vector space kQ/kQ™™"; hence, it is finitely generated.
Therefore, [ itself is finitely generated.

Let {o1,...,0:} be a finite set of generators for /. The o; are generally not
relations. Consider the set

{exoiey: 1 <i <t,x,y € Qo}.

It is finite, because Q is finite, and its nonzero elements are relations that generate

I as an ideal because, for each i, we have 0 = 3, o €x0i€y. o

If A = kQ/I is a bound quiver algebra, where I is generated by the finite set
{p1, ..., p:} of relations, then we say that A is given by the quiver Q bound by the
relations p; =0, ..., o, = 0.

L1.2.2 Quiver of a finite dimensional algebra

We have seen in Subsection 1.2.1 that, given a quiver Q and an admissible ideal /,
one can consider the bound quiver algebra A = kQ/I. Conversely, starting with a
basic and connected algebra A satisfying an extra condition, one can find a quiver
0 4 and an admissible ideal / of KQ 4 such that A = kQ 4/1. To see the necessity of
an extra condition on A, we recall that, because A is basic, A/ rad A is a product of
fields, generally noncommutative. However, as seen in the proof of Proposition 1.2.7,
if A is a bound quiver algebra, then A/rad A must be a product of copies of k.
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We therefore define an algebra A to be elementary if A/rad A is isomorphic to a
product of copies of k. For example, if A is a basic algebra over an algebraically
closed field k, then it is automatically elementary: indeed, in this case, A/rad A =
I—[l’f:1 k;, where the k; are (skew) fields that are finite dimensional extensions of K,
and k, being algebraically closed, yields that k; = k for each i.

Definition 1.2.9. Let A be an elementary algebra, and {ey, ..., e,} a complete set
of primitive orthogonal idempotents. The ordinary quiver or simply quiver Q 4 of
A is defined as follows:

(a) The points {1, ..., n} of Q4 are in bijection with the idempotents {eq, ..., e,}.
(b) Ifx, y € (Q4)o, then the arrows from x to y are in bijection with the vectors in

a basis of the k-vector space
< rad A )
e ey.
“\rad?a )™’

In particular, Q 4 is a finite quiver, because A is finite dimensional. We have to

show that Q4 is well-defined. Because, for x, y € (Q4)o, the number of arrows
rad A
rad? A
basis, we only have to prove that this vector space does not depend on the choice of
the idempotents.

from x to y depends on the k-dimension of e, ( )ey and not on the chosen

Lemma 1.2.10. The quiver Q4 does not depend on the choice of a particular
complete set of primitive orthogonal idempotents for A.

Proof. Let{ey,...,e,}and {f1, ..., fin} be complete sets of primitive orthogonal
idempotents for A. Because

Ax = B (eiA) = @ (i A)

and the ¢;, f; are primitive, we get from Theorem I.1.14 that m = n and, up to a
permutation, e; A = f; A for every i. Now, for every 7, j, we have isomorphisms of
k-vector spaces:

12

(e,-(radA) )e,
e (rad2 A) J
( rad(e; A) ) o

rad®(e;A) ) 7

~ . rad(e; A)
= Homy (e]A, —radz(e[_m) .

[ rad A .
€i (rad2 A) €j

12

Then, ¢;A = fiAand e;A = f; A yield an isomorphism of k-vector spaces

rad A - rad A
e: e: = f .
' <rad2A> i =i (radzA) &

as required. O
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We next have to show that the definition of Q4 is coherent with that of the
corresponding bound quiver algebra.

Lemma 1.2.11. Let A = kQ/I be a bound quiver algebra, then Q4 = Q.

Proof. Because of Proposition 1.2.7, we have that {e,: x € Qp} is a complete set
of primitive orthogonal idempotents of A and also rad A = kQ™ /I, which implies

radA  (kQ*/D _ kQ*
ra? A (kQ*2/1) T kQ*?

The statement follows from the fact that, if x,y € (o, then the vector space
ey (kQ+ /kQ+2) ey has as a basis all paths of length exactly one (that is, all arrows)
from x to y. O

We now wish to prove that every elementary finite dimensional algebra is a bound
quiver algebra. For this purpose, we start by lifting the arrows to radical elements.
Indeed, let x, y be points in Q 4, and {«q, ..., o} all the arrows from x to y. Then,
there exists a set {ay,, ..., dq, } of elements of e, (rad A)e, whose residual classes
{ag, +1ad> A, ..., a,, +rad’ A} form a basis of the space e, (rad A/ rad? A)ey.

Lemma 1.2.12. With this notation, the vector space e, (rad A)ey is generated by all
products of the form aq, . . .ay, where ay ...y is a path from x to y.

Proof. As a k-vector space, we have

rad A

ex(radA)e, = e, | ——
x( ey x(radzA

) ey @ ey (rad2 Aey.

Therefore, to every a € ey (rad A)e, corresponds a linear combination Z Ao,
o x—>y
with A, € Kk such that a — Z aqg Ay belongs to ey (1rad2 A)ey. But now,

o x—y

ex(rad® Aey = Y (ex(rad A)e;) - (e:(rad A)ey).
z2€(Qado

Repeating the above reasoning, we get linear combinations Z agig and

B:ix—z

Z ay Ay such that
y:iz—>y

a— Z Aghg — Z agig Z ayhy | =a— Z Auhg — Z agay, (Aghy)

a: x—>y ﬁ:x—)z Y:izi—>y a:x—y ﬁy:x—)y—)z
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belongs to e, (rad> A)ey. Applying induction and using that rad A is nilpotent, we
can write a as a linear combination of products of the required form. O

We now prove the main theorem of this subsection.

Theorem L1.2.13. Let A be an elementary finite dimensional k-algebra. Then, there
exists a surjective algebra morphism ¢: KQ4 —> A with admissible kernel I. In
particular, A = kQ 4/ is a bound quiver algebra.

Proof. Let a, be as above and define a morphism of algebras ¢: kQ4 —> A as
follows. First, set

p(€x) = ex foreach x € (Q4)g, and
o) = ay foreach o € (Qa)1.

This defines ¢ on points and arrows only. To define it on an arbitrary basis vector of
kQ 4, that is, a path, we extend this definition by setting

plar...a) =@ay)...o() = ag, ... 4y

for each path ¢ ... in Q 4. Then, ¢ extends to a k-linear map kQ 4 —> A, which
preserves the product of basis vectors, and hence, of every vectors. In addition,

eM=¢| D e&]= Y o= > e=1

xe(Qado xe(Qado xe(Qado

so it preserves the identity as well. Therefore, ¢ is a morphism of algebras.

Because A is elementary, the elements e, generate A/rad A and, because of
Lemma 1.2.12, the products of the elements a, generate radA as a k-vector space.
Therefore, the set {ey,ay: x € (Qa)o, ¢ € (Qa)1} generates A as a k-algebra.
Because these elements lie in the image of ¢, we conclude that ¢ is surjective.

We now prove that / = Ker ¢ is admissible. Because of the construction of ¢,
we have go(kQX) C radA. By induction, we get (p(kQX’) Crad' A forevery i > 1.
Because radA is nilpotent, there exists m > 2 such that (p(kQXm) = 0, that is,
kQ:{m C [I. It remains to show that I C kQXz. Let a € I. Then there exist linear
combinations er(QA)O €xAy and Zae<QA)l O flg, With Ay, e € K for all x, a such
that

a— (Z €xhy + ZOW““> € kQXZ.
X o
Applying ¢ and using that ¢(a) = 0, we get

Zexkx + Zaa,ua € <p(ijg2) C rad’ A.
X o
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Because the e, are orthogonal idempotents, we infer that A, = 0 for all x and
therefore Za Agla € rad? A, which can be written as Za (aq + rad? Ay = 0.
But the elements of the set {ay + rad? A}, form, by definition, a basis of the vector
space rad A/ rad” A. In particular, they are linearly independent and so pe = 0 for
all . This shows that a € kQ 2. O

In particular, every basic algebra over an algebraically closed field is a bound
quiver algebra. We end this subsection with an example.

Example 1.2.14. Consider the algebra in Example I.1.1

k00O
kk0O
kOkO
kkkk

Denote as before by e;; the matrix having 1 in position (i, j) and 0 everywhere
else. A natural complete set of primitive orthogonal idempotents for A is the set
{e11, €22, €33, ea4}. We have proved in Example 1.1.8 that

0000
k00O
k000
kkkO

rad A =

sothat A/rad A = k*. Therefore, A is elementary. In addition,

0000
0000
0000
k000

rad? A =

A straightforward calculation gives that each of

(radA) (radA) (radA) <radA>
e €33, e ey, e e, en| —— e
44 A A 33, €44 A A 22, €33 Al A 11, €22 A A 11

is one-dimensional, whereas the rest of the

rad A
i rad? A €ii

are zero. This gives the quiver Q4 of A
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2
B * ‘\a
le / ° 4
T
3

We consider the algebra morphism ¢: kQ4 —> A defined by ¢(¢;) = e;; for
eachi € {1,2,3,4}, p(@) = ea, (B) = €21, ¢(y) = e31, 9(8) = ea3. Then, ¢ is
surjective because its image contains a basis of A. We have

p@pf) = p(a)p(B) = esner) = es1 = eq3e3zr = @(¥)e(8) = @(y9).

Therefore, «f — y§ € Kerg. On the other hand, this kernel is one-dimensional
because a quick calculation gives dimgkkQ 4 = 10, whereas dimkA = 9. Thus, if
I is the ideal generated by the element o8 — y§, we have indeed A = kQ4/1. As
mentioned at the end of Subsection I.2.1, we say that A is given by the quiver above
bound by the relation ¢ = y§.

1.2.3 Projective, injective and simple modules

We recall from Subsection 1.1.3 that, if A is a finite dimensional algebra, and
{e1,...,en} is a complete set of primitive orthogonal idempotents, then {P;
elA, ..., P, = e, A}, {I; D(Aey), ..., I, = D(Ae,)} and {S; = top P,
socly,...,S, = topP, soc I,} are a complete list of representatives of
the isoclasses of the indecomposable projective, injective and simple modules
respectively. We now show how to construct these modules using bound quivers.

For this purpose, we first need a complete set of primitive orthogonal idempo-
tents. Let A = kQ/I be a bound quiver algebra. Because of Proposition 1.2.7, the
set {ex = €x + I : x € Qp} is a complete set of primitive orthogonal idempotents in
A. We deduce our first lemma:

e

~

Lemma 1.2.15. For each x € Qy, the indecomposable projective A-module P, =
exA is generated, as a K-vector space, by the classes modulo 1 of all paths in Q
starting at x.

Proof. Indeed, we have

Px = €xA = €y <Q> = GX(kQ)
1 €1

The statement follows immediately. O
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In particular, for every y € Qp, the vector space Pre, = eyAe, =
ex(kQ)ey /e, 1€y is generated by the classes modulo 7 of all the paths in Q from x
to y. This implies that Hom4 (Py, Py) = Pye, is nonzero if and only if there is a
path from x to y not lying in /.

Corollary 1.2.16. For each x € Q, the simple A-module Sy = top Py is a one-
dimensional vector space generated by ey.

Proof. Over an elementary algebra, every indecomposable projective module has a
one-dimensional top equal to k. Therefore, every simple module is one-dimensional.
On the other hand, we have Sye, = Homg (P, Sy) # 0 and spanned by e. O

A first consequence of the previous results is that a projective module Py is
simple if and only if x € Qg is a sink in Q. For every point x, the radical rad P is
easy to compute:

k + Kk +
radPx:eradA:exradA:ex( 0 )%Ex Q

1 €1

which means that rad P, is generated by the classes modulo I of all paths starting
at x of length at least one.

Another consequence is as follows. An arrow «: x —> y in Q corresponds to
a nonzero element of e; Aey, = Homy(eyA, exA), and thus to a nonzero morphism
fa: Py —> Py. Hence, paths in O induce sequences of nonzero morphisms
between indecomposable projectives.

The next result describes the injective modules in terms of paths in the quiver.

Lemma 1.2.17. For each x € Q, the indecomposable injective A-module D(Aey)
is isomorphic, as a K-vector space, to the dual of the space generated by all classes
modulo I of the paths in Q ending in x.

Proof . This is similar to Lemma [.2.15 and is thus omitted. O

Also, an injective module /, is simple if and only if x € Qg is a source.

In our examples, we represent these modules in a visually suggestive way, which
respects the shape of the quiver and, for a module M, yields immediately its radical
filtration

MDradM Drad*>M D ... Drad M = 0.

The least integer ¢ such that rad M = 0 is called the Loewy length of
M and denoted as [[(M). Thus, if M and N are modules, then [I(M & N) =
max{l[(M),lI(N)}.

Example 1.2.18. Let A be given by the quiver
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2
B * ‘\a
1e / o/
T
3

bound by «f = y$.

We first compute the indecomposable projective modules. Because 1 is a sink,
we have P; = §; (which we sometimes abbreviate as P; = 1). Now, P,, as a k-
vector space, has a basis {¢5, 8 = B+ I}. It is then two-dimensional. As seen above,
top P, is spanned by e, and rad P, by 8. Because P, is a submodule of A 4, its scalar
multiplication is induced from that of A; thus, it is defined by

erer = e
ep =p _
eou=~0 for every basis vector u # ez, fin A,
Ber=p

Bv =0 for every basis vector v # e in A.

Identifying idempotents to points, and classes of arrows to arrows, we may represent

2
P, as iﬁ or, briefly, PZ:%.
1

This notation clearly suggests that top P, = 2 and rad P, = 1. Similarly, Pz = ?
has top 3 and radical 1. The indecomposable projective module Py is generated, as
a k-vector space, by the classes {es, @, @B, 7, 78}. However, af = aff = y8 =
73, because I =< aff — y§ >. Thus, P4 is four-dimensional, having as a basis
{eqa, @, y, @}. Using the notation above, P4 may be represented as

4
Q) Y 4
2/ \3 or, briefly, Py = 2 3.

P !

The reader sees that, if M is a submodule of Py, then the representation of M
corresponds to a subdiagram of P4 in which all arrows enter (none leaves). Thus, all

isoclasses of submodules of Py are Py, rad Py = 213 R % R ?

1. The radical filtration of Py is

and rad? Py =soc Py =

4
23D 2
1

3
121.
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One composition series of Py is given by

4
2302353 5
221212

and the other is obtained by replacing ‘;’ by % . In particular, the Loewy length of
Py is 11(P4) = 3, whereas its composition length is /(P4) = 4. In the same way,
a quotient of P4 corresponds to a subdiagram in which all arrows leave (and none

enters). For instance, Ps/ soc Py = 243 . We may thus write Ay = 16 % (&) ? (&) 243.

Now for the indecomposable injective modules. Because 4 is a source, Iy = S41=
4. On the other hand, I is the dual of the vector space with a basis {e;, @ = o + I}
and its multiplication is also induced from that of A. We can therefore represent I,
as

o or, briefly, g .

N e— B

Finally, 11 is the dual of the vector space spanned by the

,73}. Because o = v, its basis is {ey, B, §, aB}. It can be

classes {er, B, ap,
represented as

4
Similarly, I3 = 3
s

o'\
2 3
Nt

and, in particular, it is isomorphic to P4. It is then projective—injective and one has
(DA), = et et a4
AT STV Yy T

One sees that, for instance, P» is isomorphic to a submodule of P4 and the cokernel
of the inclusion is just /3. Thus, we have a short exact sequence

0ﬁ®3§2ﬁ“
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in which the morphisms are represented diagrammatically. It is known that % is
a submodule of P4, and the map % —> P4 is the only possible embedding.

Factoring out by the image yields P4/ % = g . The principles used here are that,
first, the image of a simple module is only zero or an isomorphic simple (this is
the well-known Schur’s lemma) and, if f : L —— M is a morphism, then
Imf=L/Kerf.

Example 1.2.19. Let A be given by the quiver

bound by the relations « = 0 and 8> = 0. Then, the indecomposable projectives
are given by

I
—_ -
R
I
N

1

1’121i =1, P
}
1

b2
Thus, Ag =1 691 .
1
Similarly, the indecomposable injective A-modules are given by

1
B 1
i 12 and L =2

1 2 =
N

I =

1
sothat DA)4 =1 2 & 2.
1

This method of representing indecomposable projective and injective modules
using their radical filtrations can be extended to other modules. In particular, radicals
of indecomposable projectives and quotients of indecomposable injectives by their
socles are easy to produce. For instance, in the above example,

b ! 1 1
dP, =", radp, =1 =0and - =1 g2
radii =, rdhL == soch an socl; 12 1 ®

This notation has several advantages. For instance, one sees easily that there is
a nonzero morphism from P, to Ij, which is a monomorphism whose cokernel
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is rad P;. This way of visualising modules is generally not very precise and in
large examples quickly becomes unpractical. It will however suffice for the small
examples we deal with in this book.

There is one class of algebras for which this representation of modules always
works very well. These are the Nakayama algebras, which we now consider.

1.2.4 Nakayama algebras

An algebra A is called representation-finite if its module category admits only
finitely many isoclasses of indecomposable objects. It is called representation-
infinite if it is not representation-finite. Representation-finite algebras are a par-
ticularly nice class to study: indeed, one can classify their indecomposable modules
up to isomorphism and, as we shall see later, we know a lot about the morphisms
between them. The objective of this subsection is to describe an easy class of
representation-finite algebras, that of the so-called Nakayama algebras. Throughout,
let A be a finite dimensional k-algebra. We start with a definition.

Definition 1.2.20. An A-module is called uniserial if it admits a unique composi-
tion series.

Clearly, every simple module is uniserial. There exist uniserial modules which
are not simple (for instance, in Example 1.2.19 the modules P> = % andrad P, =

1 )- A uniserial module has a simple top and a simple socle so, in particular, it
is indecomposable. Also, if M is uniserial, then so is every submodule and every
quotient of M.

Lemma 1.2.21. An A-module M is uniserial if and only if its radical filtration
MQradMQradzMQ... Drad M =0

is a composition series.

Proof. Assume first that M is uniserial of composition length /. Then, it has a
unique maximal submodule, necessarily equal to rad M, whose composition length
is equal to / — 1. The result follows by induction.

Conversely, let M 2 My 2 ... 2 M; = 0 be a composition series for M. The
hypothesis says that M/ rad M is simple; thus, M has a unique maximal submodule.
Therefore, M| = rad M. Inductively, M; = rad’ M for all i and thus M has a unique
composition series. o

Given a module M, we recall that its Loewy length [/(M) is the least integer ¢
such that rad’ M = 0. If M is now uniserial, then //(M) equals the composition
length [(M) of M because of Lemma 1.2.21 above.



28 I Modules, algebras and quivers

Lemma 1.2.22. Every indecomposable projective A-module is uniserial if and only
if. for every indecomposable projective P, the module rad P/ rad®> P is simple or
zero.

Proof. Because necessity follows from Lemma 1.2.21, we only need to prove
sufficiency. We claim that the hypothesis implies that, for every indecomposable
projective P, the radical filtration P O rad P D rad? P D ... is a composition
series. This implies the uniseriality of P.

We prove the claim. We know that P/rad P is simple and that rad P/rad® P
is simple or zero. Assume inductively that rad’~! P/rad’ P is simple. Let
p: PP — rad"!' P be a projective cover. Because rad~! P has a simple
top, P’ is indecomposable. Applying Lemma 1.1.9, p induces epimorphisms
rad P —> rad’ P and rad’ P’ —> rad’t! P. Passing to cokernels, we get an
epimorphism rad P’/rad’> P’ — rad’ P/rad’*! P. Because of the hypothesis,
rad P’/ rad®> P’ is simple or zero. Therefore, so is rad’ P/rad’*! P. This establishes
our claim. O

We now define Nakayama algebras.

Definition 1.2.23. An algebra A is called a Nakayama algebra if all indecompos-
able projective and all indecomposable injective A-modules are uniserial.

The definition implies immediately a characterisation of Nakayama algebras by
means of their quivers.

Theorem 1.2.24. Let A be an elementary algebra. Then, A is a Nakayama algebra
if and only if its ordinary quiver Q 4 is of one of the following two forms:

1 2 3 n—1 n
(@) o

|
|
|

2
(b) l

Proof. Because of Lemma 1.2.22, every indecomposable projective A-module is
uniserial if and only if, for every x € (Q4)o, we have

di (radPx ) di ( <radA>> -1
im, =dimg | e .
K rad? P, ™ rad? A -

This occurs if and only if there exists at most one point y € (Qa)o such that
ex(rad A/ rad? A)ey # 0 and this vector space is one-dimensional, or, equivalently,
there exists at most one arrow starting with x.
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Dually, every indecomposable injective A-module is uniserial if and only if, for
every x, there is at most one arrow in Q4 ending with x. Thus, A is a Nakayama
algebra if and only if, for each x € (Q4)o, there is at most one arrow starting at x
and one arrow ending at x. This gives the quivers (a) and (b) in the statement. |

In particular, if A = kQ/I is a Nakayama bound quiver algebra, then the ideal
I, on which the theorem imposes no restriction, can only be generated by zero-
relations.

We deduce the classification of indecomposable modules over a Nakayama
algebra.

Theorem 1.2.25. Let A be a Nakayama algebra and M an indecomposable A-
module. Then there exist an indecomposable projective A-module P and at > 0
such that M = P /rad’ P. In particular, M is uniserial.

Proof. Lett = lI(M) be the Loewy length of M and set A’ = A/rad’ A. Because
0 =rad’ M = M-rad’ A, then M has a natural A’-module structure, and rad’ -y #*
0 implies rad’ "' A # 0; therefore, I[(A’) = r. We claim that A’ is Nakayama.
If A is elementary, this follows from Theorem 1.2.24, but we give an independent
proof without this hypothesis. Let A4 = @®]_, P; be a decomposition of A into
indecomposable projective A-modules. Then,

n

A P i P
rad’ A @ (Pi rad’ A) B 691 (radf Pi> '

i=1

i=

Each of the modules P;/rad’ P; has a simple top and is thus indecomposable.
This shows that each indecomposable projective A’-module is isomorphic to some
P;/rad’ P;. Now, P; being uniserial, so is P;/rad’ P;. This result and its dual imply
that A’ is Nakayama.

Let f = (f1...fs): 69;:1 P// —> M be a projective cover in mod A’, with all
the P; indecomposable. Then,

t=U(A") = max{ll(P)} = (M) =t

shows that there exists some j such that [/ (PJ’.) =t

If no f;: P]/. —> M with ll(Pj/.) = t is injective, then we have //(Im f;) < ¢
for all j, and, because f = (f]...fs) is an epimorphism, we get [[(M) < t,
a contradiction. This proves that there exists j such that [/ (P]/.) = t and also
fi: P]/. —> M is injective. We claim that, in this case, PJ’. is also an injective A’-
module. Indeed, let P]’. — I be an injective envelope in mod A’. Because soc P/ is
simple, so is soc [; therefore, I is indecomposable and hence uniserial. In addition,
we have

t=1(P) =1(P})) <I(I) =) < I(A) =1.
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Therefore, [ (Pj/. ) =1(I) and so PJ/. = ], which establishes our claim. It implies that
the injective morphism f; : P]f —> M is a section. Because M is indecomposable,
we have M = PJ’.. Hence, there exists i such that M = P;/rad’ P;. |

Because finite dimensional algebras admit only finitely many isoclasses of
indecomposable projective modules, each of which has finite (Loewy) length, we
infer from the previous theorem that a Nakayama algebra is representation-finite.

Example 1.2.26. Let A be given by the quiver

bound by ¢y = 0 and ya = 0. Because of Theorem 1.2.24, A is a Nakayama
algebra. Its indecomposable projective modules are, up to isomorphism,

P2—2 , and Py =

P = =3

LN =
0o = W

We deduce from Theorem 1.2.25 the complete list of isoclasses of nonprojective
indecomposable A-modules

P P P
L 2 _o 3 _3
rad P, rad P, rad P3

LS U i T
rad? P, 2 rad? P; 1

It is also easy to compute minimal projective resolutions of the simple modules
and hence the global dimension of A. For instance, the short exact sequence

LoD

shows that pd 1 = 1. Also, there is an exact sequence
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Splicing infinitely many copies of this sequence shows that pd 3 = oco. The short
exact sequence

O—>3—>2 —2—0

3

shows that pd 2 = oo as well. Therefore, gl. dim. A = oco.

1.2.5 Hereditary algebras

Hereditary algebras are among the most frequently studied algebras in representa-
tion theory. An algebra A is hereditary provided that its global dimension is at most
one, or, equivalently, every submodule of a projective module is projective. This is
equivalent to saying that every quotient of an injective module is injective.

We need the following lemma:

Lemma 1.2.27. Let A be a hereditary algebra, then:

(a) A nonzero morphism between indecomposable projectives is a monomorphism.
(b) The quiver of A is acyclic.

Proof.

(a) Let f: P —> P’ be nonzero, with P and P’ indecomposable projectives. Its
image Im f is a submodule of P’, and hence is projective. Consequently, the
canonical surjection P —> Im f induced by f is a retraction. Because P is
indecomposable, we get P = Im f.

(b) Assume that the quiver Q4 contains an oriented cycle. Then there exists
a sequence of nonzero morphisms between nonisomorphic indecomposable
projective A-modules

Pl p L2 I p —p,

with n > 1. Because each of the f; is injective, so is the composition
fo--- fi: Pp — Po. But then f,... f1 is an isomorphism. Hence, f,, is
surjective and therefore an isomorphism between P, and P,_;. This is a
contradiction.

O

We are now able to describe hereditary algebras in terms of bound quivers.

Proposition 1.2.28. A basic, elementary and connected algebra A is hereditary if
and only if A = kQ 4 with Q 4 acyclic.

Proof. Let Sy be a simple A-module, and Py its projective cover. The short exact
sequence
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0—radP, — P, — S, — 0

says that A is hereditary if and only if, for each x, the radical rad Py is projective.

Assume first that A = KQ and, for y, z € Qy, let w(y, z) denote the number of
paths from y to z in Q. Because A is finite dimensional, implying that Q is finite
and acyclic, we have w(y, z) < oo forall y,z € Qq. Given x € Qo, let y1, ..., y:
denote the distinct direct successors of x in Q and assume that, for each i, there are
n; arrows from x to y;. Then, top(rad Py) = EB? —1 S;ff, so that we have a projective
cover morphism p: @'_, Py’ —> rad P,. Let y # x be arbitrary in Q, then

dimg (rad Py)e, = dimg(Prey) = dimg(exAey) = w(x, y)
= i mw(, y) = Yoy nidimg(Pyey)
= dimg (®!_, Py, )ey.

Therefore, p is an isomorphism and rad Py is projective. Thus, A is hereditary.

Conversely, assume that A is hereditary, and write A = kQ/I. Because of
Lemma [.2.11, we have QO = Q4. We must prove that / = 0. Because of the
previous lemma, Q is acyclic, we may number its points so that, if there is an arrow
x —> ythenx > y. Assume that I # 0. Then there is a least x such that e, Iey, # 0
for some y. In particular, x is not a sink; thus, rad P, # 0. Because A is hereditary,
rad P, is projective and in fact rad P, = @§=1P)n‘i[ where, as before, yq, ..., y; are
the direct successors of x in Q4 and n; the number of arrows from x to y;. The
minimality of x implies that ey, /e, = 0; thus, dimk(Py,ey) = dimg(ey, Aey) =
w(yi, y), where w(y;, y) denotes, as above, the number of paths from y; to y. But
then

dimg(rad Py)ey = Y i_; nidimg(Pyey) = Y iy niw(yi, y) = w(x, y)
> w(x,y) — dimg(ex/ey) = dimg(Prey)

an absurdity. Therefore, I = 0 and our claim is established. O

1.2.6 The Kronecker algebra

The Kronecker algebra is a standard example of a representation-infinite algebra
and one of the few where it is relatively easy to compute indecomposable modules
in detail. It serves to illustrate several of the concepts introduced in these notes, but
also opens up new avenues to the reader.

The Kronecker algebra is the 2 x 2 triangular matrix algebra

k 0 a 0.
A=<k2k>:{((b,c)d>'a’b’c’d€k}
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with the ordinary matrix addition and multiplication, and the operations on the entry
below the main diagonal defined componentwise. Thus,

< aj O>+( ar O)_< ap +ax 0 )
(b1, c1) dy (b2, c2) d> (b1 + b, c1 +¢2) di +d>

( aq 0)( ay 0)_( ajap 0)
(b1, c1) di (b2, c2) do (braz + diba, craz + dic2) didr )

Actually, as we see now, the Kronecker algebra is the path algebra of its ordinary
quiver, the so-called Kronecker quiver K»:

«
le I———— o2
B

Indeed, a natural complete set of primitive orthogonal idempotents of A is
provided by the matrix idempotents:

(10 o (00
= \oo0)" 2= \o1 )

Also, the radical of A is the two-sided ideal

00
(0)

consisting of the off-diagonal elements: indeed, this ideal is clearly nilpotent
and the quotient of A by it is isomorphic to the semisimple algebra k x k.
Because rad? A = 0, it follows easily from the definition of multiplication that
ex(rad A/ rad? Ade; = k2%, whereas all the other ¢; (rad A / rad? A)e; vanish. This
shows that Q4 is the quiver K». We may look at the arrow « as corresponding to
the first component of the off-diagonal elements, and the arrow 8 as corresponding
to the second component. Finally, dimkA = dimgkK, implies that A = kK». In
particular, because of Proposition 1.2.28, the Kronecker algebra is hereditary. In the
sequel, we give a detailed description of the module category over the Kronecker
algebra, In particular, we shall see that it is representation-infinite.

Exercises for Section 1.2

Exercise I.2.1. Let Q be a finite connected quiver and / an admissible ideal of kQ.
Prove that kQ/1I is local if and only if |Qg| = 1.
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Exercise I.2.2. For each of the following bound quiver algebras, give a basis of the
algebra, write a multiplication table for this basis, and then give a complete list of the
isoclasses of indecomposable projective and indecomposable injective modules.

Jé] @

(@1 i 2 3 4
01— 9B 32y afy =0
©1—— 9L 5.2y af =0
1——2-P 3.2 4  aB=008=0
1 4
8 @
e) \3/ af =0
76 =0
2‘4 ‘7\5
1 4
Jé] @
(f) \3/ af =0
2‘4 ‘7\5
(g)1<7—2.7<a73
B
)11 93— 3 ay =0
B

(i)ﬁCl—a» 2 B2 =0
0)761 %QO 5 112:(232;;255
1 X
3
6] «a
/ '\5
T

Exercise 1.2.3. For each of the algebras of Exercise 1.2.2, compute the projective
resolutions of the simple modules and deduce the global dimension of the algebra.

(k) 2 ae=0,a8 =76

Exercise 1.2.4. Let A be an elementary algebra. Prove that A is connected if and
only if Q4 is a connected quiver.
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Exercise .2.5. Let A = kQ/I be a bound quiver algebra and x, y € Qg. Prove
that:

(a) Sy is a composition factor of P, if and only if there exists a path w from x to y
in Q such that w ¢ 1.

(b) Sy is a composition factor of I, if and only if there exists a path w from y to x
in Q such that w ¢ I.

Exercise 1.2.6. Let A = kQ be a hereditary algebra and x € Qg. Prove that:

(a) If x is a sink, then P, = S, and, if x is not a sink, then

rad P, = @ Py.

ol x—>y
(b) If x is a source, then I, = S, and, if x is not a source, then

Iy
= I,.
soc I, @ Y

o y—>x

Exercise I.2.7. Prove that an A-module M is uniserial if and only if /(M) = [I(M).

Exercise I.2.8. Let / be an ideal in a Nakayama algebra A. Prove that A/[ is a
Nakayama algebra.

Exercise 1.2.9. Let A be a Nakayama algebra and P4 an indecomposable projective
module such that /I(P) = II(Ay4). Prove that P is also injective.

Exercise .2.10. Let0 — L — M — N — 0 be a short exact sequence.
Prove that max(lI(L), [I(N)) <l (M) <IlI(L) 4+ lI(N).

Exercise 1.2.11. An algebra A is called selfinjective provided that the A-module
Ay is injective. Let A be an elementary Nakayama algebra. Prove that A is
selfinjective if and only if A is given by the quiver.

bound by rad’ A = 0 for some i > 2.

Exercise I.2.12. For each of the following Nakayama algebras, give a complete list
of all indecomposable modules up to isomorphism.
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(@ 1 2 3 4 5 6 aff = By0e =0
190 3.0 4.0 5.2 g afyde =0
© 1 i 3 aB =0
‘5\2%
1 i 3 afy=0
'ﬂ\Q,/a
(e)1.—;_>2 afaf=0
(Dl#Q afa =0
1 —4 -
(g){a Jﬁ af = By =0
5 3
@ 2
(h){(s Jﬁ afy=0
%

Exercise 1.2.13. Let A be given by the quiver

bound by «ff = 0, B = 0. Write a minimal projective resolution of the simple
A-module S;. Use this resolution to prove that

k neven

Ext’, (S, §1) =
XAt 51 {o nodd .

Exercise 1.2.14. Let A be given by the quiver
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bound by ¢y =0, y§ = 0.

(a) Compute the global dimension of A.
(b) Prove that Ext (5, 1) = k.

1 3 3
(¢) Compute Ext, (2@ > ,260 5 ) .
(d) Prove that id (;) > 1.

Exercise 1.2.15. Prove that the Kronecker algebra is isomorphic to the algebra of
all triangular 3 x 3 matrices of the form

a00
bcO
dO0c

with a, b, ¢, d € k, with ordinary matrix operations.

Exercise 1.2.16. Let P be an indecomposable projective module over a path
algebra A. Prove that End P4 = k.

Exercise 1.2.17. For each of the following lower triangular matrix algebras, con-
struct the ordinary quiver and deduce that the given algebra is hereditary.

k0O a;;p 0 O
@ A=|0kO0| = 0 ap O | a;j € kforalli, j
kk k 03] 32 o033
k00O a;; 0 0 O
0kO0O 0 ap 0 O .o
® A= ol =1 e o g o | 1 e € Kforalti,
kkkk Q4] Q4D 043 044

Exercise 1.2.18. Prove that the following conditions are equivalent for an algebra
A:

(a) A is hereditary,

(b) rad A is a projective A-module,

(c) pd(A/rad A) < 1 where A/rad A is considered an A-module,
(d) Ext/{‘(M , —) is right exact, for every A-module M,

(e) Extk(S , —) is right exact, for every simple A-module S.

Exercise 1.2.19. Let A = kQ/I be a bound quiver algebra and x, y € Qo.

(a) Applying Homy(—, Sy) to the exact sequence 0 — rad P, —> P, —>

Sy — 0, prove that Extl, (S, §,) = HomA(;ifTI;j, Sy).

(b) Deduce that dimg Extk (Sx, Sy) equals the number of arrows from x to y in Q.
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Exercise 1.2.20 (Triangular matrix algebras). Let A, B be algebras and p M4 a
B — A-bimodule. The set R of all matrices

R=<A 0>={<ao)|aeA,xeM,beB}
M B x b

becomes an algebra when endowed with the ordinary matrix addition and the
multiplication induced from the bimodule structure of M.

— dA 0
(a) Prove thatrad R = (raM rad B )

(b) Let ¥ be the category whose objects are the triples (X, Y, ¢) where X is an A-
module, Y a B-module and ¢ : Y ® g M —> X an A-linear map. A morphism
m,v) : (X,Y,¢) — (X', Y, @) is a pair consisting of an A-linear map
u:X —> X' and a B-linear map v : Y —> Y’ such that u¢p = ¢'(v @ M).
Composition is induced from the usual composition of morphisms. Prove that
% = mod R.

(c) Prove that the module category over the Kronecker algebra A = k 0

<k2 k
equivalent to the category 4 whose objects are quadruples (X, Y, f, g), where
X, Y are k-vector spaces, and f, g : X —> Y are k-linear maps. A morphism is
a pair of maps (u,v) : (X, 7Y, f,g) — (X', Y, f/,g ) suchthatu : X — X’
andv : Y — Y’ verifyuf = vf’, ug = g’v and the composition of morphisms
is induced from the usual composition of k-linear maps.

)is

Exercise 1.2.21 (One-point extensions). Let A be an algebra, M an A-module

and
B = AO = ao |a€A,xeM,)»€k
Mk X A

be equipped with the usual matrix addition and the multiplication induced from the
module structure of M. Thus, B is an algebra, called the one-point extension of A
by M and denoted as A[M]. Prove the following facts:

(a) rad B =rad A @ M, as vector spaces;

(b) The quiver Qp contains Q4 as a full subquiver and there is exactly one
additional point x, which is a source. In addition, there is an additional arrow
x — y each time S appears as a summand in top M and these are all additional
arrows;

(c) Every indecomposable projective A-module remains indecomposable in mod B
and there is exactly one additional indecomposable projective B-module whose
radical equals M;

(d) gl.dim. B = max {gl.dim. A, 1 + pd M};

(e) B is hereditary if and only if A is hereditary and M is projective;

(f) Let A be the hereditary algebra given by the quiver.

] «—2<«—3
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Compute the bound quiver of A[M], where M equals each of the following

A-modules:
3 3
i M=2, (iv) M=2 @3,
1 1
.. _ 3
(11) M - 2 s 3
vy M=2 &383,
(i) M =3, 1

Vi) M=3@® 7.

Exercise 1.2.22 (Representations of quivers). Let A = kQ/I be a bound quiver
algebra. We define a category rep(Q, I), called the category of representations of the
bound quiver (Q, I); an object M in rep(Q, I) is defined by the following data:

1) With each x € Qy is associated a finite dimensional k-vector space M (x).

2) With each arrow o : x —> y in Qg is associated a k-linear map M («) :
M (x) —> M (y). This is extended to a path o ... o; by setting M (o ...q;) =
M(a) ... M(o1), and M(ey) = 1y () foreach x € Qy.

3) If p = X;A;w; is arelation in 1, then M (p) = X; A M (w;) = 0.

A morphism f : M —> N inrep(Q, I) is a family of k-linear maps f = (f; :
M(x) — N(x)) such that, for each arrow o : x —> y, we have N(a) f, =
fyM(a), that is, the following square commutes:

M)~ N ()

M(O!)J( JN(G)
Iy

M(y) —— N(y).

The composition of f : L — M, g : M —> N is defined in the obvious way:
(gf)x = &x fx foreach x € Qo.

(a) Prove that rep(Q, I) is an abelian category.

(b) With each A-module M, we associate an object M’ = F(M) of rep(Q, I) as
follows. For x € Qq, we set M'(x) = Me, and, fora : x —> y in Q1, we
let M'(a) : M'(x) —> M’(y) be given by the right multiplication me, +>
m(a + 1) = m(a + I)ey (for m € M). Prove that this extends to a functor
F :mod A — rep(Q, I).

(c) Conversely, with an object M’ of rep(Q, I) we associate a module M = G(M’)
as follows. As a k-vector space, set M = P M’ (x). For a path w from x
toyin Q andm = (my)reg, € M, set

xeQo

m(w 4+ 1) = M'(w)(my).
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Prove that M is indeed a kQ-module annihilated by /, thus an A-module, then
prove that this assignment extends to a functor G : rep(Q, I) —> mod A.
(d) Prove that F and G are quasi-inverse functors so that mod A = rep(Q, I).

Exercise 1.2.23. Prove that in each of the following bound quivers Ext} (I, Py) is
one-dimensional.

@yoe 2L — el o2 oy aBfy=0

B ° «
(b)yo/ \ox aB=~6
’5\ /

Exercise 1.2.24. Prove that for the following bound quiver algebra A:

.ﬂ/ \. g5:3%6a3075fy:07
\/ e=0,0e =0,

we have id A4 < 1 and pd(DA)4 < 1, while gl. dim. A = oco.




Chapter 11 ®
The radical and almost split sequences oy

As in Chapter I, we let k be an arbitrary (commutative) field. Our algebras are
finite dimensional k-algebras, associative and with an identity. The main working
tool in this book is the notion of almost split sequences. It arose from an attempt
to understand the morphisms lying in the radical of a module category. From this
attempt, Auslander and Reiten extracted the notions of irreducible morphisms and
almost split sequences, which allow all irreducible morphisms to be arranged in a
neat way. We start our discussion in Section II.1 with a short description of the
radical of a module category. We define and study irreducible morphisms and almost
split sequences in Section II.2. We prove in Section II.3 the existence theorem for
almost split sequences and we proceed to apply these sequences to the study of the
radical in Section I1.4.

II.1 The radical of a module category

I1.1.1 Categorical framework

In several places, we use a categorical language. For this reason, it is convenient to
fix the terminology and recall a few results.

Definition II.1.1. Letk be a field. A category ¥ is called a k-category if it satisfies
the following conditions:

(a) For every pair of objects X, Y in &, the set Homy (X, Y) of morphisms from
X to Y is a k-vector space.

(b) The composition of morphisms is k-bilinear, that is, if f, fi, f» : X — Y and
g, 81,8 Y —> Z are morphisms while A1, A>, w1, o are scalars, then we
have

© Springer Nature Switzerland AG 2020 41
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go(Arfi+Arf2) =r1(go f1) +Az2(go f2)

and

(181 +m2g2)o f=pi1(grof)+na(gof).

In general, we do not need to assume that the Hom-spaces of a k-category are
finite dimensional k-vector spaces, though, in all of our examples, that will be the
case.

Clearly, if € is a k-category and X an object in %, then the k-vector space
Endy X, of all morphisms from X to itself, has a natural k-algebra structure. It
is in general infinite dimensional.

Often, one needs to consider not only the objects of a k-category, but also their
finite direct sums and products. This leads to the following definition.

Definition I1.1.2. A k-category ¥ is k-linear if it is additive, that is, if every finite
family of objects in 4" admits a direct sum and a direct product.

It is well-known that, given a finite family {Xy,---, X,,} of objects in a k-
linear category ¢, then its direct sum @/_, X; and its direct product []/_, X; are
isomorphic. In particular, the empty sum and the empty product are isomorphic and
called the zero object. Predictably, the zero object is denoted by 0.

Example 11.1.3. Examples of k-categories abound. Let, for instance, A be a finite
dimensional k-algebra. Then the category mod A of all finitely generated right A-
modules is a k-linear category. Also, the full subcategories proj A of projective
objects and inj A of injective objects in mod A, are Kk-linear.

Let, as before, ind A denote a full subcategory of mod A whose objects form
a complete set of representatives of the isoclasses of indecomposable A-modules.
Then, ind A, and actually every full subcategory of ind A, is a k-category, but not a
k-linear category.

Another class of examples is as follows: let M be an A-module, not necessarily
indecomposable and add M denote the full subcategory of mod A where objects are
all direct sums of indecomposable direct summands of M. Then, add M is a k-linear
category, see Exercise II.1.1.

The appropriate notion of functor between k-categories is that of k-functor.

Definition I1.1.4. Let ¢, 2 be k-categories. A (covariant or contravariant) functor
F : € — 2 is a k-functor if, for each pair of morphisms f,g: X — Y in¥
and each pair of scalars A, i in k, we have

FQOf+npg) =AF(f)+ufF(g.

Reformulating, F is a k-functor whenever, for each pair of objects X, Y in & the
mapping f +— Ff induced by F on the Hom-spaces is a k-linear map.
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For instance, for every object X in %, the functors Hom¢ (—, X) and
Homy (X, —) from % to the category Modk of all (not necessarily finite
dimensional) k-vector spaces are k-functors. Unless otherwise specified, all functors
we deal with are K-functors.

We need the definition of a subfunctor. Let %, 2 be k-categories and F, G :
¢ —> 2 k-functors. We say that F is a subfunctor of G (and we write F C G) if
there exists a functorial monomorphism ¢ : F — G, that is, for every object X in
% there exists a monomorphism ¢x : FX —> GX, which is compatible with the
morphisms in % If, for instance, F' and G are covariant, this means that, for every
morphism f : X — Y in ¥, we have a commutative square:

(¢
FX GX
Ff Gf
FY oy GY

where ¢x and ¢y are monomorphisms. The definition is similar if F and G are
contravariant.
We recall the notion of an ideal in a k-category.

Definition II.1.5. An ideal .# in a Kk-category % is defined by the following
data: for each pair of objects X, Y in ¥, there exists a k-subspace .#(X,Y) of
Homy (X, Y) such that:

(@ fe X, Y)and h € Homyg(W, X) imply fh e Z(W,Y), and
(b) fe #(X,Y)and g € Homy (Y, Z) imply gf € (X, Z).

In other words, an ideal .# is a family {.# (X, Y)}y y of k-subspaces of the Hom-
spaces, which is stable under left and right compositions with arbitrary morphisms
in%.

For instance, let ¥’, 2 be k-categories and F : ¥ — 2 a k-functor. Its kernel
J = Ker F is defined by assigning to each pair of objects X, Y in % the set

A (X,Y)={f € Homg (X,Y): Ff =0},

which is clearly a k-subspace of Homg (X, Y). It is easily verified that these data
define an ideal % of .

Given an ideal . in a k-category %, one can define the quotient category 4/.7 .
This is the category having the same class of objects as ¥ and the set of morphisms
from the object X to the object Y is the quotient space:

Homy (X,7Y)

Homg) . (X, V) = =550
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To define the composition, let f : X — Y and g : Y —> Z be morphisms in
% and set:

E+IX,Z)o(f+ (X, Y)=(go /H+I (X, 2Z).
Because of the definition of ideal, this yields a well-defined operation
Homy, # (Y, Z) x Homg, # (X,Y) — Homy, s (X, Z) ,

which is the required composition.

With this definition, €/.# inherits from % the structure of a k-category. Further,
if € is k-linear, then it is easily seen that so is ¥ /.#. In addition, if the Hom-
spaces in ¢ are finite dimensional vector spaces, then the Hom-spaces in 6 /.¥ are
also finite dimensional vector spaces. There is a natural functor from % to ¢/.#,
mapping each object to itself, and each morphism f € Homg (X, Y) to its residual
class f+.#(X,Y) € Homy, # (X, Y). This functor is called the projection functor
from € to ¢’ /.7 . It is clearly full and dense, and its kernel is precisely the ideal .#.

I1.1.2 Defining the radical of mod A

Motivated by the analogy between categories and algebras, we expect that all the
“significant” information of mod A is contained in its radical, in such a way that the
quotient of mod A by its radical is semisimple. Following a familiar strategy, we
start by defining the radical on ind A and then extend this definition to the whole of
mod A. In addition, the radical has to be an ideal in mod A, exactly as the radical
of an algebra is an ideal in it. Thus, with each pair M, N of indecomposable A-
modules, we wish to associate a subspace rad4 (M, N) of Homy (M, N), stable
under left and right composition by arbitrary morphisms.

A natural requirement is that, if M = N, then the radical rad4 (M, N) should
coincide with the radical rad End4 M of the endomorphism algebra End M of M.
Because we are assuming that M is indecomposable, the algebra End M is local;
thus, its radical consists of all noninvertible elements, that is, all nonisomorphisms
from M to itself. Generalising this observation to the case where M is perhaps
not equal to N, we are led to define the subspace rads (M, N) to consist of all
nonisomorphisms from M to N.

One way to extend this definition to decomposable modules is as follows. Let
M, N be arbitrary modules and M = &/ | M;, N = 69?:] N; direct sum decompo-
sitions, with all M;, N; indecomposable. To these decompositions, we associate the
projections p; : N —> N; and injections ¢; : M; — M. Because we want the
radical to be an ideal of mod A, it is reasonable to require that f : M — N belongs
to rada (M, N) if and only if, for all i and j, the morphism p; fg; : M; —> N;
belongs to rada (M;, N;), that is, it is not an isomorphism. It turns out that this
requirement suffices to define an ideal of mod A. We recall from Subsection II.1.3
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that a morphism f: X — Y in a category is a section (or a retraction) if there
exists f': Y —> X suchthat ' f = 1x (or ff’ = 1y respectively).

Lemma ILI.1.6. There exists a unique ideal rad4 of mod A such that, if M, N are
A-modules, then radg (M, N) consists of all morphisms f: M —> N such that,
for every section q : M' —> M and retraction p: N —> N’, the composition
pfq : M’ —> N’ is not an isomorphism.

Proof. We first show that we can assume that M’ and N’ are indecomposable.
Namely, we claim that a morphism f : M — N belongs to rad4 (M, N) if and
only if for every section g : M’ —> M and retraction p : N —> N’, with M’, N’
indecomposable, the composition pfq : M’ —> N’ is not an isomorphism. Indeed,
sufficiency is trivial; therefore, let us prove necessity. Assume on the contrary that
there exist a section ¢ : M’ —> M and a retraction p : N —> N’ such that the
composition g = pfq : M’ — N’ is an isomorphism. Then, g~ ! pfq = 1. Let
X be an indecomposable summand of M’; then, for the injection v : X —> M’ and
the projection u : M’ — X, we have uv = 1x. But then

Iy =uv =ug ' pfqv=(ug~"'p) f(qv)

is an isomorphism, with ug=!p : N —> X a retraction, gv : X —> M a section
and X indecomposable. This completes the proof of our claim.

Clearly, if M, N are given, then the property in the statement uniquely defines a
subset rad4 (M, N) of Homa4 (M, N). We thus have to prove that these data define
an ideal in mod A.

Let f,g € rada(M, N) and A, u € k. Then, for every section ¢ : M’ —
M and retraction p : N —> N’, with M’, N indecomposable, the composition
pfq: M’ —> N’ is not an isomorphism. We have two cases to consider. If M" 2%
N’, then

pOf+ug)g=»xr(pfq) + u(pgq)

is clearly not an isomorphism. On the other hand, if M’ = N’, then the above linear
combination belongs to Homy4 (M " N’ ) = End M’. Because the latter is a local
algebra, the sum of two noninvertible elements (radical elements) is noninvertible
(thus, it belongs to the radical). This shows that rad4 (M, N) is a subspace of
Homu (M, N).

Let now f € radq(M,N) and g € Homgug(L, M). We claim that fg €
rada (L, N). If this is not the case, then there exist a section g : L' —> L and
aretraction p : N —> N’, with L', N’ indecomposable, such that the composition
p(fg)q : M' — N’ is an isomorphism. But now p(fg)q = (pf)(gq). Hence, gq
is a section and the invertibility of pf(gq) contradicts the hypothesis that f belongs
torad4 (M, N). This establishes our claim. The proof that the radical is stable under
left composition by arbitrary morphisms is similar. O

The previous lemma justifies the definition of the radical of the module category.
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Definition II.1.7. The radical rad4 of mod A is the unique ideal such that, if
M, N are A-modules, then rad4 (M, N) consists of all morphisms f: M — N
such that, for every section ¢ : M’ —> M and retraction p : N —> N’, the
composition pfg : M’ —> N’ is not an isomorphism. The morphisms lying in
some rad4 (M, N) are called radical morphisms.

From this definition, we have an immediate consequence:
Corollary I1.1.8. Let M, N be indecomposable A-modules.

(@) If M % N, thenradg(M, N) = Homy (M, N).
®) If M = N, then radg(M, N) = radEnd M consists of all nonisomorphisms,
that is, of the nilpotent endomorphisms. O

Also, it is easily seen that
radg (@;"ZlMi, 69?:11\’/) = @/, ®j_; rada (M;, Nj),

see Exercise I1.1.2.
We now prove a first characterisation of the radical, which is sometimes used as
a definition.

Corollary I1.1.9. Let M, N be A-modules. A morphism f : M —> N is radical
if and only if, for every indecomposable module X and morphisms u : X — M,
v : N — X, the composition vfu is not an isomorphism.

Proof. Let X be an indecomposable module, and u : X — M, v : N — X
morphisms. If vfu is an isomorphism, then v is a retraction and u is a section. Thus,
f ¢ radg(M, N). The converse is obvious. O

In the case of one of the modules M, N being indecomposable, the definition of
rad4 (M, N) becomes simpler.

Corollary I1.1.10. Let f : M —> N be a morphism of A-modules.

(a) If M is indecomposable, then f is radical if and only if f is not a section.
(b) If N is indecomposable, then f is radical if and only if f is not a retraction.

Proof. We only prove (a), because the proof of (b) is dual.

Assume f ¢ rads(M, N). Then there exist a section g : M’ — M and a
retraction p : N —> N’ such that pfq : M’ — N’ is an isomorphism. However,
the indecomposability of M implies that ¢ is an isomorphism. Hence, so is pf.
Therefore, f is a section. Conversely, if f is a section, then there exists a retraction
f’such that f' f = 1,7. Butthen f ¢ rad4(M, N). |

Example I1.1.11. Let A be given by the quiver:

@
le T——= o2
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bound by the relation Ba = 0. The indecomposable projective A-modules

and P, = 2

P = 1

—_ N —

are uniserial. Clearly, rad4 (P;, P1) = rad End Pj is one-dimensional and generated
by the morphism f : P —> P; having as an image the simple socle of P; (and
as a kernel its radical, which is isomorphic to P,). Observe that f 2 = 0, that
is, f is nilpotent. On the other hand, rad4 (P>, P,) = radEnd P, = 0, whereas
rad4 (P2, P1) = Homy (P>, P1) is one-dimensional, generated by the inclusion of
P, as radical of P;. Finally, rad4 (P, P2) = Homyu (P, P>) is one-dimensional,
generated by the morphism Py — P, having as an image the simple socle of P;.

We finish this subsection by proving that, as expected, the quotient of mod A by
its radical is a semisimple category. We recall the definition of the latter. Let A be
a set and (%3)rca a collection of k-linear categories. The direct sum of the %) is
the full subcategory @, %, of 1, %) consisting of all the objects (X ),c4 such that
X, = 0 for all but at most finitely many A € A with the obvious morphisms. A k-
linear category is called semisimple if it is equivalent to the direct sum of categories
of the form mod K, with K a skew field containing k.

Corollary IL.1.12. If A is an algebra, then the category mod A/ rad A is semisim-
ple.
Proof. Let (M)),ca denote a complete set of representatives of the isoclasses of

indecomposable A-modules. Clearly, A is in general an infinite set. For each A € A,
the algebra End M, is local and therefore

End M)L

K, = —
rad(End M, )

is a skew overfield of k. We consider the functor
F: mod A — IT, mod K,

defined on the objects as follows: for each X in mod A, we set
H M;, X

FX) = < omy (M, ))

rada(My, X) /,ca

and in the obvious way on the morphisms.

We claim that the essential image of the functor F is the full subcategory
@, mod K, of IT) mod K.

Indeed, let M be an A-module. Because of the Krull-Schmidt theorem, we can
write M = @, M"*, where the M, are equal to zero for all but at most finitely many
values of A. Then,
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Homu (M;,, M;"™)
radq (M, M)

F(M) = ( ) = (K;")rea
reA

which is indeed an object in @) mod K.

This shows that the essential image of F lies inside @, mod K, so that F is
actually a functor from mod A to &, mod K. As such, this functor is dense: indeed,
let X be an object in @, mod K}, then X = (K;”*)AGA where the m; equal zero
for all but at most finitely many values of A. Setting M = @; M.", we see that
F(M) = X. This proves the density of F: mod A — @) mod K. Fullness is
proved in exactly the same way.

Finally, it is easily seen that the kernel of F is precisely the ideal rad4. The
statement now follows. |

I1.1.3 Characterisations of the radical

The radical of an algebra is commonly defined as being the intersection of all
maximal right ideals, and then it equals the intersection of all maximal left ideals.
As stated in Subsection 1.1.2, it can also be seen as the set of all elements a in the
algebra such that, for every x, the element 1 —ax is right invertible, and then it equals
the set of all elements a such that, for every x, the element 1 — xa is left invertible.
The purpose of the present subsection is to provide similar characterisations for the
radical of a module category.

Our first observation is that the radical of mod A defines a subbifunctor
rady (—, ?) of Homy (—, ?). Indeed, let N be an A-module. We define a subfunctor
rad4 (—, N) of the contravariant Hom-functor Homy (—, N) by setting

radg (—, N) (M) =rads (M, N)
and, for a morphism f : M — M,
rads (—, N) (f) = Homgu (f, N) : radg(M, N) —> radq(M', N).

Indeed, it follows from the definition of ideal in a category that, if v €
radg (M, N), then Homy (f, N) (v) = wvf belongs to radg (M’, N). Thus,
Homy4 (f, N) is indeed a map from rad4 (M, N) to radg (M/, N).

In exactly the same way, for a fixed module M, we define a subfunctor
rad4 (M, —) of the covariant Hom-functor Homy (M, —). As required, this defines
a subbifunctor rad4 (—, ?7) of Homy4 (—, ?).

For our first lemma, we need one more definition. A proper subfunctor F' of a
functor G is maximal if, whenever F’ is a subfunctor of G such that F € F’ then
F' =ForF =G.
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Lemma I1.1.13. Let € be a linear category and X an object in €. Then, there exist
bijections between:

(@) The maximal right ideals of Endg X and the maximal subfunctors of
Homg (—, X).

(b) The maximal left ideals of Endy X and the maximal subfunctors of
Homg (X, —).

Proof. We construct the bijection in (a) because the construction in (b) is similar.

Let I be a maximal right ideal of Endy X. We define a corresponding subfunctor
F; of Homy (—, X). For an object Y in ¥, we let F; (Y) be the subset of
Home (Y, X) defined by

Fr(Y)={f e Homs(Y,X) : fgeIlforeveryg: X — Y}.

Clearly, Fy (Y) is a subspace of Hom4 (Y, X). Also, F; is made into a functor by
setting, foru : Y/ — Y,

Fr(u) = Homy (u, X) .

Indeed, if f € F;(Y) and g : X —> Y’ is arbitrary, then (fu)g = f(ug) € I
because ug : X —> Y. This shows that Fj(u) is well-defined as a map from Fj(Y)
to Fr(Y"), and, therefore, that F; is a subfunctor of Home (—, X). In addition, it is
apparent that F;(X) = 1.

We have to prove that F7 is a maximal subfunctor. Assume that F is a functor
such that F; € F € Homy (—, X). In particular, I = Fy (X) € F(X) € Endy X.
Additionally, F(X) is actually a right ideal in End¢ X: this indeed follows from the
fact that, because of the definition of a subfunctor, we have a commutative square

FX —— Homg (X, X)

F(u)J lHom%; (u,X)

FX —— Homg (X, X)

where # : X — X. Then, the maximality of / implies that we have one of the
following two cases. In the first case, F'(X) = Endy X and then f € Homg (Y, X)
and the commutative square

Ix €eFX Endg(X) 5 1x

J J{H()m% (£, X)

F(f)(1x) e FY ———— Homg(Y.X) o f

give F(f)(1x) = f € F(Y) so that Homg (Y, X) = F (Y) for every object Y.
Consequently, ' = Homg (—, X). In the second case, F(X) = I and then f €
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F(Y) and g € Homy (X, Y) together with the commutative square

FY ——— Homg (Y, X)

F(S’)J lHomgg (g,X)

I=FX ——Endg(X)

give F(g)(f) = fg € F(X) =1 andso f € Fy (Y) by definition. Hence, F = Fj.
This completes the proof of the maximality of Fj.

Conversely, let ' be a maximal subfunctor of Homg (—, X). We claim that there
exists a unique maximal right ideal / of Endy X such that F = Fj. Let us set
I = F(X). Then, [ is certainly a subspace of End¢ X. The fact that it is a right
ideal follows from the fact that F' is a subfunctor, as seen before. It remains to prove
that / is maximal. Certainly, there exists a maximal right ideal J of Endy X such
that I € J.Let f € F(Y)and g : Y —> X. Then

F(f)=fge F(X)=1CJ

gives f € F;(Y).Because F(X) =1 C J = Fj(X), we have F C F;. Then, the
maximality of F implies that F = Fj andso I = F(X) = Fj (X) = J. This shows
the maximality of /. Its uniqueness being obvious, the proof is complete. O

Corollary I1.1.14. Let € be a linear category and f : X —> Y a morphism in €.
Then:

(a) f € F(X) for every maximal subfunctor F of Homg (—, Y) if and only if 1y —
fg is invertible for every g : Y — X.

(b) f € F(Y) for every maximal subfunctor F of Hom¢ (X, —) if and only if 1x —
gf isinvertible for every g : Y —> X.

Proof. We only prove (a), because the proof of (b) is similar.

Because of Lemma II.1.13 above, f € F(X) for every maximal subfunctor F' of
Homg (—, Y) if and only if fg € I for every maximal right ideal / of End¢ Y and
every morphism g : ¥ —> X. This is the case if and only if fg € radEndg Y for
every g : Y —> X. A well-known property of the radical of an algebra implies that
ly — fg is invertible. Conversely, assume that 1y — fg is invertible for every g :
Y — X, andleth € Endy Y. Our condition implies that 1y — f(gh) = ly —(fg)h
is invertible for every such /. This shows that fg € rad Endy Y and completes the
proof. O

We can relax a bit the second condition of the previous corollary.

Lemma ILI.1.15. Let € be a linear category and f : X —> Y a morphism in €.
Then:

(a) The morphism ly — fg is invertible for every g : Y —> X if and only if it is
right invertible for every g : Y —> X.
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(b) The morphism 1x — gf is invertible for every g : Y —> X if and only if it is
left invertible for every g : Y —> X.

Proof. We only prove (a), because the proof of (b) is similar.

Because the necessity is obvious, we show the sufficiency. If 1y — fg is right
invertible, there exists /4 such that (1y — fg)h = ly. Then, h = 1y+ fgh also admits
a right inverse /, because of the hypothesis. But then 1y = hl = (1y + fgh)l =
|+ fgyields] = 1y — fg and so h is also a left inverse of 1y — fg, which is thus
invertible. O

We now prove the equivalence of the conditions stated in (a) and (b) of
Lemma II.1.15 (and thus of Corollary II.1.14).

Lemma II.1.16. Let € be a linear category and f : X —> Y a morphism in €.
Then, 1x —gf isinvertible for every g : Y — X ifand only if 1y — fg is invertible
foreveryg:Y — X.

Proof. Assume that 1y — gf is invertible and let # be its inverse. Then,
h(lx —gf) = 1x yields h = 1x + hgf and we have

(Iy + fhg) (ly — fg) = ly—fg+fhg—fhgfg=1y—f(Ix —h+hgf)g=1y.

Similarly, (1x — gf)h = lx yields (1y — fg) (1y + fhg) = ly. Thus, ly — fg
is invertible. The converse is proven in exactly the same way. O

The reader should be aware that we use in this subsection the terminology
“invertible, right invertible, left invertible” (instead of the more familiar “iso-
morphism, retraction, section” respectively) to underline the analogy between the
radical of a category and that of an algebra.

We are now able to prove the main result of this subsection, which gives various
equivalent characterisations of radical morphisms.

Theorem I1.1.17. Let A be a finite dimensional k-algebra and f : M — N a
morphism of A-modules. The following conditions are equivalent:

(a) feradqg (M,N).

(b) f € F(M) for every maximal subfunctor F of Homy (—, N).
(c) f € F(N) for every maximal subfunctor F of Homy (M, —).
(d) 1y — fg isinvertible for every g : N — M.

(e) 1y — gf isinvertible for every g : N —> M.

() 1y — fg is right invertible for every g : N —> M.

(g) 1y — gf is left invertible for every g : N — M.

Proof. We have proved the equivalence of conditions (b) to (g). It thus suffices to
prove the equivalence of (f) with (a).
Let Z (M, N) be the set

{f € Homs(M, N) | 1y — fg is right invertible for every g : N — M}.
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We first prove that, if M and N are indecomposable, then % (M, N) equals
radg (M, N).

Indeed, assume f € % (M, N), then f cannot be an isomorphism because,
if it were, then 1y — ff —1 — 0 would be invertible, an absurdity. Thus,
Z (M, N) C radg (M, N). Conversely, assume that f : M — N is not an
isomorphism. Then, for every g : N —> M, the composition fg : N — N
is not an isomorphism either: for, if it were, then f would be a retraction,
and hence an isomorphism owing to the indecomposability of M, and this is
a contradiction. But then, because End N is local, the morphism 1y — fg is
(right) invertible.

We next prove that & defines an ideal of mod A.

Clearly, 0 € Z (M, N). Also, f € Z(M,N) and A € Kk imply Af €
Z (M, N). We now show that, if fi, fo € Z(M,N), then fi + f» €
XM, N).

Let g : N —> M be arbitrary. Then, 15 — f1g has a right inverse & and
1y — fagh has a right inverse hy. We claim that #1h, is a right inverse of
Iy — (fi+ f2)eg.

We first observe that (15 — f1g) h1 = 1y gives hy — 1y = f1g8h| whereas
(Iy — f28h1) hy = 1y gives hy — 1y = faghihs. Hence,

(Iny = (fi + [2)@h1hy = hihy — fighihy — faghiha
=hihy — (hy — In) ho — (h2 — 1p)
= lN

This shows that Z (M, N) is a k-subspace of Homy (M, N).

Letnow f € #Z (M, N) and u € Homy (L, M). Then, for every morphism
g: N — M, the morphism 1y — (fu)g = 1y — f (ug) is right invertible.
Therefore, fu € #(M,N). Let v € Homyq (N, L) and g : L — M be
arbitrary. Then, because of the hypothesis, 1y — f (gv) has a right inverse #,
and (1y — fgv)h = 1y yields h — 1y = fgvh. Hence,

(I —vfg) (I + vhfg) = 1 +vhfg —vfg — vfguhfg
=1y +vhfg—vfg—v(h—1yN) fg
= lL

Therefore, vf € #Z (M, L). This completes the proof of (ii).

Let M, N be arbitrary modules. We prove that f € #Z (M, N) if and only if],
for every section ¢g: M’ —> M and retraction p: N — N’ with M’, N’
indecomposable, we have pfq € Z (M', N').

Because necessity follows from (ii), we prove sufficiency. Assume that
M =" M;, N = @;f: | N; are direct sum decompositions with all M;, N;
indecomposable. Associate with these decompositions the projections p; :
M — Mi,p;-: N — N; and injections ¢;: M; — M,q;.: N; — N.
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The hypothesis asserts that, for each pair (7, j), we have p;. fqi € Z (Mi, Nj).
But then, using again that % is an ideal, we get that:

f=IWwflu= > dip}| (Z%m) =Y 4 (p}fqi) pi € Z(M,N).
j i inj

The statement of the Theorem then follows from (i), (ii), (iii) and Lemma II.1.6.
O

As a consequence, we obtain one further characterisation of the radical (which
the reader can compare with Corollary I1.1.14 above).

Corollary IL.1.18. Let f : M —> N be a morphism of A-modules. The following
conditions are equivalent:

(a) f eradg (M, N).
(b) gf is nilpotent for every morphism g : N — M.
(c) fg is nilpotent for every morphism g : N — M.

Proof. We only prove the equivalence of (a) and (b), because the equivalence of (a)
and (c) is similar.

Assume first that gf is nilpotent for every morphism g : N — M. Letn > 0
be such that (gf)" = 0 but (gf)" ! # 0. Then, 1y + (gf) + ...+ (gf)" 'isan
inverse for 1), — gf, which is therefore invertible.

Conversely, assume that 1, — g f is invertible for every morphism g : N — M.
Then we have gf € rad End M. But every element in rad End M is nilpotent, which
gives the result. O

Exercises for Section I1.1

Exercise II.1.1. Let &€ be a k-category. Prove that there exists a k-linear category
add €, unique up to isomorphism (called the linearisation of %) such that:

(a) ¥ is a full subcategory of add €.
(b) If 2 is a k-linear category and F : € —> & a k-functor, then there exists a
unique K-functor F’ : add ¥ — 2 whose restriction to & equals F.

€ —— add¥
|
I F!

+
7
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Exercise II.1.2. Let A be an algebra and .# an ideal in mod A. Assume that M =
DL Mi, M = @}, N; are A-modules with the M;, N; indecomposable, with
associated inclusions and projections ¢; : M; — M, p} :N — Nj.

(a) Let f : M —> N be a morphism. Prove that f € .#(M, N) if and only if
pifai € S (M;, Nj) foralli, j.

(b) Deduce that .# (M, N) = P, @?:1 J(M;, Nj).

Exercise IL.1.3. Let & be a k-linear category and ., ¢ ideals in €.

(a) We define the product .# _¢ as follows: for each pair of objects X, Y in &, we
let .7 7 (X,Y) be the set of all sums ) ; g; fi where g; € ¥ (Z;,Y), f; €
F (X, Z;) for some objects Z; in €. Prove that these data define an ideal in €.

(b) We define inductively, for m > 1, 4™ = #™ ! 7 and #* = N1,
Prove that these data define ideals in €.

Exercise IL.1.4. Let € be a k-linear category and .#, ¢ ideals in €. We define
SN _g by:

(SN )X, V)=IX. V)N _F(X,Y)
forall X, Y in €. Prove that # N ¢ is an ideal in % and that it contains the product
ideal & 7.

Exercise II.1.5. Let A be an algebra, .# an ideal of mod A and P : mod A —>
(mod A)/.# the canonical projection. Prove that .# C rady if and only if
a morphism f in mod A is such that P(f) is an isomorphism, then f is an
isomorphism.

Exercise I1.1.6. Let & be a k-linear category and .#, _¢ ideals in €. Prove that, if
J(X,X) S _Z(X,X) for all objects X in ¢, then & C ¢

Exercise I1.1.7. Let A be given by the quiver

bound by a3 =0, azﬂ = 0.Let Py, P> and I1, I be the indecomposable projective
and injective modules corresponding to the points 1 and 2 respectively. Compute
rady (M, N) forall M, N € {Py, P, 11, I}.

Exercise I1.1.8. Let A be given by the quiver

bound by faBa = 0. Compute rad4 (M, N) for all indecomposable modules M, N.
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Exercise I1.1.9. Let A be a finite dimensional algebra and M, N modules. Prove
that, for each m > 2, rad’f{ (M, N) is a k-subspace of rad’}j_l (M, N).

Exercise I1.1.10. Let A be a finite dimensional algebra and M an A-module. As in
Example II.1.3, we denote by add M the full subcategory of mod A consisting of all
direct sums of direct summands of M.

(a) Prove that add M is the linearisation of the full subcategory of mod A consisting
of all the indecomposable summands of M, see Exercise II.1.1.

(b) Denote by (add M) the set of all morphisms in mod A which factor through an
objectin add M. Thatis, f : X4 —> Y4 lies in (add M) whenever there exist
My in add M and morphisms g : X —> My, h : My —> Y such that f = hg.
Prove that these data define an ideal in mod A.

IL.2 Irreducible morphisms and almost split morphisms

I1.2.1 Irreducible morphisms

If one admits that the relevant information about mod A (at least about indecom-
posable modules) lies in its radical, then it is reasonable to ask which morphisms
generate all radical morphisms by successive compositions and linear combinations.
Clearly, these are those radical morphisms between indecomposable modules that
cannot be further factored as sums of compositions of other radical morphisms.

Now, let f: L — M, g: M —> N be radical morphisms. Their composition
lies in the product of the ideal radq of mod A with itself, namely rad?, see
Exercise 11.1.3. Given modules L, N, the radical square rad%(L, N) is defined
as the set of all sums of the form ), g; f; where each f; is a radical morphism from
L to some A-module M;, and each g; is a radical morphism from M; to N.

Setting M = @/ | M;, this may be rewritten as

radﬁ(L, N) ={gf : forsome M in mod A, f € rads(L, M), g € radg(M, N)}.

In view of that, we are interested in exactly those morphisms that belong to
the radical but not to the radical square. Dropping the assumption that these are
morphisms between indecomposable modules, we get to the following definition.
As usual, all modules are assumed to be finitely generated right modules over a
finite dimensional k-algebra A.

Definition IL.2.1. Let L, M be modules (not necessarily indecomposable). A
morphism f : L —> M is called irreducible if:

(a) f is neither a section nor a retraction, and
(b) whenever f = gh, then & is a section or g is a retraction:
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L'—f>M

A

N

Clearly, this notion is self-dual, that is, f: L —> M is irreducible in mod A if
and only if Df: DM — DL is irreducible in mod A°P.

Before giving examples, we justify this definition by considering the case where
L or M or both are indecomposable.

Lemma I1.2.2. Let f: L — M be a morphism in mod A.

(a) If L or M is indecomposable, and f is irreducible, then f is radical.
(b) If both L and M are indecomposable, then f is irreducible if and only if it
belongs torads (L, M) \ 1rad%4 (L, M).

Proof.

(a) Assume that L is indecomposable, and f: L —> M is irreducible. Then f is
not a section. Because of Corollary II.1.10, it is radical. The proof is similar if
M is indecomposable.

(b) Assume that L and M are both indecomposable, then, again because of
Corollary 11.1.10, f € rada(L, M) if and only if it is neither a section nor a
retraction. In addition, f ¢ radi (L, M) if and only if for every decomposition
f =ghwithh: L — Xand g: X — M, we have h ¢ radsa(L, X) or
g ¢ rads (X, M). Invoking Corollary II.1.10 again, we see that this is the case
if and only if 4 is a section or g is a retraction.

O

Another property of irreducible morphisms is that they are either injective or
surjective.

Lemma IL.2.3. Every irreducible morphism is a monomorphism or an epimor-
phism.

Proof. Let f : L —> M be irreducible and f = jp its canonical factorisation
through its image, with p: L —> Im f surjective and j: Im f —> M injective.
Because f is irreducible, p is a section or j is a retraction. In the first case, p is an
isomorphism and f a monomorphism, and, in the second case, j is an isomorphism
and f an epimorphism. O

As a consequence, there are no irreducible morphisms from a module to itself
because a monomorphism (or an epimorphism) f: M —> M is necessarily an
isomorphism, see Lemma 1.1.20.

We now give examples.

Example I1.2.4. Let P be an indecomposable projective A-module. We claim that
the inclusion morphism j: rad P — P is irreducible. Indeed, j is evidently
neither a section nor a retraction. Assume j = gh with g: X — P and
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h: rad P — X. Suppose that g is not a retraction. Because P is projective, then
g is not surjective. Therefore, Im g C rad P, that is, there exists g’: X —> rad P
such that g = jg’. But then j = gh = jg’h, which implies g’h = 114q p, because j
is a monomorphism. This proves that  is a section.

Dually, if I is indecomposable injective, then the projection morphism I —>
1/ soc [ is irreducible.

Example 11.2.5. Let A be the path algebra of the quiver

lo «—— o2

Consider the indecomposable projective A-module P, = % at the point 2. Then
we have dimkg Homy (P», S2) = 1 and every nonzero morphism f: P, —> S is
surjective with kernel S1. We claim that every such morphism is irreducible.

Clearly, f is not a section, because it is a proper surjection, and not a retraction,
because P> # S>. Assume that there exists a factorisation f = gh, with h: Py —>
X and g: X — S>. Then, g is surjective. Hence, S; is a direct summand of the
top of X. But A is a Nakayama algebra so, up to isomorphism, there are only two
indecomposable A-modules having $> in their top, namely P> and S,. Thus, X =
S, @ X' or X = P, @ X'. In addition, in the first case, the restriction g 5, of gto S

is an isomorphism (so g is a retraction) and in the second case, the restriction g‘ p
2

of g to P, is a scalar multiple of f (so / is a section).

Example 11.2.6. The statement in Lemma I1.2.2(b) ceases to be true if we stop
assuming that both L and M are indecomposable. Indeed, assume that f: L; —>
M is an irreducible morphism with both L; and M indecomposable. Let L, be
an indecomposable module that is isomorphic to neither L nor M and such that
rad(End L;) # 0. Let u# be a nonzero morphism in rad(End L,) and v: L} —> L,
be arbitrary (maybe zero). Then the morphism (f,0): Ly & L, —> M is not
irreducible. Indeed, it is certainly neither a section nor a retraction, but it admits
the factorisation

(f,0) = (f.0) (151 2)

that is, the following diagram commutes:

(£,0)

Li®Ll, M
(m (£0)
Vv ou Ll @LZ

Assume that (151 2) is a retraction. Then there exists a matrix ( 5, Z) such that
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g h (1, 0\ (g h)_(1, O
vg+ug' vh+uh')  \ v u)\gn) \0 1.,/
Thus, h = 0 and so uh’ = 1 L, that is, u is a retraction, a contradiction.
On the other hand, it is clear that (f, 0) belongs to the radical but not to the radical
square, because f € rads (L1, M) \radﬁ (L1, M).

Explicit versions of this example are easy to construct. Consider for instance the
algebra given by the quiver

[0}
le ———= o2

bound by Ba = 0. As seen in Example I1.2.4 above, the inclusion ¢: §§ —> P of
the radical S in the indecomposable projective module P, is irreducible. Consider
now the morphism u: P; — P; mapping the top of P; onto its socle and the
inclusion v: S —> P;. Then the morphism (¢, 0): S1 & P —> P> admits the

factorisation (¢, 0) = (¢, 0) (151 0>.
vou

Example 11.2.7. Similarly, the statement in Lemma I1.2.2(a) ceases to be true if
we stop assuming that L or M is indecomposable. We show an example of
an irreducible morphism between decomposable modules, which is not a radical
morphism. Let f: L —> M be irreducible, with both L and M indecomposable.
Let N be an indecomposable which is neither comparable to L nor to M in
the sense that Homy (L, N) = 0, Homx4(N,L) = 0, Homs(M, N) = 0 and
Homy (N, M) = 0. We claim that the morphism (g 10 ) :L&N — M@ Nis
N

irreducible.

Indeed, it is not a section, because if it were, then there would exist a morphism

<u U):M@N—>L®Nsuchthat

u' v
u v fF0Y (1.0
u' v 01y 01y /)"
But this implies that uf = 1 so that f is a section, a contradiction. In exactly the
same way, we prove that it is not a retraction. So, assume that we have a factorisation

fo0
01
LeN Mo N

N

X
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fO0Y\ _ (u W' v = un' wv'\ _ (uu’ 0

01y/) \w T \w ') L0 ow
because uv’ € Homg (N, M) = 0 and vu € Homu (L, N) = 0. Therefore, f = uu’
and 1y = vv'. In particular, v is a retraction and v’ is a section. Additionally,

because f is irreducible, u is a retraction or #’ is a section.
If u is a retraction, then there exists u”: M — X such that uu” = 1,;. Then,

u poon  (uu"uwv"\ 1y O
<v>(u U)_<vu”vv/>_<0 1N>'

because uv’ = 0 as said before, whereas vu” € Homy (M, N) = 0. Therefore, (”)
v

then we have

is a retraction.
If, on the other hand, u’ is a section, then there exists u”: X — L such that

u"u’ = 1. Then,
1 /B 7.,/ 1
u ' V) = uu/uv/ _ . 0
v vu' vv 0 1y
because vu’ = 0 as said before, whereas u”’v € Homy (N, L) = 0. Therefore,
(u’ V') is a section.

This completes the proof that (5 10 ) is irreducible. On the other hand, it is
N

certainly not radical, because the composition

fo 0
01 =1
0 1n) <0 Iy Iy N
is an isomorphism.

Again, explicit versions of this example are easy to construct. Assume for
instance that A is the path algebra of the quiver

°—
o
o

Then, the inclusion i: S —> P, of the radical S into the indecomposable

projective P is irreducible. In addition, the simple module S3 is certainly neither

comparable to S1 nor to P,. Therefore, the morphism ((’) ]23 ) 8519853 — PhdSs

is irreducible but not radical.
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The previous examples show that the irreducible morphisms are proper general-
isations of the radical morphisms that are not in the radical square. In these notes,
however, we are exclusively concerned with morphisms having source or target (or
both) indecomposable.

In the sequel, we are particularly interested in the situation where we have a short
exact sequence

0—L-1m-5 N—0

with f and/or g irreducible. It turns out that, in this situation, L and/or N is
indecomposable; namely, we prove that the kernel (or cokernel) of an irreducible
epimorphism (or monomorphism respectively) is indecomposable. We need a
lemma.

Lemma IL.2.8. Let0 — L —f> M- N — 0 be a nonsplit exact sequence.

(a) The morphism f is irreducible if and only if for every v: V. — N, there exists
vi: V. —> M such that v = gv; or there exists vo: M — V such that
g = Vuy.

(b) The morphism g is irreducible if and only if for every u: L — U, there exists
uy: M — U such that u = uy f or there exists up: U —> M such that
f =uou.

Proof. It suffices to prove (a), because the proof of (b) is dual.
Necessity. A morphism v: V —> N induces a commutative diagram with exact
TOWS

0— -1 g%,y 0
0— LT sm—*N— 0

where E is the fibered product of g and v. Because f is irreducible, f’ is a section
or u is a retraction. In the first case, g’ is a retraction; thus, there exists g”’: V — E
such that g’g” = 1y. Setting v; = ug” we get gv; = g(ug”) = vg’g” = v. In the
second case, there exists u’: M —> E such that uu’ = 1 and so, setting vy = g'u’
yields vvy = v(g'u’) = guu’ = g as required.

Sufficiency. Because the given sequence is not split, f is neither a section nor a
retraction. Assume that f = fj fo with fo: L — X, fi: X — M. Because f is

injective, so is f» and we get a commutative diagram with exact rows

0 L X Cokerf, —— 0
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where v is deduced by passing to cokernels. In particular, X is isomorphic to the
fibered product of g and v. If there exists vy : Coker f» —> M such that v = guy,
then the universal property of the fibered product implies that the upper sequence
splits and so f3 is a section. If there exists v;: M — Coker f, such that g = vy,
then the same universal property yields that f} is a retraction. O

Corollary I1.2.9.

(a) The cokernel of an irreducible monomorphism is indecomposable.
(b) The kernel of an irreducible epimorphism is indecomposable.

Proof. It suffices to prove (a) because the proof of (b) is dual.

Let f: L — M be an irreducible monomorphism, N = Coker f and
g: M — N the surjection. Assume N = N1 @ N, with N1 # 0 and N # 0. Then,
the inclusions g1 : Ny —> N and g»: N —> N are both proper monomorphisms.
Apply Lemma I1.2.8. If there exists u1: M —> N such that g = qjuy, then q;
would be surjective, a contradiction. Hence, there exists vi: Ny —> M such that
gv1 = qi. Similarly, there exists vp: No —> M such that gvo = ¢». But then
g(v1, 12) = (g1, q2) = 1y and g is a retraction, which implies that f is a section, a
contradiction. |

I11.2.2 Almost split and minimal morphisms

As stated in the introduction to Subsection I1.2.1, the consideration of irreducible
morphisms came from the need to identify building blocks for radical morphisms,
so that other radical morphisms could be obtained from the irreducible ones by
successive compositions and linear combinations. Therefore, the next step is to
study the factorisation behaviour of radical morphisms. This leads to the following
definition.

Definition 11.2.10.

(a) A radical morphism f: L —> M with L indecomposable is called left almost
split if, for every radical morphism u: L —> U, there exists u’': M —> U
such thatu = u' f.

(b) A radical morphism g: M — N with N indecomposable is called right
almost split if, for every radical morphism v: V — N there exists v': V —>
M such that v = gv'.
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_V

4 JV
L'g

M— N

These notions are evidently dual to each other, thatis, f: L —> M is left almost
splitif and only if Df : DM — DL is right almost split.

Saying in (a) that u: L — U with L indecomposable is a radical morphism
amounts to saying that u is not a section, because of Corollary II.1.10. In addition, if
U itself is indecomposable, then this amounts to saying that « is a nonisomorphism.
Dually, in (b), v: V —> N with N indecomposable is radical if and only if it is not
a retraction. If V is also indecomposable, then this is the case if and only if it is a
nonisomorphism.

The characterisation of almost split morphisms given in the lemma below is their
original definition.

Lemma I1.2.11.
(a) A morphism f: L — M is left almost split if and only if:

(1) f is not a section; and
(ii) ifu: L —> U is not a section, then there exists u': M —> U such that
/
u=uf.

(b) A morphism g: M — N is right almost split if and only if:

(1) g is not a retraction; and
(ii) if v: V. —> N is not a retraction, then there exists v': V. —> M such that
!
v=gv.

Proof. We only prove (a), because the proof of (b) is dual.

We first assume that conditions (i) and (ii) hold and prove that this implies that
L is indecomposable. Indeed, if this is not the case, then L = L| & L, with L1, L»
nonzero. Hence, the projection morphisms p;: L —> L and pp: L —> L, are
proper epimorphisms, and in particular are not sections. Because of condition (ii),
there exist pj: M —> Ly and p): M —> Ly such that p; = p| f and p» = p} f.

Now,
!
(£)r- ()
1Z)) P2

and f is a section, a contradiction that establishes the indecomposability of L. But
then, a morphism with source L is radical if and only if it is not a section. O

Example 11.2.12. Let P be an indecomposable projective module. The inclusion
j: rad P — P is right almost split. Indeed, a radical morphism v: V — P
is a nonretraction, and hence a nonsurjection (because P is projective). Therefore,
Imv C rad P and so there exists v': V — rad P such that v = jv'.

Dually, if [ is indecomposable injective, then the projection I — I/soc [ is left
almost split.
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Example 11.2.13. Let A be the path algebra of the quiver

1 2 3
@ —— 0 «—— ©
. . . 3 3
There exist an epimorphism p : P3 = 2 — I = 5 and a monomor-
1
phism j: S = 2 — [ = g , both unique up to scalar multiples, because

dimk Hom (P3, I) = dimkx Hom (S, I2) = 1. We claim that the morphism
(pj):P3s@®SH— I

is right almost split. Indeed, it is not a retraction, because I, is isomorphic to neither
Py nor Sp. Let v : V — I, be a radical morphism. One sees that the only
indecomposable modules that map nontrivially to I, are Sy, P, and P3. Therefore,
V = V1 & Va, where Vj is one of these three indecomposable modules. If V| = S,
then the restriction v|y, is equal to (a scalar multiple of) j. If Vi = Ps3, then v|y,
is equal to (a scalar multiple of) p. Finally, if Vi = P,, then v|y, obviously factors
through p or j. In any case, v factors through ( pJ )

Similarly, one proves that the obvious morphism P, —> S @ P3 is left almost split.

Example I1.2.14. Knowing one almost split morphism, it is easy to construct a lot.
Indeed, let f : L —> M be left almost split and f’ : L —> M’ be radical. We
claim that the morphism

<]J:,>:L—>M69M/

is also left almost split. Indeed, neither f nor fis a section, hence the indecompos-
able module L is isomorphic to no direct summand of M @& M’. Therefore, (;,)

is not a section either. Let u : L — U be radical and u’: M — U be such that
u = u' f. Then we have the factorisation

u=(1/0)<;,>.

This establishes our claim. Dually, if g : M — N is right almost split and
8

/

8

The previous example tends to suggest that the “good” almost split morphisms
should satisfy a minimality condition, namely the target of a left almost split
morphism, or the source of a right almost split morphism, should be as small as
possible. This brings us to the definition of minimal morphisms.

g': M’ — N isradical, then ( > : M @& M’ —> N is also right almost split.
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Definition I1.2.15.

(a) A morphism f : L —> M is left minimal if every 4 € End M such that
hf = f is an automorphism.

(b) A morphism g : M — N is right minimal if every 7 € End M such that
gh = g is an automorphism.

Again, these notions are dual to each other: f : L — M is left minimal if and
onlyif Df : DM — DL is right minimal.

Example 11.2.16. Clearly, every epimorphism is left minimal and every monomor-
phism is right minimal. In addition, if P is an indecomposable projective module,
then the inclusion morphism rad P — P is right minimal. Dually, if I is
indecomposable injective, then the projection morphism /I — [I/socl is left
minimal.

Example I1.2.17. An epimorphism g : M — N is called superfluous if, for every
morphism & : L —> M such that gh : L — N is an epimorphism, we have that
h itself is an epimorphism. Typical superfluous epimorphisms are the projective
covers, see Subsection I.1.3. Now, we claim that every superfluous epimorphism
is right minimal. Indeed, let g : M — N be a superfluous epimorphism and
h : M — M be such that gh = g. In particular, gh is an epimorphism. Hence,
so is h. But M has finite length; hence, applying Lemma 1.1.20, we get that 4 is an
automorphism.

The dual notion is that of an essential monomorphism. A monomorphism
f : L — M is called essential if, for every morphism 2 : M — N
such that if : L — N is a monomorphism, we have that & itself is a
monomorphism. Typical essential monomorphisms are injective envelopes. Just as
above, ones proves that every essential monomorphism is left minimal.

Lemma I1.2.18. Every irreducible morphism is both left and right minimal.

Proof. Let f : L — M be irreducible and 2 € End M be such that hf = f.
Because f is not a section, then 4 must be a retraction, and in particular an
epimorphism. But then / is an automorphism, because M has finite length. This
proves left minimality. The proof of right minimality is similar. O

As a consequence, it follows from Example 11.2.4 that, if P is indecomposable
projective, then the inclusion rad P — P is left and right minimal, and, if 7
is indecomposable injective, then the projection I — [/soc/ is left and right
minimal.

Now, we make explicit the meaning of minimality for almost split morphisms. A
left almost split morphism f : L — M will turn out to be left minimal if and only
if its target M has least composition length /(M) among the targets of left almost
split morphisms of source L. This means that, if ' : L — M’ is also left almost
split, then I (M) < I (M / ) Clearly, the dual statement holds true for right almost
split morphisms.
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Proposition I1.2.19.

(@) Let f : L — M be a left almost split morphism. Then, f is left minimal if
and only if its target M has least length among the targets of left almost split
morphisms having source L. In addition, this condition uniquely determines f
up to isomorphism.

(b) Let g : M — N be a right almost split morphism. Then, g is right minimal if
and only if its source M has least length among the sources of right almost split
morphisms having target N. In addition, this condition uniquely determines g
up to isomorphism.

Proof. We only prove (a), because the proof of (b) is dual.

Sufficiency. Let f: L — M be left almost split, with [ (M) minimal among the
lengths of the targets of left almost split morphisms of source L. Let & € End M
be such that if = f. Let h = jp be the canonical factorisation of & through its
image M’ = Imh. We claim that pf : L — M’ is left almost split. Clearly, pf
is not a section, because f is not. Because L is indecomposable, this implies that
pf is aradical morphism. Let u : L — U be a radical morphism. Then there exists
uw': M — Usuchthatu = u' f.Butthen,u = u’' f = u’hf = v’ jpf factors through
M’. This establishes our claim that pf is left almost split. Then, by hypothesis,
[ (M) < [(M’). On the other hand, M’ C M implies that [ (M’) < [ (M). Hence,
(M) =1 (M/); therefore, M = M’, and so & is surjective. Now M has finite length;
hence, & is an automorphism. This shows that f is left minimal.

Necessity. Assume now that the left almost split morphism f : L — M is left
minimal, and let f' : L —> M’ be also left almost split. There existh : M —> M’
such that /" = hf and A’ : M' —> M such that f = K’ f’.

L*>M

|, L

L—>M'

|, b

L%M

But then f = h’hf and left minimality of f imply that 2’4 is an automorphism.
Therefore, h is injective and we have [ (M) < (M’) as required.

Uniqueness. This is proved using the same argument. Indeed, assume that, the
left almost split morphism f’ : L —> M’ is also left minimal. Then, as above,
f" = hh'f’ gives that hh' is an automorphism. Similarly, 'k is an automorphism.
Hence, i and k' are isomorphisms (in particular, M = M’). O

Definition I11.2.20.

(a) A morphism is called left minimal almost split if it is at the same time left
minimal and left almost split.
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(b) A morphism is called right minimal almost split if it is at the same time right
minimal and right almost split.

It is an easy consequence of Proposition I1.2.19 that, given an indecomposable
module L, there exists a left minimal almost split morphism with source L, provided
that there exists a left almost split morphism of source L. Dually, the existence
of right almost split morphisms with given indecomposable target N implies the
existence of right minimal almost split morphisms of target N.

Example 11.2.21. As we have seen, for every indecomposable projective module P,
the inclusion morphism rad P — P is right minimal almost split. Dually, if I is an
indecomposable injective module, then the projection I — [/ soc [ is left minimal
almost split.

As a corollary to Proposition 11.2.19, we prove that typical almost split mor-
phisms are exactly as in Example 11.2.14.

Corollary I1.2.22.

(@) Let f' : L —> M’ be left almost split. Then, there exists a decomposition
M’ = M & X such that ' = (5) with f : L —> M left minimal almost split.

(b) Let g’ : M' —> N be right almost split. Then, there exists a decomposition
M =M@Y such that g’ = (30) with g : M —> N right minimal almost
split.

Proof. We only prove (a), because the proof of (b) is dual.

Let f/ : L —> M’ be left almost split. Because of Proposition 11.2.19, there
exists a left minimal almost split morphism f : L —> M, having source L. As
before, we find morphisms 2 : M —> M’ such that f' = hf and h': M’ — M
such that f = A’ f’. But then f = A’hf and left minimality of f implies that 2’'h
is an automorphism. Therefore, 4’ is a retraction and 4 is a section. Identifying A’k
with the identity, we get M’ = M @ X with M = Imh and X = Kerh'. Then,

f':L — M’ = M & X may indeed be written in the form f’ = (6) O

Our present objective is to compare almost split morphisms with irreducible
ones. The first step in this direction is the following lemma, which the reader should
compare with Lemma I1.2.18.

Lemma I1.2.23.  Every (left or right) minimal almost split morphism is irre-
ducible.

Proof. We only prove the statement for left minimal almost split morphisms, the
other case being dual. Let f : L —> M be left minimal almost split.

Because f is a radical morphism with an indecomposable source, then it is not
a section. It is not a retraction either, because otherwise the indecomposability of L
would imply that it is an isomorphism. Assume thus that f = f; f> with fo : L —
X and f1 : X —> M. Suppose that f> is not a section. Because f is left almost
split, there exists f; : M —> X suchthat f> = f; f.
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L M
\ h ; :
1 g “p

But then f = fifo = fif;f Left minimality of f yields that fif) is an
automorphism. Hence, f] is a retraction. O

We are now able to prove our structure theorem for irreducible morphisms. It
says that irreducible morphisms with a given indecomposable source (or target) are
exactly those morphisms that can be completed to a minimal almost split morphism
having the same source (or target respectively).

Theorem I1.2.24.

(@) Let f : L —> M be left minimal almost split. Then, ' : L — M’ is
irreducible if and only if M’ # 0 and there exist a decomposition M = M' & M"

and a morphism " : L — M" such that (;,,,) : L — M is left minimal

almost split.

(b) Let g: M —> N be right minimal almost split. Then, g : M’ —> N is
irreducible if and only if M' # 0 and there exist a decomposition M = M'®M"
and a morphism g" : M" —> N such that (¢' ¢") : M —> N is right minimal
almost split.

Proof. We only prove (a), because the proof of (b) is dual.

Necessity. Assume f' is irreducible. Then, clearly, M’ # 0. Because f is left
almost split, there exists & : M —> M’ such that f* = hf. But now f is not a
section. Hence, / is a retraction. This implies the statement.

Sufficiency. Assume f = (jﬁ,) : L — M = M’ @ M” is left minimal almost
split. We claim that f” is irreducible. To prove this statement, we first assume that
f’is asection. Let h : M’ —> L be such that &f’ = 1. Then,

(ho)(jff,)=1L

implies that f itself is a section, a contradiction. Thus, f” is not a section. Assume
now that f’ is a retraction. Because L is indecomposable, then f’ would be
an isomorphism and therefore a section, and we have seen that this leads to a
contradiction. Thus, f’ is not a retraction either.

Suppose now that ' = fifo with f : L — X and f; : X — M. If
Jf> is not a section then, because f is left almost split, there exists a morphism
W n): M &M’ — X such that

(1) (f) = f.

We deduce the following commutative diagram:
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M:M,@MN ’ X@M” M/@MN:M

The minimality of f implies that

fl 0 h/ h// _ flh/ flh//
O IM// 0 lM” o 0 IM//

is an automorphism. Hence, f14’ is an isomorphism and so f is a retraction. O
We finish this subsection with the following consequence of the above theorem.
Corollary I1.2.25.

(@) Let f : L —> M be left minimal almost split and p : M — M’ a retraction.
Then, pf : L —> M’ is irreducible.

(b) Let g : M — N be right minimal almost split and j : M’ — M a section.
Then, gj : M' — N is irreducible. |

11.2.3 Almost split sequences

We are now ready to define almost split sequences. In the previous subsection,
we considered those radical morphisms through which other radical morphisms
factor. These are the almost split morphisms. Because of Corollary 11.2.22, we may
even assume that we deal with minimal almost split morphisms. And then, these
morphisms are irreducible because of Lemma I1.2.23; hence, if both their source and
target are indecomposable, they belong to the radical but not to the radical square
of the module category. The question therefore naturally arises whether there exist
sufficiently many minimal almost split morphisms inside the module category. Our
objective in this subsection and the next is to prove that this is indeed the case. We
start by showing that composable irreducible morphisms can be arranged in a neat
way, giving rise to minimal almost split morphisms.

Definition I1.2.26. A short exact sequence 0 —> L —f> M5 N -—0

is an almost split sequence (or an Auslander-Reiten sequence) if both of the
morphisms f and g are irreducible.
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Remark 11.2.27.

(a) Clearly, this is a self-dual concept, that is, a short exact sequence 0 —> L i>

D
M %5 N — 0 is almost split in mod A if and only if 0 — DN .Y

D
DM —f> DL — 0 is an almost split sequence in mod A°P.

(b) Because irreducible morphisms never split, an almost split sequence never
splits.

(c) Because of Corollary 11.2.9, f irreducible implies N indecomposable, and g
irreducible implies L indecomposable: an almost split sequence always has
indecomposable end terms.

(d) Because of Lemma II.2.18, both morphisms f and g are left and right minimal.

We give a first example of an almost split sequence.

Example 11.2.28. Let A = k[t]/(tz). Then, A is local and so has A4 a unique
indecomposable projective module, up to isomorphism. Now dimk A = 2 and rad A
is equal to the simple module § = (¢) / <t2). As seen in Example I1.2.4, the inclusion
Jj S — A isirreducible. Its cokernel is the morphism p : A —> § induced by
the multiplication by 7. But A 4 is also the unique indecomposable injective module,
up to isomorphism, and p : A — § is the projection of A onto its quotient by its
socle. In particular, p is irreducible and we have an almost split sequence:

0—S-2sa-ss—5o.

Our objective in this subsection is to prove that almost split sequences may also
be defined via minimal almost split morphisms. We start with the following lemma.

Lemma I1.2.29.

(a) Let
0 Ll m—5 N 0
f g
0 L M N 0

be a commutative diagram with exact nonsplit rows and N indecomposable.
Then, u and v are automorphisms.

(b) Let
0 Ll sm—5 N 0
0 Ll M5 N 0

be a commutative diagram with exact nonsplit rows and L indecomposable.
Then, u and v are automorphisms.
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Proof. We only prove (a), because the proof of (b) is dual.

If v is not an automorphism, then the indecomposability of N implies that v is
nilpotent. Let m > 0 be such that v = 0. Then, gu™ = v"g = 0 implies that u™
factors through L: there exists 4 : M —> L such that fh = u”. But then fhf =
u™ f = f implies hf = 1, because f is a monomorphism. Hence, f is a section,
a contradiction. This shows that v is an automorphism. Therefore, so is u. O

As a consequence of this lemma, the indecomposability of the end terms in a
nonsplit short exact sequence implies minimality of the morphisms.

Corollary 11.2.30. LetO0 — L —f> M2 N—0bea nonsplit short exact
sequence.

(a) If N is indecomposable, then f is left minimal.
(b) If L is indecomposable, then g is right minimal.

Proof. We only prove (a), because the proof of (b) is dual.
Assume hf = f for some h € End M. We have a commutative diagram with
exact nonsplit rows:

0 L sm—% N 0
f 8
0 L M N 0

where 1’ is deduced by passing to cokernels. Applying Lemma I1.2.29 completes
the proof. O

We are ready to prove our structure theorem for almost split sequences. It shows
that an almost split sequence is characterised by any of its two nonzero morphisms.

Theorem I1.2.31. Let0 — L i) M -5 N — 0 be a short exact sequence.
The following conditions are equivalent.

(a) The sequence is almost split.
(b) The morphism f is left minimal almost split.
(¢c) The morphism g is right minimal almost split.

Proof. We first show that (a) implies (b). Because of Lemma I1.2.18, f is left
minimal. We prove it is left almost split. Because f is irreducible and L is
indecomposable, it is a radical morphism. Let u : L — U be a radical morphism.
We may assume that U itself is indecomposable (then u is a nonisomorphism).
Because g is irreducible, it follows from Lemma I1.2.8 that there exist u1 : M —>
U such thatu = u; f (in which case we have finished) or there exists up : U — M
such that f = uou. In the latter case, the irreducibility of f and the fact that u is not
a section imply that u is a retraction. Because U is indecomposable, this implies
that u; is an isomorphism and we getu = u, ! f. Thus, we have finished in this case
as well.
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We now prove that (b) implies (c). First, g is not a retraction, because f is
not a section. Assume that v : V — N is a radical morphism. Corollary II.2.9
implies that N = Coker f is indecomposable. Then, v is not a retraction. We have
a commutative diagram with exact rows.

0 L E % 0
0 L—Lsm—5 N 0

where E is the fibered product of the morphisms g and v. We claim that the upper
sequence splits, that is, the morphism £ is a retraction. If this is not the case, then i
is not a section and, because f is left almost split, there exists u’ : M —> E such
that u’ f = k. We deduce a larger commutative diagram with exact rows.

8

T

2%<<72
o

8

where v’ is deduced by passing to cokernels. Because f is not a section, the lower
(= upper) sequence does not split. Applying Lemma I1.2.29, we get that vv’ is an
automorphism. But then v is a retraction, a contradiction. This establishes our claim.
Therefore, there exists k' : V — E such that kk’ = 1y. Then guk’ = vkk’ =
v and g is indeed right almost split. Because right minimality of g follows from
Corollary I1.2.30(b), this finishes the proof of (c).

Dually, one proves that (c) implies (b). Therefore, (b) and (c) are equivalent.
But now the conjunction of (b) and (c) implies (a) because minimal almost split
morphisms are always irreducible, owing to Lemma 11.2.23. O

As a first consequence, we establish that, if an almost split sequence exists, then
it is uniquely determined up to isomorphism by one of its end terms.

Corollary I1.2.32. An almost split sequence 0 — L —f> M- N — 0is
uniquely determined by L (or by N ) up to isomorphism.

Proof. Let0 —> L —L> M =55 N — 0and0 — L' 5> M’ 55 N/ — 0
be almost split sequences. Assume L = L’. Because f and f’ are left minimal
almost split, it follows from Proposition I1.2.19 that there exists an isomorphism
h : M —> M’ such that hf = f’. Passing to cokernels, we get an isomorphism
h': N —> N’ such that h'g = g’'h. Thus, the sequences are isomorphic. The proof
is dual if we assume that N = N’. i
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We also obtain another characterisation of almost split sequences that will be
useful in the next section.

Corollary 11.2.33. Let0 — L i> M %5 N —> 0 be a short exact sequence.
The following conditions are equivalent:

(a) The sequence is almost split.
(b) The module N is indecomposable and the morphism f is left almost split.
(¢c) The module L is indecomposable and the morphism g is right almost split.

Proof. Because (a) clearly implies (b) and (c), it suffices, because of duality, to
prove that (b) implies (a). Because of Theorem I1.2.31, we just need to show that f
is left minimal, and this follows from Corollary 11.2.30(a). |

Exercises for Section I1.2

Exercise I1.2.1.

(a) Prove that the following statements are equivalent for an epimorphism
f : P —> M with P projective:
(i) f is a projective cover.
(i1) f is superfluous.
(iii) f is right minimal.
(b) Prove that the following statements are equivalent for a monomorphism f :

M — I with [ injective:

(i) f is an injective envelope.
(i) f is essential.
(iii) f is left minimal.

Exercise I1.2.2.
(@) Let f: L — M, g: M — N be epimorphisms. Prove that:

(i) If both g and f are superfluous, then so is gf.
(i) If gf is superfluous, then sois f.

(b) Let f: L — M, g: M —> N be monomorphisms. Prove that :

(i) If both g and f are essential, then so is gf.
(i1) If gf is essential, then so is g.

Exercise I1.2.3. Prove that a monomorphism f : L — M is essential if and only
if Im f has a nonzero intersection with every nonzero submodule of M. Deduce
that, if f : L — M is an essential monomorphism with L injective, then f is an
isomorphism.
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Exercise I1.2.4. Consider a morphism in mod A of the form
(h5):MoN — MoN

with f: M — M',g: N — M’ and h : N — N’. Prove that:
(a) If (6 i) is an isomorphism, then f is a section and 4 is a retraction.

(b) If ({; i) is an isomorphism, and either f or 4 is an isomorphism, then so is the

other.
(c) If both f and h are isomorphisms, then so is (6 i )

Exercise I1.2.5.

(a) Let f : L —> M be an irreducible monomorphism and M’ a proper submodule
of M containing Im f. Prove that Im f is a direct summand of M’.

(b) Let g : M —> N be an irreducible epimorphism and M’ a nonzero submodule
of M contained in Kerg. Prove that N is a direct summand of M/M’.

Exercise I1.2.6. Let0 — L —f> M -5 N —> 0 be a short exact sequence
with indecomposable middle term M. Prove that:

(a) If f is irreducible, then each irreducible morphism 4 : X —> N is surjective.
(b) If g is irreducible, then each irreducible morphism k : L — Y is injective.

Exercise I1.2.7. Let f : L — M be an irreducible morphism and N an A-
module. Prove that:

(a) If Homy (M, N) = 0, then Extl\ (N, f) is a monomorphism.
(b) If Homy (N, L) = 0, then Extk (f, N) is a monomorphism.

Exercise I1.2.8. Let0 — L —f> M -5 N —0bea nonsplit short exact
sequence. Prove that:

(a) f is irreducible if and only if every subfunctor F of Homy (—, N) either
contains or is contained in the image of Homy (—, g) .

(b) g is irreducible if and only if every subfunctor F of Homy (L, —) either
contains or is contained in the image of Homy (f, —) .

Exercise I1.2.9.

(a) Prove that a morphism f : L — M is left almost split if and only if it is
radical, L is indecomposable, and if U 2 L is indecomposable, then every
morphism u : L —> U factors through f.

(b) Prove that a morphism g : M — N is right almost split if and only if it is
radical, N is indecomposable, and if V 2 N is indecomposable, then every
morphism v : V — N factors through g.
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Exercise I1.2.10. Let 0 — L i> M -5 N — 0 be an almost split
sequence.

(a) Let N’ be a proper submodule of N. Show that the almost split sequence induces
a split exact sequence:

0—L—g'(N)— N —0

(b) Let L' be a proper submodule of L. Show that the almost split sequence induces
a split exact sequence:

0— L/L' — M/f(L') — N — 0.

Exercise I.2.11. Let& : 0 — L i> M -5 N — Obea nonsplit short

exact sequence with L, N indecomposable. Show that the following conditions are
equivalent:

(a) The sequence £ is almost split.

(b) For every radical morphism u# : L — U, we have Extk (N,u) (&) =0.

(c) For every radical morphism v : V. — N, we have Exti1 (v, L)) =0.
Exercise I1.2.12. Let0 — L —f> M —£5 N —> 0 be an almost split sequence.
Prove that:

(a) For every commutative diagram with nonsplit exact rows

0 -l om—f N 0,
0 ULt N 0

the morphisms « and v are sections.
(b) For every commutative diagram with nonsplit exact rows

0— LM N 0,
0— Lt sm—f N0

the morphisms « and v are retractions.

Exercise I1.2.13. Let 0 —> L > D M; 55 N —> 0 be an almost split
sequence with the M; indecomposable. Prove that, for every i, we have [(M;) #
I(N).
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Exercise I1.2.14. Let0 — L —f> M %5 N —> 0 be an almost split sequence.
Prove that:

(a) If M is projective, then g : M — N is a projective cover.
(b) If M is injective, then f : L —> M is an injective envelope.

Exercise I1.2.15. Let A be given by the quiver:

l—2——3

Prove that the sequences:

@0— S — Ph— S —0.
b)) 00— P — S0P — 1, — 0.
) 0— 8 —>5L— 5 —0.

(where all morphisms are either inclusions or projections) are exact and almost split.

Exercise I1.2.16. Let A be given by the quiver

bound by o = 0. Prove that the sequences:

@0—S$—>P— S8 —0
®b®)0— P — S0P, —1, —0
DD 0—S —1— 5 —0

(where all morphisms are either inclusions or projections) are exact and almost split.

Exercise I1.2.17. Let A be given by the quiver

bound by «fy = 0. Prove that the sequences

@0—S—P—85—0

® 00— P,— S$H®&P3— P3/S1 — 0
) 0— S — P3/S1 — S3— 0

d 00— P3/S1 — P1DS3 — I3 — 0
e0—S35—5L—8S4—0

(where all morphisms are either inclusions or projections) are exact and almost split.

Exercise I1.2.18. Let A be given by the quiver:
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@

bound by «¢fa = 0 and BaB = 0. Prove that the sequences:

@ 00— 8§ — P/S — S — 0.
® 00— S — P1/S1 — S — 0.
© 00— P/S — PI®S, — P1/S1 — 0.
d 00— P1/S1 — PLB S — P/S» — 0.

(where all morphisms are either inclusions or projections) are exact and almost split.

II.3 The existence of almost split sequences

I1.3.1 The functor category Fun A

In the previous section, we defined and studied properties of almost split sequences.
Our objective now is to prove the existence theorem of these sequences, due
to Auslander and Reiten. The theorem asserts that, if A is a finite dimensional
k-algebra, and N an indecomposable nonprojective A-module, or dually L an
indecomposable noninjective A-module, then there exists an almost split sequence:

0O—L—M-—N—0.

A consequence of this theorem is the existence of enough minimal almost split
morphisms in the module category: for every indecomposable module L, there
exists a left minimal almost split morphism L — M, and, dually, for every
indecomposable module N, there exists a right minimal almost split morphism
M — N.

There are many proofs of this existence theorem. The proof we present in this
section uses a functorial approach to the theory. There are several reasons for
adopting this point of view. Indeed, it is well-known to specialists that the category
of k-functors from a module category into the category mod k of finite dimensional
k-vector spaces is, in several aspects, better behaved than the module category itself.
In addition, historically, it was the functorial approach that supplied both the original
inspiration and the original proofs of many results of the Auslander—Reiten theory.
Finally, the proof we present is relatively easy and elementary.

Let Fun A be the category whose objects are the contravariant k-functors from
mod A to modk and whose morphisms are the functorial morphisms. Strictly
speaking, given objects F, G in Fun A, the functorial morphisms from F to G
do not usually constitute a set. However, the class of objects of every skeleton of
mod A is a set. Because we do not distinguish between isomorphic objects, we may
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identify mod A with one of its skeletons and then the class Hom (F, G) of functorial
morphisms from F to G becomes a set; thus, the category Fun A is well-defined. It
follows from well-known results of category theory that the category Fun A is k-
linear and actually abelian.

The most efficient tool for translating statements about modules into statements
about functors, and vice versa, is Yoneda’s lemma, which we now state and prove.

Theorem IL.3.1 (Yoneda’s lemma). Let € be a k-linear category, F : € —
mod k a contravariant K-functor and X an object in €. There is an isomorphism of
vector spaces:

¢: Hom(Homy (—, X), F) — F(X) given by ¢ — ¢x (1x) .

Proof. Clearly, ¢ maps Hom(Hom¢ (—, X), F) into F(X). To prove that it is
bijective, we construct its inverse o.

Let x € F(X) and Y an arbitrary object in ¥. We define the functorial morphism
o (x)y : Homg (Y, X) —> F(Y) as follows: let f € Homg (Y, X), then set
o)y (f) = F(f)(x). Indeed, if f : Y — X, then F(f) : F(X) — F()
and thus F(f)(x) € F(Y).

We first prove that o (x) : Hom¢g (—, X) —> F is a functorial morphism. Let
g : Y —> Z be an arbitrary morphism. We must prove that the square

Homg (Z,X) Home () Homg (Y, X)
J{T (x)z J(’ )y
F(2) o) F(Y)

commutes. Indeed, let f € Homy (Z, X). Then we have

F(g)o (x)z (/) =F@F(f)x)=F(fg)x) =0 @)y (fg)
= o (x)y Homy (g, X) (),

which establishes our claim.
We now prove that € and o are mutually inverse. Let x € F(X), then

g0 (x) =0 (x)x (Ix) = F(lx)(x) = 1rx)(x) = x.

Let ¢ be a functorial morphism from Hom¢ (—, X) to F, and Y an object in . We
claim that gy = o¢ (¢)y. Let f € Homg (Y, X), we have a commutative square

Homg (f.X
Homg (X,X) LU)Homg(Y,X)

[ [

P F(f) FiY)
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from which we deduce:

oe(@)y (f) = F(f) (e () = F(fHex(lx) = ¢y Homg (f, X) (1x) = ¢y ().

This establishes our claim and hence the bijectivity of ¢. Finally, ¢ is easily seen to
be a morphism of k-vector spaces. O

Clearly, there also exists a version of Yoneda’s lemma using covariant functors
instead of contravariant ones. We leave to the reader its easy formulation and proof.

In the sequel, we need not only the existence of Yoneda’s bijections ¢ and o,
but also the explicit formulae expressing these bijections. We now consider the case
where ¥ = mod A.

Corollary I1.3.2. Let M, N be modules and F a subfunctor of Homy (—, N). Then
there exists an isomorphism of k-vector spaces F(M) = Hom(Homg (—, M), F)
given by f +— Homa(—, f). If, in particular, F = Homa(—, N),

then this map yields an isomorphism of vector spaces Homy(M,N) =
Hom(Homa (—, M), Homa (—, N)).

Proof. Let f € F(M). The Yoneda isomorphism ¢ applied to f gives a functorial
morphism o (f) : Homy (—, M) — F defined as follows. For every object X and
morphism g : X —> M, we have, as seen in the proof of Theorem I1.3.1,

o (f)x (g) = Homa(g, N)(f) = fg = Homa(X, f)(g).

Thus, o (f)x = Homu (X, f) for every object X, that is, o (f) = Homy(—, f).
This completes the proof. O

The best known consequence of Yoneda’s lemma is the projectivity of the
Hom functor. An object H in Fun A is called projective if, for every functorial
epimorphism ¢ : F — G and every functorial morphism n : H — G, there
exists a functorial morphism & : H —> F such that p& = 5, that is, such that the
following diagram is commutative:

H
: J
n
Y
F—G

Corollary 11.3.3. Let M be an A-module. Then, Homy (—, M) is a projective
object in Fun A.

Proof. Lety : F —> G be afunctorial epimorphismandn : Homyg (—, M) — G
a functorial morphism. Then, ¢ induces a morphism

¢* : Hom(Homy (—, M), F) — Hom(Homyu (—, M), G)
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by v +—— ¢v¢. Now, let ¢r: Hom(Homy (—, M), F) — F(M) and
eg: Hom(Homy (—, M), G) — G(M) be the isomorphisms of Yoneda’s lemma
corresponding to the functors F and G respectively. Then we have a square:

Hom(Homy (—,M),F) - Hom(Homy (—,M),G)

F(M) G(M)

Let ¥ : Homy (—, M) — F be a functorial morphism. Then we have

omer(¥) = eu¥u(y) = (@¥) )y (Ay) = &6 (p¥) = o™ (V)

that is, the above square commutes. Now, ¢y is surjective, and hence so is ¢*.
Therefore, there exists & : Homy (—, M) —> F such that n = ¢* (§) = ¢&. |

Yoneda’s lemma and its corollaries show that one can reduce several questions
about arbitrary modules to questions about projective functors. Because working
with projective objects is always easier than working with arbitrary ones, this
partially explains why passing from mod A to FunA turned out to be a fruitful idea.

I1.3.2 Simple objects in Fun A

Because the projective objects of the form Homg (—, M), with M a finitely
generated A-module, are particularly interesting, we consider the quotients of such
objects. A functor F is called finitely generated if there exist a (finitely generated)
module M4 and a functorial epimorphism:

Homy (—, M) — F — 0.

We prove that the only finitely generated projective objects in Fun A are precisely
the functors of the form Homy (—, M).

Lemma I1.3.4. An object F in Fun A is finitely generated projective if and only if
there exists an A-module M such that F = Homy (—, M). Also, F is indecompos-
able if and only if M is indecomposable.

Proof. Because F is finitely generated, there exist a module M4 and a functorial
epimorphism ¢ : Homy (—, M) — F. Because F is projective, ¢ is a retraction
and there exists ¥ : F — Homy (—, M) such that ¢ty = 1p. Then, ¥¢ :
Homyg (—, M) — Homy (—, M) is an idempotent functorial endomorphism
whose image is F. Because of Corollary I1.3.3, there exists f € End4 M such
that ¢ = Homy (—, f), and f is idempotent because so is Homyu (—, f).
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Consequently, M’ = Im f is a direct summand of M and is such that Hom 4 (—, M’ )
is the image of Homy4 (—, f) = ¥ ¢. This shows that F = Homy (—, M/). The last
assertion is easy to prove. O

We next prove that every indecomposable finitely generated projective object in
Fun A has a unique maximal subobject, which is the radical, exactly as is the case
for indecomposable finitely generated projective A-modules.

Lemma I1.3.5. Let M be an indecomposable module. Then, rads (—, M) is the
unique maximal subfunctor of Homy (—, M).

Proof. Let F be any proper subfunctor of Homy (—, M). We claim that F is
actually a subfunctor of rad4 (—, M). We must show that, for every indecomposable
A-module L, we have F(L) C rady (L, M). If L is not isomorphic to M, then
radg (L, M) = Homy (L, M) and the statement holds trivially. If L = M, let
f : M — M belong to F(M). Because of Corollary II.3.2, under the Yoneda
bijection, the functorial morphism

Homy (—, f): Homy (—, M) — F

corresponds to it. Composing it with the proper inclusion F < Homy (—, M), we
get that

Homy (—, f) : Homy (—, M) — Homy(—, M)

is not an isomorphism. But then neither is f. Hence, f € rads (M, M), as required.
O

An object in Fun A is called simple if it is nonzero and has only two subobjects,
namely itself and the zero functor. It follows immediately from Lemma II.3.5 above
that, for every indecomposable A-module M, the functor

Sy = Homy (—, M) /radg (—, M)

is simple.

Because End4 M is local, Sy (M) is a skew field. Applying Yoneda’s lemma,
the space of functorial morphisms Hom(Homy (—, M), Syy) is also a skew field.
Therefore, there exists a (unique up to multiples by elements of the skew field)
nonzero functorial morphism

wy c Homy(—, M) — Sy,

which is an epimorphism because Sy, is simple. We now prove that conversely,
every simple object in Fun A is of the form S, for some indecomposable module
M. Furthermore, we also prove that the morphism 7y, is actually a projective
cover. We define projective covers in Fun A exactly as we do in mod A: an
epimorphism ¢ : H —> F with H projective is a projective cover if, whenever
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¢’ : H' —> F is another epimorphism with H' projective, there exists an

epimorphism n : H' —> H such that ¢’ = ¢n. In particular, 7 is a retraction
so that H is a direct summand of H'.

Lemma I1.3.6. Let S be a simple object in Fun A. Up to isomorphism, there exists
a unique indecomposable A-module M such that S (M) # 0, and then S = Sy.
In addition, the functorial morphism wp : Homa(—, M) —> Sy is a projective
cover.

Proof. Because of Yoneda’s lemma, for every module X, we have S(X) # 0 if and
only if there exists a functorial morphism Homy (—, X) — § that is necessarily
an epimorphism because S is simple. Because S # 0, there exists at least an
indecomposable module M such that S(M) # 0. Assume that X is a module such
that S(X) # 0. The projectivity of the functors Hom4 (—, M) and Hom4 (—, X) and
Corollary I1.3.2 yield morphisms u: M — X and v: X — M such that we have
a commutative diagram with exact rows

Homy (—,M) o S 0

Homy (—,X) el S 0
]

Homy (—,M) il S 0

The indecomposability of M implies that End M is local. Hence, vu : M —> M is
nilpotent or invertible. If it were nilpotent, and m > 0 were such that (vu)” = 0,
then we would get the contradiction 7y = 7y Homy (—, (vu)™) = 0. Therefore,
vu is invertible; thus, v : X —> M is a retraction. This shows that S(X) # 0 if and
only if M is a direct summand of X. In particular, the indecomposable module M is
unique up to isomorphism.

Replacing, in the proof above, Hom4 (—, X) by a projective functor F such that
there exists a nonzero functorial morphism F — S, the same argument gives that
7y : Homy (—, M) —> Sy is a projective cover morphism.

Finally, because S is simple and rad4 (—, M) is the unique maximal subfunctor
of Homy (—, M), we have S = Homy (—, M) /radys (—, M) = Sy. |

Corollary I1.3.7. Let M, N be A-modules, with M indecomposable. Then,
Sy (N) # 0 if and only if M is isomorphic to a direct summand of N.

Proof. This was shown in the course of the proof of Lemma I1.3.6 O

11.3.3 Projective resolutions of simple functors

Our first lemma is an easy exercise of homological algebra.
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Lemma I1.3.8. Let G be an abelian category and (P, p1, p2) the fibered product of
fil:My — M, fr: My, — M in%. Let fi = jiq1, p2 = j2q2 be the canonical
factorisations through K1 = Im f| and Ko = Im p, respectively. Then

(a) There exists a unique f : Ko —> K such that ji f = faj>.
®) (P, p1,q2) is a fibered product of q1 : M1 —> Kj and f : K» —> K.
(c) Ker f1 = Ker py.

Proof.

(a) Let K denote the cokernel of fi, so that we have a short exact sequence

0— K S M k—o.

Then, hf>jogs = hfapo = hfip1 = 0. Hence, hfsjo = 0, because ¢> is an
epimorphism. Therefore, fj» factors through Kers = K, that is, there exists
f 1 Ko — Kj suchthat ji f = f2)>.

p2

SR

fo

The uniqueness of f follows from the fact that jj is a monomorphism.

(b) First, we have ji fq2 = f2j2q2 = fap2 = fip1 = jiqipi. Hence, fq2 = q1pi
because jj is a monomorphism.

Let (U, uy,uz) be such that fup, = qiui. Then, frjour = jifur =
jiqiur = fiuy. The universal property of P yields a unique u : U —> P
such that u; = pju and jour = pou = jrqou. Because j, is a monomorphism,
the latter equality is equivalent to uy = gou. This completes the proof of (b).

(c) We know that Ker fj = Kerg; and Ker p» = Ker g,. The result then follows
from (a), (b) and the commutative diagram with exact rows

9,

0 Kerp, P ~— Kj 0
lp 1 Jf
0 Kerf) M -1k 0
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We now let N be an indecomposable module and examine the projective
resolution of the simple functor Sy in the category Fun A. We start by considering
the case where N is projective.

Lemma I1.3.9. Let N be an indecomposable A-module. Then, N is projective if
and only if the simple functor Sy admits a projective resolution of the form

0 — Homy (—, M) — Homy (—, N) — Sy —> 0.

Proof. Assume first that N is projective. Because of Lemma I1.3.5, we have a short
exact sequence of functors:

0 — radg (—, N) — Homy (—, N) — Sy — 0.

Because of Corollary II.1.10, for every module X, the vector space rad4 (X, N)
consists of the nonretractions from X to N. But N is projective; therefore, this space
coincides with the set of nonsurjections from X to N, that is, the morphisms from
X to N whose image lies in the unique maximal submodule rad N of N. Therefore,
rad4 (X, N) = Homy (X, rad N) and the previous sequence becomes:

0 — Homy (—,rad N) — Homy (—, N) — Sy — 0.

This completes the proof of this implication.
Conversely, assume that N is not projective and we have a short exact sequence
of functors of the form:

0 — Homy (—, M) — Homy (—, N) — Sy — 0.
Evaluating this sequence on the module A 4 yields a short exact sequence:
00— M — N— Sy (A) — 0.

Because N is not projective, Sy (A) = 0 where we used Corollary I1.3.7. Therefore,
M = N; hence, Homy (—, M) = Homy (—, N) and Sy = 0, an absurdity that
completes the proof. O

The main result of this section, when translated into module language, will imply
the existence theorem for almost split sequences. It asserts that simple objects in
Fun A have projective resolutions of length at most two and exhibits a minimal
projective resolution for such an object.

Theorem I1.3.10. Let N be an indecomposable A-module. The simple functor Sy
admits a minimal projective resolution of the form:

0 — Homy (—, L) — Homy (—, M) —> Homy (—, N) —> Sy —> 0.

If N is projective, then L = 0. Otherwise, L is indecomposable.
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Proof. The case where N is projective follows from Lemma I1.3.9; thus, we may
assume that N is not projective. Let

Py N0

be a minimal projective presentation of N. It induces an exact sequence in Fun A of
the form

D Homy (p1,—

DH —
DHom (Py.—) 4P b Hom (Py, —) ©omA

)DHomA(N, —-) — 0.

Now, we recall from Lemma I.1.18 that the Nakayama functor v = D Homy4 (—, A)
induces, for each projective module P, a functorial isomorphism D Homy4 (P, —) =
Homy (—, vP). Therefore, the previous exact sequence may be rewritten as

H -,
Homu(—,vPy) Omi;)pl) Homy (—, vPy) i> DHomy(N,—) — 0

where 6 denotes the composition of the isomorphism Homyj(—,vPy) =
DHomy (Py, —) with the morphism D Hom4 (pg, —). We claim that there exists
a functorial morphism from Homg4 (—, N) to DHomy (N, —) having the simple
functor Sy as its image. Indeed, define a functorial morphism ny : Sy —
DHomy (N, —) by sending the residual class g of a morphism g € Endq N
modulo rad End4 N to the linear form mapping f € End4 N to the residual class
gf of the composition g f in k. It is easily seen that 1y is well-defined and nonzero.
In addition, ny is a monomorphism, because Sy is simple. Because the projective
cover morphism 7y : Homy (—, N) —> Sy is an epimorphism, the composition
nymy : Homy (—, N) — DHomyg (N, —) is nonzero and admits Sy as its image.
This establishes our claim.

The projectivity of Homy (—, N) and Corollary I1.3.2 yield a morphism u :
N —> v Py such that 6 Homy (—, u) = nymy, that is, the following diagram is
commutative.

Homy (-, N)
Homy (—.u) v JHNTEN

X
Homy (-, vRy) —%— DHom (N, -) — 0

Let M be the fibered product of u and vp;. Setting L = Kervp;, we get a
commutative diagram with exact rows
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Indeed, the exactness of the lower row is obvious and the exactness of the upper row
follows from Lemma I1.3.8. We deduce a commutative diagram with an exact lower
row

Homa(—, f H -,
0 — Homu(— ,L)MHOIHA(—J\/[) M Homu(—, N) Sn 0
Homa(—,v) Homa (—,u) nN
Homa (—,vp,)

0 — Homa(—,L) ——— Homu(—,vP;) ———— Homu(—,vP)) — DHomu(N,—) —0

We claim that the upper row is also exact. It suffices to prove its exactness at
Homy4 (—, N). Because of Lemma I1.3.5, this amounts to showing that, for every
module X, we have ImHomy (X, g) =radg (X, N).

Because of commutativity, we have

nymy Homy (—, g) = 6 Homy (—, vp1) Homy (—, v) =0,

using the exactness of the lower row. Because 1y is a monomorphism, this implies
that wy Homy (—, g) = 0 and so ImHomy (—, g) € Kermy = rady (—, N).
Therefore, for every module X, we have ImHomyu (X, g) € rad4 (X, N). Con-
versely, assume that 4 € rad4 (X, N), thatis, h : X —> N is not a retraction. Then
7y, x (h) = 0 and commutativity yield € Homy (X, u) (h) = 0, that is, 6 (uh) = 0.
Because the lower row is exact, there exists ' : X — v P; such thatuh = (vp))h'.
The universal property of M yields k : X —> M such that gk = h and uk = h’. In
particular, 7 € ImHomy (X, g). This establishes our claim.

We have thus finished proving that the upper sequence is a projective resolution
of SN.

We next prove that L is indecomposable. The exact sequence

O—>L—>vP1m>vPQ

is the start of an injective coresolution of L. If L were decomposable, then every
direct sum decomposition of L induces a direct sum decomposition of the morphism
vp1, and thus of pi, contradicting the minimality of the given projective presentation
Pp— Phy— N — 0.

It only remains to prove that the constructed projective resolution of Sy is
minimal. Now, if this is not the case, then the indecomposability of L implies that
there exists a direct sum decomposition M = M’ @& L such that we have a short
exact sequence of functors

0 — Homy (—,M’) — Homy (—, N) — Sy — 0.

But then, because of Lemma I1.3.9, N is projective, a contradiction. The proof is
now complete. O
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It turns out that the minimal projective resolution of Sy we just constructed
induces an almost split sequence.

Proposition I1.3.11. Let N be an indecomposable nonprojective A-module and

H - H -
0 —> Homy(—, L) Oni) £ Homyu (—, M) OHA 8 Homy(—, N)— Sy —0

a minimal projective resolution of Sy. Then the sequence

f

0—>L—>M—g>N—>O

is exact and almost split.

Proof. We evaluate the sequence of functors on the module A,4. Because N is
nonprojective, it follows from Corollary I1.3.7 that S (A) = 0. We thus get a short
exact sequence

0—L-1 M- N—0

with L indecomposable. Because of Corollary 11.2.33, it suffices to show that the
morphism g is right almost split.

Indeed, assume first that g is not a radical morphism. Then, g is a retraction and
there exists g’ : N —> M such that gg’ = 1. But then, for every & € Enda N, we
have:

h = gg'h =Homy (N, ) (¢'h) € ImHomy (N, g) = Kermy, v.

This implies Sy (N) = 0, a contradiction. Hence, g is a radical morphism.

Now, let V be an A-module and v € rad4 (V, N). Because rady (V,N) =
ImHompy (V, g), as we saw in the proof of Theorem I1.3.10, there exists v’ : V —>
M such that v = Homy (V, g) (v') = gv’. This completes the proof. O

The proof of Theorem II.3.10 contains a construction procedure for the almost
split sequence of Proposition I1.3.11: indeed, the morphism g : M — N is
obtained by taking the fibered product of u : N — vPyand vpy : vP] —> v Py ;
and the morphism f : L —> M is just the kernel of g. We use this remark in the
following chapter.

We deduce the main existence theorem of Auslander and Reiten.

Theorem I1.3.12. Let N be an indecomposable nonprojective A-module, or L an
indecomposable noninjective A-module. Then, there exists an almost split sequence

0— L1 Mm-5 N—o0.

Additionally, this sequence is uniquely determined by N, or by L, up to isomor-
phism.
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Proof. Assume that N is an indecomposable nonprojective module. Then the
existence statement follows directly from Theorem I1.3.10 and Proposition II.3.11.
If L is an indecomposable noninjective module, then DL is an indecomposable
nonprojective left A-module; thus, there exists an almost split sequence

00— N —M —-DL—0

in mod A°P. Applying the duality functor D yields the required almost split sequence
in mod A. Finally, the uniqueness assertion follows from Corollary I1.2.32. O

As an easy consequence, we get that the module category contains enough
minimal almost split morphisms.

Corollary I1.3.13.

(a) If N is an indecomposable A-module, then there exists a right minimal almost
split morphismg : M —> N.

(b) If L is an indecomposable A-module, then there exists a left minimal almost
split morphism f : L — M.

Proof. We only prove (a), because the proof of (b) is dual.
If N is projective, then the inclusion rad N < N is right minimal almost split.
Otherwise, there exists an almost split sequence

0—L-1 M5 N—0

in which the morphism g is right minimal almost split. O

The reader may wonder why, in this section, we decided to work with contravari-
ant functors instead of the perhaps more familiar covariant ones. This is because the
almost split sequence 0 — L —> M —> N — 0 is very easy to read from the
minimal projective resolution of Theorem I1.3.10. In fact, one could work equally
well with the category Fun A° of the covariant functors from mod A to mod k. But
this is left to the exercises.

Exercises for Section I1.3

Exercise I1.3.1. Prove that the category Fun A is an abelian k-linear category.

Exercise I1.3.2. Let M, N be A-modules. Prove that the following conditions are
equivalent:

(a) M = N in mod A.

(b) Homu(—, M) = Homy(—, N) in Fun A.
(¢) Homy (M, —) = Homyu (N, —) in Fun AP,
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Exercise I1.3.3. Let M, N be A-modules.

(a) Assume that there exists a monomorphism (or an epimorphism)
Homg(—, M) —> Homy(—, N). Prove that there exists a monomorphism
(or an epimorphism respectively) M — N.

(b) Assume that there exists a monomorphism (or an epimorphism) Homg (M, —)
—> Homy (N, —). Prove that there exists a monomorphism (or an epimor-
phism respectively) N — M.

Exercise I1.3.4. Prove that, for every A-module M

(a) The functor D Homy4 (M, —) is an injective object in Fun A.
(b) The functor D Homy4 (—, M) is an injective object in Fun A%P.

Exercise I1.3.5. Let M be an indecomposable nonprojective A-module. Prove that
the composition of the projective cover myy : Homa(—, M) —> Sy with
the morphism 5y : Sy — DHomg (M, —) of the proof of Theorem II.3.10
is the morphism that assigns to f € Homy4 (X, M) the linear form g +— fg on
Homy (M, X), where E € End M/ rad End M is the residual class of fg € End M
modulo the radical.

Exercise I11.3.6.

(a) Let N be an indecomposable A-module. Prove that a morphism g: M — N
is right almost split if and only if the corresponding sequence

Hom (.
Homy (—, M) ™5 Homy (—, N) ™ Sy —> 0

is a projective presentation. In addition, this is a minimal projective presentation
if and only if g is right minimal almost split.

(b) Let L be an indecomposable A-module. Prove that a morphism f: L — M is
left almost split if and only if the corresponding sequence

H [ — L
Homu (M, —) Omi('l )HomA(L, -) Tk 50

is a projective presentation. In addition, this is a minimal projective presentation
if and only if f is left minimal almost split.

Exercise I1.3.7. Let0 — F| — F, —> F3 —> 0 be a short exact sequence in
Fun A. Prove that:

(a) If F1 and F3 are finitely generated, then so is F5.
(b) If F; is finitely generated, then so is F3.
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Exercise I1.3.8. Let F be a finitely generated object in Fun A. Prove that:

(a) If M is an A-module of least dimension such that there exists an epimorphism
¢: Homy(—, M) — F, then ¢ is a projective cover.

(b) If My and M are such that ¢1: Homy(—, M) — F and ¢2: Homu(—, M>)
— F are projective covers, then there exists an isomorphism f: M| — M>
such that ¢ Homa (—, f) = ¢1.

II.4 Factorising radical morphisms

11.4.1 Higher powers of the radical

The radical being an ideal in the module category, it is possible to form its powers
in the usual way. We have already defined at the beginning of Subsection II.2.1
the radical square radi (L, N), for modules L, N. Following the same idea, we can
define, inductively, for all m > 1,

rad’} = rad’:\’” -rady

that is, for the modules L, N, we define rad’/'j (L, N) to consist of all compositions
gf with g € rad’Xﬁl (M, N) and f € radg (L, M) for some module M (where we
agree that rad% = Homy).

It is easily seen that, for every m > 1, the set rad':{ (L, N) is a k-subspace of
rad'/gf_1 (L, N); thus, we have an infinite chain of inclusions:

Homy (L, N) D rads (L, N) Drad% (L, N) 2 ...
We also set:
rad}’ = ﬂ rad’y .
m>1

This is the infinite radical of the module category.
The following easy lemma is particularly important.

Lemma I1.4.1. Given the modules M, N there exists a least integer m > 1
(depending on M and N) such that rady’ (M, N) = rad’y (M, N).

Proof. Indeed, Homy (M, N) is a finite dimensional vector space; hence, the
sequence of subspaces:

Homy (M, N) D rads (M, N) 2 rad} (M, N) 2 ... D rad¥ (M, N)

must eventually stabilise. O
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Example 11.4.2. Let A be given by the quiver

le T——= 2

bound by efafa = 0. Then, the projection morphism f from the indecomposable
projective module

o
Il
— N — N —

to its socle S; = 1 belongs to radi(Pl, P1). Indeed, letting

1

_2
M_l

and g : Py — M, h : M — S be the projection morphisms, both are radical
morphisms, because they are nonisomorphisms and we clearly have f = hg.

Example 11.4.3. As a second example, we show a morphism lying in the infinite
radical of the module category. Let A be the Kronecker algebra, given by the quiver

le I——— o2

Consider the indecomposable modules L = S§; and M = 2 There is an
obvious nonzero morphism f embedding L as the socle of M, given by the left
multiplication by «. Clearly, f is radical. We prove that f € rad’’(L, M). For this
purpose, we construct an infinite family of nonisomorphic indecomposable modules
(L;);>o starting with Lo = L and radical morphisms g; : L;—1 —> L; such that,
for every i, f factors through g; ... gj. This implies the statement. Let L be the
indecomposable projective module:

N

° .
1 1
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There exist two linearly independent embeddings of L = S as a socle factor of
P>, given by left multiplication by the arrows « and B respectively. We call these

embeddings j" and j él) respectively. Because rad P, = S, the morphism j() =

(1)
(‘;‘f])> : 512 — P, is right minimal almost split and the morphisms ].0([1)’ jél) are
]

irreducible. Also, M = Coker jf(;l). Set g1 = jo(,l) . S1 —> P». We now construct

L>. Let Lé =L P = P22. Then we have four linearly independent embeddings
of S as a direct summand of the socle of L}, as shown in the picture below

2 2
° °
«a 15 @ a Jé]
S1
° jgl) ° ° ° °
1 1 1 1

(2

1)

(1) .
Let L, = Coker (J A = P22 /S1. Because the morphism (jf‘

o _ (2)) identifies S; to
Jo Ja

the codomains of j él), jo(,z), we get that L, is a module of the form

fﬁfﬁ{

that is, denoting by {e/,, «’, B’} and {e}, ", B”} the basis vectors of the two copies
of P, in the direct sum L/, we get that a k-basis of the five-dimensional module
L; is given by {e}, e}, efa’ = o, e\’ = eja”, el " = B"}. Its top is the two-
dimensional space with the basis {¢}, 7 }.

This implies that L, is indecomposable. Indeed, assume that L, = L), @& L.
Then, top Ly = top L/, @ top L. If top L/, contains both basis vectors e}, 3, then
L', = Lj because L), is a submodule. The situation is similar if top L) contains both
ey, e Suppose, thus, that €5, € L), and ¢j € L). Then e}’ = ejo” € L, N LY. But
the latter should be zero, a contradiction.

Denoting the projection by py : Lé — L, we see that the composition

0 ,,
82 = m ((1)) : b =L —> L, = Ly & P, — L is an embedding
such that gog; # 0. We continue inductively. Assume that we have constructed
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indecomposable modules L1, Lo, ..., L;—; and monomorphisms g1, g2, ..., &i—1
such that g;—1...g281 # 0. We set L; = L;_1 & P> and consider the two
embeddings of Sj as a direct summand of the socle of L;, which are shown in the
picture below

2

A% fﬁ A

1 1

(0)

- Lio1®P
We let L; = Coker () Z%ﬂazandg,—p, 1():L,-_1—>L,~_169
Ja

P> Ly L;, where pj_1 : Li_1 & P, —> L; is the projection. As before, L; is
indecomposable and g; is a monomorphism such that g;g;_; ... g1 # 0. For each
i > 1, we have an epimorphism #; : L; —> M defined by sending the “first” top
summand S of L; to top M, and the other summands to zero. Then we easily see
that h;g; ... g1 = f, as required.

A ’7\*“' ’7\ /\
%
0

We have dimy Homy4 (L, M) = 1, and also dimg rad‘/’f(L, M) > 1 because [ €
rad¥’ (L, M) is nonzero. Hence, we have

Homs (L, M) = rads(L,M) = ... = rad¥(L, M)

in this case. That is, the integer m of Lemma I1.4.1 is here equal to 1. Similarly, the
nonzero morphism M — §> given by right multiplication by e also belongs to
the infinite radical.

We have proved in passing that the Kronecker algebra is representation-infinite:
indeed, we have exhibited an infinite family of nonisomorphic indecomposable



II.4 Factorising radical morphisms 93

modules. As a consequence, every path algebra having multiple arrows is
representation-infinite, see Exercise 11.4.9.

11.4.2 Factorising radical morphisms

Our first proposition asserts that every morphism lying in a finite power of the
radical may be written as a sum of compositions of irreducible morphisms.

Proposition IL4.4. Let M, N be indecomposable modules and f € rad’, (M, N)
for some n > 2. Then:

(a) There exist s > 1, indecomposable modules X1, ..., Xs and morphisms

M i) X; BN with h; € radg(M, X;) and g; a sum of compositions of
n — 1 irreducible morphisms between indecomposables and f = Y ;_, gihi.
In addition, if f ¢ rad';‘+1 (M, N), then at least one of the h; is irreducible and
f can be written as f = u + v, where u # 0 is a sum of compositions of
irreducible morphisms between indecomposables and v € rad';ﬁl (M, N).

(b) There exist s > 1, indecomposable modules X1, ..., Xs and morphisms

M i) X; BN with gi € rada(X;, N) and h; a sum of compositions of
n — 1 irreducible morphisms between indecomposables and f = Y i_, gihi.
In addition, if f ¢ rad’}{"l (M, N), then at least one of the g; is irreducible and
f can be written as f = u + v, where u # 0 is a sum of compositions of
irreducible morphisms between indecomposables and v € rad'lz\'H (M, N).

Proof. We prove only (a) because the proof of (b) is similar.

Both statements in (a) are proven by induction on 7.

Assume first that n = 2. Because of Corollary I1.3.13, there exists a right minimal
almost split morphism g: E —> N. Let E = &;_,E; be a decomposition of

E into indecomposable summands and g; = g|g,. Then, there exists a morphism
hi

h=| : |:M— Esuchthat f =";_, gih;:
hs

f

) 4
E=0ibi— 5 N

Because f € radi(M , N), it is not irreducible, that is, none of the &; is an
isomorphism. Consequently, ; € rad(M, E;) for all i. This proves (a).
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If, on the other hand, f ¢ radi(M , N), then there exists i such that h; ¢
radi (M, E;). But then such an 4; is irreducible and we have proven (b).

Suppose now that n > 3 and f € rad’, (M, N). By definition, there exist an A-
module Y and morphisms f’ € rada (M, Y) and f” € rad';‘_l(Y, N) such that f =
f"f.LetY = @®!_,Y; be a decomposition of ¥ into indecomposable summands so
that the morphisms f’ and f” can be written as

f{
=
f f-//_(f// "f”
M —)t 69;:1 i -4 ;

thus, f = Y"i_, f/'f!. Then we have f/" € rad'/f\_l(Y,-, N) for each i. Applying the
induction hypothesis yields, for each i, a finite set of indecomposables Z;1, ..., Z;g;
and morphisms

gu 8ij
Y — Z;j — N

such that g’j € rada (Y;, Z;;) for each j. In addition, each g;; is a sum of compo-
sitions of n — 2 irreducible morphisms between indecomposable modules such that

Z g,,gll Because each gljf M — Z;; belongs to rad2 (M, Z;j), the

case n = 2 above yields gljf = Z h hiji where, for each [, h’,_ CEiji — Ziji

ijl

is an irreducible morphism between indecomposables and h;j; € rada(M, Ejj).
Substituting, we get

S
F=1"f =Y ff =) susiifl =) sijhiphij-

i=1 iJ il

Because h;j; € rada(M, E;j;) and each gijh§1-11 M —> E;j is a sum of
compositions of n — 1 irreducible morphisms, this finishes the proof of the first
part of (a).

For the second part, assume f ¢ rad':rl(M , N). Then, there exist indices i, j, [
above such that h;j; ¢ radi (M, E;j;). But then the morphism 4;j; is irreducible.
The statement follows. d

Corollary I14.5. Let M, N be indecomposable modules. Then, every radical
morphism f € radg(M, N) can be written as f = u + v, where u is a sum of
compositions of irreducible morphisms, and v € rady’ (M, N).

Proof. If f € rad‘f(M , N), then there is nothing to prove. Assume thus that
f ¢ radl’(M, N). Then, there exists n > 0 such that f € rad}(M,N) \
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rad’ffl (M, N). Applying Proposition I1.4.4(b), we get f = ug + vy, where ug is a
sum of compositions of irreducible morphisms between indecomposable modules
and v; € rad':’l (M, N). Repeating the same procedure with v; we get that
vy = u1 + vy, where uj is a sum of compositions of irreducible morphisms
between indecomposable modules and v, € rad’/'{ (M, N), withm > n + 1. Then,
f = (uo + u1) + va2, and we repeat this procedure again. It stops after finitely many
steps because there exists [ > 0 such that radlA (M, N) =rady (M, N). |

Corollary I1.4.6. Let M, N be indecomposable modules, and f € radg(M, N). If
rad%°(M, N) = 0. Then, f is a sum of compositions of irreducible morphisms.

Proof. This follows from Corollary 11.4.5 above. O

11.4.3 Paths

The results of Subsection 11.4.2 may be reformulated using the notion of path,
which we now define. Paths are used to visualise statements about compositions
of morphisms that may otherwise look technical.

Definition I1.4.7. Let M, N be indecomposable modules. A path from M to N in
ind A (denoted as M ~~» N) of length ¢ is a sequence

M=My -y 2oty — o M M =N

where all M; are indecomposable modules and all f; are nonzero morphisms. We
then say that M is a predecessor of N, or that N is a successor of M. This path
is called a radical path if all f; are radical morphisms. It is a path of irreducible
morphisms if all f; are irreducible.

For instance, if 0 — L — M — N — 0 is an almost split sequence,
and M’ is an indecomposable summand of M, then we have a path of irreducible
morphisms L —> M’ —> N of length two.

As we do in the case of quivers (see Subsection 1.2.1), we agree to associate with
each module M a path of length zero, called the trivial, or the stationary path at M.

From Subsection 11.4.2, we can already derive existence results for paths of
irreducible morphisms.

Corollary I11.4.8. Let M, N be indecomposable modules and f: M —> N a
nonzero radical morphism.

(@ If f erad (M, N)\ rad';‘+1 (M, N) for some n > 1, then there exists a path of
irreducible morphisms M ~ N of length n.
(b) Ifradl’ (M, N) = 0, then there exists a path of irreducible morphisms M ~s N.
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Proof.

(a) This follows from Proposition 11.4.4(a).
(b) This follows from Corollary 11.4.6.
0

Suppose now rad°(M, N) # 0 with M, N indecomposable. We prove that, in
this case, there exist paths of irreducible morphisms of arbitrary length, starting with
M or ending with N.

Proposition IL4.9. Let M, N be indecomposable modules such that rad’’ (M, N)
# 0. Then, for every i > 0, there exist:

(a) a path of irreducible morphisms

M=My S My — . — M S M

and a morphism g; € rads’(M;, N) such that g; f; ... fi # 0, and
(b) a path of irreducible morphisms

NN — N S Ng=N

and a morphism f; € rad¥ (M, N;) such that g1 ... g fi # 0.

Proof. We only prove (a), because (b) follows by duality.
hi
Let h = M — EB;:]E ; be left minimal almost split with the E;
hy
indecomposable. We know that, for each j, there exists a least m; such that
radr::'" (Ej,N) = radff(Ej, N), see Lemma I1.4.1. Let m = max{m;: 1 < j < t}.
Then, rad’y (Ej, N) =rad}’(E;, N) forall j.
Now, let f € rad®*(M, N) be a nonzero morphism. Because the infinite radical
is the intersection of all powers of the radical, we have, in particular, f €

s
rad’XH(M, N). Then, we can write f = Z gi fi with the g; € rad{(X;, N),

i=1

fi € radg(M, X;) and the X; indecomposable. We can assume g; f; # 0 for all
i.

Because f1 € rad4 (M, X1) is not an isomorphism, it factors through 7, that is, there
exists | = (I ---1;): 695-:1 E; —> X suchthat fi = lh = Z}:] ljh;. Because
811 # 0, there exists j such that g1/;h; # 0. Now we have g1/; € rad’y (Ej, N) =
rad’°(E;, N) and h; is irreducible. Repeating the same procedure with g1/;, the
result follows from an easy induction. O

In Example 11.4.3 above, we constructed precisely a path and a morphism as in
part (a) of the proposition.
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Exercises for Section I1.4

Exercise I1.4.1. Let L, M be indecomposable modules and f: L — M a
morphism. Assume that f is neither a monomorphism nor an epimorphism. Prove
that f € radz(L,M).

Exercise I1.4.2. Let M, N be indecomposable A-modules and f: M — N a
nonzero radical morphism. Prove that

(a) If rad'g(—, N) = 0 for some m > 0, then f is a sum of compositions of
irreducible morphisms between indecomposable modules.

(b) If rad’/’;(M ,—) = 0 for some m > 0, then f is a sum of compositions of
irreducible morphisms between indecomposable modules.

Conclude that, if A is such that rad'g = 0 for some m > 0, then every nonzero
radical morphism is a sum of compositions of irreducible morphisms between
indecomposable modules.

Exercise I1.4.3. Let A be a finite dimensional algebra and M, N modules. Prove
that the standard duality D = Homy, (—, k) induces isomorphisms:

(a) rady (M, N) = rad’},, (DN, DM), for each m > 1.
(b) rad(M, N) = rad%%, (DN, DM).

Exercise I1.4.4. A functor F: mod A —> modKk is called support-finite if
there are only finitely many isoclasses of indecomposable A-modules M such that
F(M) # 0. Let M be an A-module. Prove that:

(a) Homy(—, M) is support-finite if and only if there exists m > 0 such that
rad’y (—, M) = 0.

(b) Homy (M, —) is support-finite if and only if there exists m > 0 such that
rad’y (M, —) = 0.

Exercise I1.4.5. Let M = M i> M| — - i) M; = N be a path in mod A,

and assume that there exists i such that f; 1 € rad(M;, M; 1) and 0 <i <. Prove

that, for every pair of integers s, > 0, there exist paths of irreducible morphisms

M; =M, — M{ — ... M;and N\ — --- — N| — Nj = M, along

with a path M; = Xg — X — ... — X, = N,.

Exercise I1.4.6. Prove the following weaker version of Proposition I1.4.9. Let
M, N be indecomposable A-modules such that Hom4 (M, N) # 0 and assume that
there exists no path of irreducible morphisms from M to N of length less than ¢.
Then there exist:

(a) A path of irreducible morphisms

M=Mo L om B Iy oy,

and a morphism g: M; —> N such that gf; --- f1 # 0.
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(b) A path of irreducible morphisms

8 8t—1 82 81
Ny =5 N 55 o0 55 Ny =5 Ng=N

and a morphism f: M — N; suchthat g;--- g, f # 0.
Exercise I1.4.7. Let A be given by the quiver

l—2+——3

Prove that every indecomposable A-module lies on a path in ind A from S to S3.

Exercise I1.4.8. Let A be given by the quiver

bound by ¢ = 0. Prove that every indecomposable A-module lies on a cycle in
ind A from S; to itself.

Exercise 11.4.9.

(a) Let Q be an acyclic quiver having ¢ > 2 arrows «j, ..., o from a point a to a
point b. Prove that the path algebra kQ is representation-infinite.

(b) Let A = kQ/I be a bound quiver algebra, with Q acyclic. Prove that, if Q has
multiple arrows (as in (a)), then A is representation-infinite.



Chapter III ®
Constructing almost split sequences oy

The previous chapter was mainly of a theoretical nature: we defined irreducible
morphisms and almost split sequences and started to explore their use for the
understanding of the radical of a module category. However, we did not say much
about the explicit construction of almost split sequences, even though we pointed out
that the proof of Theorem I1.3.10 suggests the idea of a construction. Carrying out
this construction in practice is quite difficult, and our objective in the present chapter
is to explain how it can be done, at least in the easiest cases. In the first section, we
prove that the indecomposable end terms of an almost split sequence are related
by functors, which are called the Auslander—Reiten translations. In Section 1.2, we
derive the so-called Auslander—Reiten formulae, which lead us to a second existence
proof for almost split sequences. Next, in Section I11.3, we show how to apply these
results to construct examples of almost split sequences. In the final Section I11.4,
we relate the Auslander—Reiten translates of a given module over an algebra to that
over a quotient algebra.

III.1 The Auslander-Reiten translations

III.1.1 The stable categories

As seen in Corollary I1.2.32, an almost split sequence
0—L—M—N—0

is uniquely determined by the indecomposable nonprojective module N, or by the
indecomposable noninjective module L. This uniqueness suggests that the relation
between N and L might conceal some functoriality.
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Now, if the correspondence between N and L extends to functors, then these
functors cannot be defined on the whole module category mod A because an almost
split sequence is not split; therefore, projective modules are excluded for the last
term N, and injective modules are excluded for the first term L. We thus need
functors defined on the quotients of mod A obtained by annihilating the projectives
or the injectives respectively.

Given modules M, N, we denote by (M, N) the set of all morphisms from
M to N in mod A that factor through a projective A-module. Dually, we denote by
Z (M, N) the set of all morphisms from M to N that factor through an injective
A-module. We show that these data define ideals in mod A.

Lemma III.1.1.

(a) The assignment (M, N) — P (M, N) defines an ideal & in mod A.
(b) The assignment (M, N) — Z (M, N) defines an ideal .# in mod A.

Proof. We only prove (a), because the proof of (b) is dual.

We first show that, for every M, N in mod A, the set (M, N) is a subspace of
Homu (M, N). Let f1, f» € £2(M, N). There exist projective modules Py, P, and
morphisms h1: M — P, hy: M — P>, g1: P —> N and g»: P, —> N such
that fi = g1h1 and fo = goho. But then

Ji+ f2=gih1 + g2h2 = (81 &2) (Z;)

that is, f1 + f> factors through P; @ P,. Clearly, if A € kand f € (M, N), then
Af € (M, N).

Let f € (M, N) and u: L —> M be any morphism. There exist a projective
module P and morphisms h: M — P, g: P —> N such that f = gh. But then
fu = g(hu) also factors through P, and so lies in & (L, N). Thus, &2 is right stable
under composition by arbitrary morphisms. Similarly, it is left stable. O

In fact, the construction of the ideals &2 and .# are particular cases of a more
general construction. Given an A-module X, let add X denote the k-linear full
subcategory of mod A consisting of all direct sums of indecomposable summands of
X, see Example II.1.3. Then, add X generates an ideal X = (add X) as follows. For
modules M, N, let X(M, N) be the set of all morphisms from M to N that factor
through an object of add X. It is easy to prove, as above, that this defines an ideal in
mod A, see Exercise II.1.10. In this notation, a module is projective, or injective, if
and only if it belongs to add A 4, or to add(DA) 4 respectively, so that &2 = (add A)
whereas .# = (addDA).

This brings us to the following definition.



III.1 The Auslander-Reiten translations 101

Definition ITI1.1.2.

(a) The projectively stable category of mod A is the quotient category mod A =
(mod A)/ &7,

(b) The injectively stable category of mod A is the quotient category mod A =
(mod A)/.7.

As seen in Subsection I1.1.1, the objects of mod A coincide with those of mod A,
and the space of morphisms from M to N is the quotient space

Homu (M, N)

There is a projection functor mod A —> mod A mapping each module to itself and
each morphism f: M — N toits residual class f = f + Z(M, N).

Similarly, the objects of mod A coincide with those of mod A, and the space of
morphisms from M to N is the quotient space

Toma (M. N Homu (M, N)

omaM. ) = =2 N
There is a projection functor mod A —> mod A mapping each module to itself and
each morphism f: M —> N to its residual class f = f + .7 (M, N).

We now prove that the projective modules are (the only modules) isomorphic
to the zero object in mod A. Dually, the injective modules are (the only modules)
isomorphic to the zero object in mod A. We recall here that an object X in a k-linear
category ¢ is isomorphic to the zero object if and only if the identity 1x on X
is equal to the zero morphism from X to itself, and this is the case if and only if
Endy X = 0, see Exercise I11.1.1.

Lemma II1.1.3. Let M be an A-module.

(a) M is projective if and only if End M = 0;
(b) M is injective if and only if EndM = 0.

Proof. We only prove (a), because the proof of (b) is dual.

Certainly, if M is projective, then End M = (M, M) andsoEnd M = 0. If M
is not projective, then we claim that the identity 13s does not belong to & (M, M).
Indeed, if P is projective and g: P —> M, h: M —> P are such that 1y =
gh, then h would be a section and M would be projective, a contradiction. This
establishes our claim and thus End M # 0. O
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II1.1.2 Morphisms between projectives and injectives

The main result of this subsection is an alternative description of the stable
categories as quotients of the categories of morphisms between projectives or
injectives respectively.

Let mp A be the category whose objects are the morphisms P BN Po,
where Py, P; are projective A-modules (the letters mp stand for morphism between
projectives). A morphism in mp A from p: Py — Py to p': P —> Py is a pair
(u1, up) of morphisms in mod A such that uy: Py —> P and ug: Py — P,
satisfy p’u; = ugp, that is, we have a commutative square

P L>P0

lul JL(()
/

p
P LB

The composition in mp A is induced from that in mod A: if (uy, ug): p —> p’ and
(v1, vg): p’ —> p”, then their composition is

(v1, vo)(u1, ug) = (viuy, vouo).

A morphism (up, ug) as above is called negligible if there exists a morphism
s: Py —> P{ such that

p'sp =uop = plu;.

We denote by .4, (p, p) the set of negligible morphisms from p to p’. As we shall
see, the assignment (p, p') — A}, (p, p') defines an ideal .4}, in mp A.

There is an obvious functor C: mp A —> mod A defined by taking cokernels.
Namely, if p: P —> Py is an object in mp A, then we define C(p) = Coker p
and if (u1, uo) is a morphism from p: Py —> Py to p': P{ — P, then we let
C(u1, ug) be the unique morphism u: Coker p —> Coker p’ obtained by passing
to cokernels, that is, such that the following diagram with exact rows is commutative

P i>P0 — Cokerp —— 0

lul \Luo ’
/ ~

P~ Pj —— Cokerp —— 0

The composition of C with the projection functor mod A — mod A is denoted by
C: mpA — modA.

Theorem III.1.4. The functor C: mp A —> mod A is full, dense and admits as
kernel the set N, of negligible morphisms in mp A. In particular, C induces an
equivalence mp A/, = mod A.
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Proof. First, C is full and dense: every module is the cokernel of a projective
presentation and every morphism between modules lifts to a morphism between
their projective presentations.

We now claim that, if (#1, #g) is a morphism in mpA from p: Py — Py to
p't P{ — Py, then C(uy, ug) = 0if and only if (u1, uo) is negligible.

Assume first that C(u1, ug) = 0. Then the morphism obtained by passing to the
cokernels M, M’ of p, p’ respectively factors through a projective module P. That
is, there exist morphisms u’: P —> M’,u”: M —> P such that u = u'u”. Thus,
we have a commutative diagram with exact rows:

q

p—Lp M 0
uy uo P
/
v s ,
s, J”
/ ' !
PP M 0

Because P is projective, there exists v: P —> P such that ¢'v = u’. But then we
have:

q' (o —vu"q) = q'uo —u'u"q = 0.

Therefore, ug — vu”q factors through p’, which is the kernel of ¢, that is, there
exists s: Pp —> P| such that ug — vu"q = p's. We get ug = vu”q + p's; hence,

uop = (vu"q + p's)p = p'sp.

Thus, (11, ug) is negligible.
Conversely, assume that (11, uo) is negligible. There exists s: Pg —> P| such
that ugp = p’sp. Consider the commutative diagram with exact rows

p—Lsp—1sm 0
ull s» - J“O Ju
- ’
PP LM 0.

Because (uo — p's)p = 0, there exists w: M — P such that ug — p’s = wq. But
then ug = q'up = q’(p’s + wqg) = q’wq. Now, ¢ is an epimorphism; therefore,
u = q'w factors through the projective module Pj. Hence, C(u1, ug) = 0.
This establishes our claim. The statement of the theorem follows immediately.
]

In particular, because .4}, is the kernel of the functor C, it is an ideal of mp A.
As usual, dual considerations lead to dual results. Let mi A be the category whose
objects are the morphisms j: Iy —> I between injective A-modules. A morphism
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inmiA from j: Iy —> Iy to j’: Ij —> I is a pair of morphisms (o, u1) such
that ug: Iy — Iy and uy: Iy — I satisfy j'ug = uyj, that is, the following
square is commutative.

I() %Il

n

r 7
IO 11

The composition of morphisms in mi A is induced in the obvious way from the
composition of morphisms in mod A. A morphism (g, #1) as above is called
negligible if there exists a morphism s: I —> I such that j'sj = j'up = u1j,
and the set of all negligible morphisms from j to j' is denoted by 4/(j, j/). Let
K: miA — modA be the functor sending an object j: Iy — I; of mi A
to K(j) = Kerj and a morphism (ug, #1) as above to the unique morphism
K(uo,u;) = u: Kerj —> Kerj obtained by passing to kernels. Finally,
let K: miA —> modA be the composition of K with the projection functor
mod A —> mod A.

Theorem II1.1.5. The functor K: miA — modA is full, dense c&d admits as
kernel the class N; of negligible morphisms in mi A. In particular, K induces an
equivalence mi A/.4; = mod A. O

In particular, ./4; is an ideal in mi A.

I11.1.3 The Auslander—Reiten translations

A remarkable consequence of Theorems III.1.4 and III.1.5 is that the categories
mod A and mod A are equivalent. Indeed, recall from Chapter I that the Nakayama
functor v4, which we denote here for brevity by

v=—®4 DA =DHomy(—,A): mod A — mod A

induces an equivalence between the full subcategories proj A and inj A of mod A
consisting respectively of the projective and the injective A-modules, with quasi-
inverse given by the functor v~! = Hom A(DA, —). In addition, if e is a primitive
idempotent in A, then v maps the indecomposable projective module eA to the
indecomposable injective module D(Ae), corresponding to the same idempotent,
see Lemma I.1.18. This leads to the following corollary.

Corollary II1.1.6. There exist equivalences T : mod A —> mod A
andt™': modA — mod A.
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Proof. Clearly, the Nakayama functor v: projA —injA and its quasi-inverse
v~!:injA —projA induce functors mp A —> mi A and mi A —> mp A, which
are also quasi-inverse. In addition, the image under one of these functors of a
negligible morphism in either category is clearly negligible in the other. This shows
that v and v~! induce an equivalence mp A/.4, = mi A/.#. We take 7 as the
composition of the equivalences mod A = mp A/.4, = mi A/ A = mod A. The
functor 7! is constructed in the same way. O

Definition ITI.1.7. The equivalences 7: mod A — mod A and r~!: modA —
mod A are called the Auslander—Reiten translations. For a module M, the modules
M and T~ M are called its translates.

It is useful to present in detail the construction of 7 and ~!. Let M be an A-
module, considered as an object in mod A. To view M as an object in mp A, we
must find a morphism between projectives of which M is the cokernel, that is, a
projective presentation of M. There exist several such presentations, but we always
assume implicitly that we are dealing with a minimal projective presentation

P2 Py — M —s0.

Following the recipe above, the (right exact) Nakayama functor v = — ®4 DA
yields an exact sequence

vPllvPo—>uM—>O

and here vp is an object in miA (or, as well, in miA/.4;). To pass to mod A, it
suffices to apply the kernel functor, thus obtaining t M. This is summarised in the
following lemma.

Lemma III.1.8.

p .. . .
(a) Let Py — Py —> M — 0 be a minimal projective presentation. Then there
exists an exact sequence

0—>7:M—>vP1£>vP0—>vM—>O.

(b) Let 0 — M — Iy —> I be a minimal injective copresentation. Then there
exists an exact sequence

_ vl _
0—vIiM—v 110—>v 111—>r 'M —s 0.

Proof. We have already proved (a), and the proof of (b) is dual. O

The original approach of Auslander and Reiten is slightly different: it passes
through mod A° and presents each of 7 and 7! as the composition of two dualities.
This is natural if one recalls that the Nakayama functor v = D Homg(—, A) itself
is the composition of two dualities. We outline this approach below.
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Let M be an A-module, and consider a minimal projective presentation
P BN Py— M — 0.

We apply the left exact functor ( — )’ = Homy(—, A): mod A —> mod AP, thus
obtaining an exact sequence of left A-modules:

0—>M’—>P5L>Pf—>C0kerpl—>0.

We denote Coker p’ by Tr M and call it the transpose of M. Let f: M —> M’ be

a morphism of A-modules, and consider minimal projective presentations Py —>

Py — M — Oand P| LN Py — M’ — 0 of M and M’, respectively. Then,

f lifts to morphisms fo: Py —> Pjand fi: Py —> P such that the following
diagram with exact rows is commutative

P, Py M 0
h J Jf 0 J{f
;P /
P Fy M 0

Applying the left exact contravariant functor ( — )/, we deduce by passing to
cokernels a unique morphism Tr f: TrM’ — TrM such that the following
diagram with exact rows is commutative

0 M P P TrM 0
fﬂ fﬂ fﬁ Tef
0 M Py Py TrM’ 0.

We now prove that Tr defines a functor and actually a duality, called the transposi-
tion.

Corollary II1.1.9. The above procedure induces dualities mod A —> mod A°P
and mod A — mod A°P. Actually, we have T = D Tr, and =1 =TrD.

Proof. Let M be an A-module. A minimal projective presentation P; SN Py —
M — 0 gives an exact sequence of left A-modules

pt

0— M'— Pj — P| — TtM — 0.

Applying the standard duality D = Homg (—, k), we get an exact sequence of right
A-modules.

Dt
0 — DTrM — DP{ =% DP; — DM' —> 0.
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Now, D( — ) = DHomy(—, A) = v. Thus, because of Lemma I1I.1.8, we have
DTrM = tM. This shows that DTr and 7 coincide on objects. Similarly, they
coincide on morphisms. That is, Tr and Dt coincide on objects and on morphisms.
Consequently, Tr extends to the functor Dt: mod A —> mod A — mod A%,
which is a duality, because 7 is an equivalence and D a duality. This proves the first
part.

To prove the second part, we apply successively D and ( — )" to a minimal

S . J .
injective copresentation 0 — M — Iy —> I, getting the exact sequence

D A\
0 —> DM) —> (D) 22 1) —> TrDM —> 0

where we used the fact that D applied to a minimal injective copresentation yields a
minimal projective presentation. Now we have functorial isomorphisms

(DX)" = Hom o (DX, A) = Homy (DA, X) Z v 'X

for every A-module X. Thus, the previous exact sequence is isomorphic to the
following

_ 1, vl _
0— v M —v 110—‘>v 111—>t 'M — 0.

Applying Lemma II1.1.8 again yields TrDM = t~! M. Thus, TrD and ! coincide
on objects and similarly they coincide on morphisms. Therefore, Tr extends to a
duality 77'D: mod A — mod A%, O

I11.1.4 Properties of the Auslander—Reiten translations

The following proposition records the most immediate properties of the translations.
Proposition II1.1.10. Let M be an indecomposable A-module.

(@) If M is projective, then T™M = 0. If M is not projective, then TM is
indecomposable noninjective and t—'tM = M.

(b) If M is injective, then T™'M = 0. If M is not injective, then t='M is
indecomposable nonprojective and tt™'M = M.

Proof. We only prove (a), because the proof of (b) is dual.

It follows from the definition that, if M is projective, then Tr M = 0 and so
tM=DTrM =0.

Assume, thus, that M is indecomposable nonprojective. A minimal projective

presentation P BN Po — M — 0 yields an exact sequence



108 IIT Constructing almost split sequences

00— t™™ — vP LN vPy,

which is actually a minimal injective copresentation. Note that t M is not injective,
because otherwise vp = 0 and so p = 0, a contradiction to the hypothesis that M is
nonprojective. Applying v—! yields a commutative diagram with exact rows

v_lvp
0——vitM —— v lvp v_lvp M ——0

L

P Py M 0

~

from which we deduce t~!'tM = M. Finally, this relation together with the
indecomposability of M yield the indecomposability of T M. O

As an unexpected, but useful, dividend, we get a characterisation of modules of
projective or injective dimension at most one.

Proposition IIL.1.11. Let M be an indecomposable A-module. Then,

(@) pd M < 1ifand only if Homy (DA, tM) = 0.
(b) idM < 1 ifand only if Homu(t~'M, A) = 0.

Proof. We only prove (a), because the proof of (b) is dual.

Let P; N Py — M — 0 be a minimal projective presentation. Then
pd M < 1if only if Ker p = 0. Now, we have an exact sequence

00— 1M — VP L vP.
Applying v~! = Hom4 (DA, —) yields a commutative diagram with exact rows

-1
0 —— Homy (DA, tM) —— v~ lvp rve v-lvp

F

00— Kerp P, Py

Thus, Ker p = Homy (DA, t M). The statement follows at once. |

The previous result is sometimes stated in the following equivalent form: let M
be an indecomposable A-module, then:

(@) pd M < 1 if and only if for every indecomposable injective A-module I, we
have Homy (1, tM) = 0.

(b) id M < 1 if and only if for every indecomposable projective A-module P, we
have Hom4(z~'M, P) = 0.

Example I11.1.12. Let A be given by the quiver
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2
p_- "~ a
le N o4
3
bound by o = y35. We wish to compute the Auslander—Reiten translates of the

simple nonprojective module S,. Clearly, S = P,/S1, so that we have a minimal
projective presentation

0—P P850

where j is the inclusion of S§; = P; as the radical of P, and p: P, —> S is the
projection. Applying v yields an exact sequence

0— 18 — I} =vP| -5 I, = vP,.

4
Now, up to scalars, there exists a unique nonzero morphism from I} = 23 to I, =
1

4 and its kernel is ? . Then, 75, = ? .
Similarly, we have a minimal injective copresentation

O—>52;>12i>14—>0

where i is the inclusion and ¢ the projection onto Is = I>/S>. Applying v—! yields
an exact sequence

-1
P, = U71[2 | Py = U71]4 — T71S2 — 0.

4

Again, there is a unique nonzero morphism from % = Pyto P4 = 23 (upto
1

~ 4

scalars) and we deduce that T ~1S, = 3 -

Exercises for Section II1.1

Exercise III.1.1. Let ¥ be a k-linear category and X an object in €. Prove that the
following conditions are equivalent.



110 IIT Constructing almost split sequences

(a) X is isomorphic to the zero object.
(b) The identity 1y is equal to the zero morphism.
(¢) Endgy X = 0.

Exercise II1.1.2. Let A be an algebra and X an A-module. Prove that, in the
quotient category mod A /({add X), an object is isomorphic to the zero object if and
only if it lies in add X.

Exercise II1.1.3. Let A be one of the following bound quiver Nakayama algebras
and M an indecomposable A-module. Compute T M for every M nonprojective and
=M for every M noninjective.

(2) L AP T af =0
® 4 —— 3 AP S afy =0
© 1 ey B=0
c e— af =
B
(d) 1&2 afa =0, faf =0

Exercise I11.1.4. Let f: M —> N be a morphism of A-modules.
(a) Show that the following conditions are equivalent:

(i) For every epimorphism h: L —> N, there exists g: M —> L such that
f =hg.
(ii)) For every epimorphism p: P —> N with P projective, there exists
g: M — P suchthat f = pg.
(iii)) f € (M, N).

(b) Show that the following conditions are equivalent:

(i) For every monomorphism h: M — L, there exists g: L —> N such
that f = gh.
(i) For every monomorphism j: M — [ with [ injective, there exists
g: 1 —> M suchthat f = gj.
(iii)) f € L (M, N).
Exercise II1.1.5. Let M, N be A-modules.
(a) If M, N have no projective direct summands, then M = N in mod A if and only
if M = N inmod A.

(b) If M, N have no injective direct summands, then M = N in mod A if and only
if M = N inmod A.

Exercise II1.1.6. Prove that the functor ( — )’ induces a duality between proj A and
proj A°P.
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Exercise II1.1.7. Let M be an indecomposable nonprojective A-module, and

Py SN Py — M — 0 a minimal projective presentation in mod A. Prove

t
that P} AN P{ — TrM —> 0 is a minimal projective presentation of Tr M in
mod A°P.

Exercise II1.1.8. Let M, N be indecomposable nonprojective A-modules. Prove
that

(@) M= Nifandonlyif TrM =Tr N.
b)) TIM & N)=ETrM ®TrN.
©) Tr(TrM) =M.

Exercise II1.1.9. Let M, N be indecomposable A-modules. Prove that
(a) If M, N are nonprojective, then

i) M= Nifandonlyif tM = 1N.
(i) tIM®N)ETM®TN.

(b) If M, N are noninjective, then

(i) M= Nifandonlyif t™'M = ¢~ IN.
) ' MaeN) =t M IN.

Exercise I11.1.10. Let M be an indecomposable A-module. Prove that

(a) If P; LN Py — M — 0 is a minimal projective presentation, then
soctM = Py/rad P.

® If0 — M — Iy — I is a minimal injective copresentation, then
t™'M/radt='M = soc I;.

II1.2 The Auslander-Reiten formulae

II1.2.1 Preparatory lemmata

Our motivation for defining the Auslander—Reiten translations was to express
functorially the relation between the end terms of an almost split sequence. To do it,
we first prove the Auslander—Reiten formulae, which express the extension groups
between modules as stable homomorphism groups between one of these modules
and the Auslander—Reiten translate of the other. As we see in Subsection II1.2.3
below, they allow us to prove that, as expected, each of the end terms of an almost
split sequence can be deduced from the other by an Auslander—Reiten translation.
As a consequence, we obtain a second existence proof for almost split sequences. In
this first subsection, we only prove lemmata, that are essentially used in the proof
of the Auslander—Reiten formulae.
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Lemma IIL.2.1. Let M, N be A-modules. The functorial morphism oy n: N @4
M' —> Homy(M, N) defined by y ® f +— (x v yf(x)) (withx € M,y €
N, f € M?) satisfies the following properties:

(a) If M is projective, then @y y is an isomorphism.
(b) Cokergpy,y =Hom, (M, N).

Proof.

(a) Setting M = A4, we see that g4 y equals the composition of the three well-
known isomorphisms N ® 4 A’ — N ® A definedby y ® f — y ® f(1),
N ®4 A —> N definedby y ® a > ya and N — Homy (A, N) defined by
y+ (a+ ya) (fory € N, f € A" and a € A). The statement then follows
from the fact that we are dealing with k-functors.

(b) It suffices to prove that Imgy vy = Z(M, N). Assume first that f € Im gy n,
then, there exist y1,...,y, € Nand fi,..., f, € M! such that

f=omn (Z)’i@fz‘)'

i=1

Thus, for x € M, we have

n fl
fO =) 3ifi) =0 | | @.
i=1
fn

i

Now, : is a morphism from M to A", whereas the morphism
In
(1,..-,yn) : A" —> N is defined by left multiplication by the y; € N; thus, f
factors through A", which is projective (even free). Therefore, f € (M, N).
Conversely, let g € ZZ(M, N). There exist a projective module P and morphisms
g1: M — P,g: P —> N suchthat g = grg1. Because N is finitely generated,
there exist m > 0 and an epimorphism p: A™ — N. The projectivity of P yields
gy P —> A" such that g» = pg), and hence g = pgjg1. Let {er, ..., e,} denote
the canonical basis of the free module A™; thus, p: A™ — N can be considered
as a row matrix of elements of N of the form p = (p(ey), ..., p(en)) where each
p(e;) acts by left multiplication on an element of A. Also, ghg1: M —> A™ can

fi

be expressed as a column matrix | @ | where each f; is the composition of g/ g1

J

with the i’ projection from A™ to A. Therefore,
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g = pghel
f1
= (p(e1),....plen) | :
fm
= ¢M.N <ZP(6’:‘) ® fi) € Imoy N.
i=1
O

Corollary IIL.2.2. There exists a functorial morphism ¥y y : DHomg (M, N) —
Homa (N, vM) that is an isomorphism whenever M is projective.

Proof. Indeed, the morphism ¢y n: N ®a M' — Homy(M,N) of
Lemma I11.2.1 induces a morphism Dgys : DHoms (M, N) — D(N ®4 M"),
which can be composed with the adjunction isomorphism 7/, n:
D(N ®4 M") = Homg(N ®4 M', k)
=~ Homy (N, Homi (M?, k))
= Homy (N, DM")
= Homy (N, vM),

thus yielding the required morphism
Ym.N = nm,nDey,n: DHomy (M, N) — Homyu (N, vM).

The last statement follows from part (a) of Lemma II1.2.1. |
We also need an easy diagram chasing lemma.

Lemma II1.2.3. Assume that we have a commutative diagram in mod A

LN

ol

I/ M 8 N

where v is an isomorphism, the upper row is exact and the lower row satisfies g' f' =
0. Then the restriction of gv~' to Ker g’ defines a morphism ¢: Ker g’ —> Ker w
such that
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(a) If g is surjective, then so is ¢.

(b) If u is surjective, then Ker ¢ = Im f’.

(¢) Ifboth g and u are surjective, then Ker w = If;—rfg,/.

Proof. Because v is an isomorphism, to each x’ € Ker g’ corresponds a unique
x € M such that x’ = v(x). Then, ¢(x’) = g(x) and ¢(x’) € Kerw because
we(x) = wg(x) = g'v(x) = g’ (x’) = 0. This defines the required morphism ¢.

(a) Let y € Kerw. Because g is surjective, there exists x € M such that y =
g(x). Then, x = v(x) belongs to Ker g’ because g’'(x") = g'v(x) = wg(x)
w(y) = 0, and we clearly have ¢(x") = g(x) = y. Thus, ¢ is surjective.

(b) Assume x" € Im f’. There exists a unique x € M such that x’ = v(x). Because
u is surjective, there exists z € L such that x’ = f'u(z) = vf(z). Then, v(x) =
vf(z) implies x = f(z) and p(x") = g(x) = gf(z) = 0. So x’ € Ker¢ and
Im f/ C Kerg.

Conversely, let x’ € Kerp and x € M be such that x’ = v(x). Then, g(x) =
@(x") = 0 and so x € Ker g. Because the upper row is exact, there exists z € L
such that x = f(z). Therefore, x’ = v(x) = vf(z) = f'u(z) € Im f’. This
completes the proof that Ker ¢ = Im f”.
(c) This follows easily from (a), (b) and the isomorphism theorem.

0

Observe that in (b), we did not need the surjectivity of u to prove that Kergp C
Im f'. Also, g’ f/ = 0 says that the lower row is a complex. We have computed in
(c) its cohomology group at the middle term.

I11.2.2 Proof of the formulae

We are now able to express the first extension space between two modules as (the
dual of) a stable Hom-space. These are the Auslander—Reiten formulae.

Theorem II1.2.4 (The Auslander-Reiten formulae). Letr M, N be A-modules.
Then, there exist isomorphisms

Extl (M, N) = DHom ,(t~'N, M) = DHom, (N, t M)

that are functorial in both variables.

Proof. We prove only the first isomorphism, because the second is proved in the
same way. As our functors are k-functors, it suffices to prove the statement assuming
N indecomposable noninjective. Because of Proposition III.1.10, there exists an
indecomposable nonprojective A-module L such that N = tL and L = t~!N. Let

JJREAN _ NRELNY JRSEENY)
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be a minimal projective presentation. Because of Lemma III.1.8, we have an exact
sequence

0—>rL—>vP1ﬂ>vP0U—PO>vL—>O.

Applying the functor Hom4 (M, —) yields a complex

00— Homu (M, tL)—> Homu (M, vPy) ﬂ) Homu (M, vPy) ﬂ) Homu (M, vL)

where p¥ = Homyu (M, vp;) fori =0, 1.

We know that v Py and v Py are injective so that vp;: vP; —> v Py is the begin-
ning of an injective coresolution of 7 L. To compute Extk(M ,TL) = Ext}{ (M, N),
we need one more injective term. Let j: vL —> J be a monomorphism with J
injective. We get an exact sequence

vpy Jvpo
0— 1L — vPi — vP)y — J

and, by definition,

Ker Homy (M, jvpo)

Extl (M, tL) = )
ImHomu (M, vpy)

But now Homu(M, jvpg) = Homu(M, j)Homs(M, vpy). Because j is
a monomorphism, so is Homux(M, j) and hence KerHomu(M, jvpg) =
KerHom4 (M, vpy) = Kerp}. We have thus proved that Extl(M,tL) =
Ker pg/ Im pf.

On the other hand, applying the right exact functor D Hom4 (—, M) to the given
minimal projective presentation of L yields an exact sequence

D Homy (Py, M) 25 DHomy (Py, M) 2% DHomyu(L, M) —> 0

where p; = DHoma (p;, M) fori =0, 1.

To relate the latter exact sequence with the complex found before, we use the
functorial morphism v of Corollary II1.2.2 and get a commutative diagram with the
upper row exact and the lower row a complex

DHomy (P, M) —2— DHomy (Py, M) —2— DHomy (L,M) — 0

Yp, MJE VR, ,Mll’ WL‘Ml
*

p
Homy (M, vP,) —— Homy (M, vPy) —>— Homy (M, VL)

Because of Corollary II1.2.2, ¥p, & and ¥p, p are isomorphisms. Applying
Lemma II1.2.3, we get
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Ker pg

Extl (M, tL) =
Im pY

= Ker vy m

= Ker(nL,MDeL m)
= Ker(Der,m)

= D(Coker oL pm).

Because of Lemma III.2.1(b) we have Coker ¢, y = Hom, (L, M); hence,

Extl (M, N) = Exty (M, L)
= D(Coker o1 m)
= DHom,(t~'N, M).

I11.2.3 Application to almost split sequences

We next show how the Auslander—Reiten formulae provide the relation between the
end terms of an almost split sequence, and also a second existence proof for almost
split sequences.

Lemma II1.2.5. Let M be an indecomposable A-module.

(a) If M is nonprojective, then the right and the left socles of the End M — End M -
bimodule D(End M) are simple and coincide.

(b) If M is noninjective, then the right and the left socles of the End M — End M-
bimodule D(EndM) are simple and coincide.

Proof. We only prove (a), because the proof of (b) is dual.

Clearly, End M has a natural End M — End M-bimodule structure. We claim that
its top as a left End M-module and its top as a right End M-module are simple.

Because M is indecomposable, End M is a local algebra. We claim that the
nonprojectivity of M implies that Z(M, M) < radEnd M: indeed, let & €
P (M, M), then there exist a projective module P and morphisms f: M — P
and g: P —> M such that h = gf. Now, if h = gf ¢ radEnd M, then A is
invertible and g a retraction, so that M is projective, a contradiction. Therefore,
h € rad(End M), as required.

This implies that

End M rad(End M)
rad(End M) = rad =

PM,M)) PM,M)
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and so

EndM _  EndM/PM,M) End M

~

rad(End M) ~ rad(End M/ (M, M)) _ radEnd M

is a skew field because End M is local. Now, a skew field is generated by each
nonzero element; hence, End M/rad(End M) is simple as a left, or as a right,
End M-module. Because the canonical projection End M — End M is surjective,
it is also simple as a left, or as a right, End M-module.

We have shown that D(End M) has a simple socle either as a left, or as a right,
End M-module. These two socles coincide because they both correspond to the skew
field End M/ rad(End M). O

Lemma II1.2.6. Let M be an indecomposable A-module.

(a) If M is nonprojective and v: V. —> M is a radical morphism, then, for every
element ¢ of the socle of D(End M) we have DHom , (M, v)(¢) = 0.

(b) If M is noninjective and u: M — U is a radical morphism, then, for every
element ¢ of the socle ofD(mM) we have DHom 4 (M, v)(¢) = 0.

Proof. We only prove (a), because the proof of (b) is dual.
The morphism v: V — M induces a morphism

Hom, (M, v): Hom, (M, V) — Hom, (M, M) = End M
and hence a morphism
DHom (M., v): D(End M) —> DHom, (M, V)
as follows: if ¢ € D(End M) then
DHom, (M, v)(¢) = ¢Hom 4 (M, v).
We need to prove that, if ¢ € socD(End M), then pHom,(M,v) = 0. Let

u € Hom, (M, V). Then, Hom, (M, v)(u) = vu € rad(End M) because v €
rad4 (V, M). Now, ¢ belonging to the socle yields

ovu € soc D(End M) rad(End M) = rad(soc D(End M)) =0

because the socle of D(End M) is simple. Thus, pvu = 0. O

The reason for our interest in the End M — End M-bimodules D(End M) and
D(EndM) with M indecomposable comes from the Auslander—Reiten formulae,
which imply that:

(a) If M is nonprojective, then Extk (M, M) = D(End M).
(b) If M is noninjective, then Ext! (t ="' M, M) = D(EndM).
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The nonzero elements of the socle of D(End M) and D(EndM), such as, for
instance, the (duals of the) identity morphism 1, correspond to nonsplit extensions.
We now prove that these extensions are almost split sequences.

Corollary II1.2.7. Let M be an indecomposable A-module.

(a) If M is nonprojective and € : 0 — t™ i) E-SM—o0 represents a
nonzero element of the socle of Exti‘ (M, tM), then the sequence & is almost
split.

(b) If M is noninjective and £ : 0 — M —f> E-S M —0 represents a
nonzero element of the socle of Extk (t='M, M), then the sequence £ is almost
split.

Proof. We only prove (a), because the proof of (b) is dual.

Because M is indecomposable nonprojective, the module T M is indecomposable
owing to Proposition III.1.10. Applying Corollary I1.3.13, it suffices to prove that
the morphism g is right almost split. Because the given sequence is not split, g is
not a retraction and therefore is a radical morphism. Let v: V —> M be radical.
The functoriality in the Auslander—Reiten formulae yields a commutative square

D(End,M) —— Ext} (M, tM)

DHom, (M, u{ JEXL}X(VJM)
DHom, (M, V) — Extl (V.tM)

Because the given sequence £ is a nonzero element of the socle, Lemma III.2.6
above gives Extl{‘ (v, TM)(&) = 0. This means that, if we take the fibered product of
the morphisms g and v, the upper sequence in the commutative diagram with exact
TOWS

!

8

0 ™ML % 0
0 ML E M 0

is split. Let g”: V —> E’ be such that g’g” = 1y. Then, ug” satisfies g(ug”) =

! 5!

(gu)g” = vg’g” = v. This proves that g is right almost split. |

This corollary is obviously a second existence proof for almost split sequences.
But also, because of uniqueness, see Corollary I1.2.32, it implies that, if 0 —>
L — M — N —> 0is almost split, then L = tN and N = S
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I111.2.4 Starting to compute almost split sequences

This subsection is devoted to three easy lemmata that are useful in practical
computations.

Lemma II1.2.8. Let M be an indecomposable module.

(a) There exists a right minimal almost split morphism g: E —> M. Also, E = 0
if and only if M is simple projective.

(b) There exists a left minimal almost split morphism f: M — E. Also, E = 0 if
and only if M is simple injective.

Proof. We only prove (a), because the proof of (b) is dual.

The first statement is just Corollary 11.3.13. In particular, if M is projective and
g: E —> M is right minimal almost split, then it is isomorphic to the inclusion of
rad M into M. Also, rad M = 0 if and only if M is simple projective. On the other
hand, if M is nonprojective and g: E — M is right minimal almost split, then g
is surjective, and so E # 0. m|

We now prove that every irreducible morphism whose target (or source) is inde-
composable nonprojective (or noninjective) corresponds to an irreducible morphism
starting (or ending, respectively) at the translate of this module.

Lemma II1.2.9.

(a) Let N be indecomposable nonprojective. There exists an irreducible morphism
f: X — N if and only if there exists an irreducible morphism f': TN —>
X.
(b) Let L be indecomposable noninjective. There exists an irreducible morphism
g: L —> Y if and only if there exists an irreducible morphism g': Y —>
-1
T L.

Proof. We only prove (a) because the proof of (b) is dual.

Assume that there exists an irreducible morphism f: X — N. Because of
Theorem I1.2.24, there exists h: Z —> N such that (f,h): X & Z — N isright
minimal almost split. Because N is indecomposable nonprojective, there exists an
almost split sequence

f!
4 h
0—>tN(L2X@Z(f—>)N—>0.

Therefore, f': tN —> X is irreducible. The proof is similar, if one starts with f’
instead of f. O

Finally, irreducible morphisms starting at a simple projective module have
projective targets, and dually.
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Lemma II1.2.10.

(@) Let S be simple projective and M indecomposable. If f: S — M is
irreducible, then M is projective.

(b) Let S be simple injective and M indecomposable. If f: M —> S is irreducible,
then M is injective.

Proof. We only prove (a), because the proof of (b) is dual.

Assume that M is nonprojective. Because of Lemma II1.2.9, there exists an
irreducible morphism f': tM — S. But S is simple; hence, f’ is surjective.
Now, S is projective; hence, f” is a retraction and this contradicts the fact that it is
irreducible. O

We show in an example how to apply these lemmata.

Example I11.2.11. Let A be given by the quiver

1"8/.V\a‘4
I

bound by a8 = y 4. The simple module S is projective and noninjective. Because of
Lemma II1.2.10, every indecomposable target P of an irreducible morphism §; —
P is projective. Actually, the morphism S| — P is a monomorphism whose image
is a direct summand of rad P. So, to find P, we need to find those indecomposable
projective A-modules that have S; as a summand of the radical. Now,

P =35 Pz=% P3=? P=2 3

1
Thus, S; = rad P, = rad P3. This shows that, up to scalars, there exist exactly two
irreducible morphisms starting with S1; namely, the inclusions j;: S; —> P> and
Jj3: S1 —> Ps3. But then, because of Theorem I1.2.24, the morphism (ﬁ) S —
P, ® P; is left minimal almost split. Therefore, there exists an almost split sequence

()

0— 8 5 pap 2

17151 — 0.
This allows to compute 7~ 'S;. Indeed

2P2@P3u 23

—“l¢ _ 2
T Sl—Coker<h) 3 .
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Next, we wish to find the almost split sequence starting with P,. Assume that X
is indecomposable and we have an irreducible morphism P, — X. Either X is
projective and then P, is isomorphic to a direct summand of its radical, or else there
exists an irreducible morphism t X — P5. The first case is easily discarded: there
is no indecomposable projective A-module X that has P, isomorphic to a direct
summand of its radical. Therefore, X is nonprojective. Because rad P, = Sj, the
only irreducible morphism of target P, is (up to scalars) the inclusion S; — Ps.
Then, tX = S; and X = t’lSl. Because of Theorem I1.2.24, this proves that the
morphism f>: P, — 718 is left minimal almost split. Thus, we get an almost
split sequence

-1

TS
0 P ) ‘L’_IS1 82 - 1
2

=85 — 0.

Similarly, we have an almost split sequence

—1

S
0 j 3 ‘L'_IS1 83 TPI
3

=5 — 0.

We finally compute the almost split sequence starting with 7=1S; = 2 3 This
module 771S; is the (indecomposable) radical of P4 so we have an irreducible
morphism j: t7!§; — P4 This is easily seen to be the only irreducible
morphism, up to scalars, from 'S to an indecomposable projective module.
Otherwise, if X is indecomposable nonprojective and there exists an irreducible
morphism 7718, —> X, then there exists an irreducible morphism 71X — LS.
But, because of the (already known) almost split sequence ending with 1Sy, such
an irreducible morphism can only be a scalar multiple of f> or f3. Then, X = P,
ortX T Pysothat X E ¢t lp XS0 X2 lp;3xs, respectively. Hence,
the morphism (é) c 1718 — Py @ S3 @ S, is left minimal almost split and we
have an almost split sequence

&)

00— T_lSl =5 PPS38S, — 4

23 — 0.

The alert reader will detect in this example an inductive method for computing
almost split sequences. We shall return to it later.
Exercises for Section III.2

Exercise IIL.2.1. Prove that the morphism ¢ y: N ®4 M' —> Homyu (M, N)
defined in Lemma III.2.1 is an isomorphism whenever N is projective.
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Exercise I11.2.2.

(a) Let M, N be indecomposable nonprojective. Prove that
Hom , (M, N) = Homu (t M, TN).
(b) Let M, N be indecomposable noninjective. Prove that
Homu (M, N) = Hom , (t'M,z"'N).

Exercise I11.2.3. Let M, N be indecomposable modules. Prove that

(a) fpd M < 1, then Extk(M, N) ZDHomy (N, tM).
(b) Ifid N < 1, then Extk(M, N) Z DHomu(z~IN, M).
(¢) fpdM <1andid N < 1, M is nonprojective and N is noninjective, then

Homyu (N, M) = Homu(z~'N, M).
(d) IfpdM < 1,idtN < 1 and N is nonprojective, then
Homy (N, TM) = Homy (N, M).
(e) Ifpd 7 !M < 1,idN < 1and M is noninjective, then
HomA(r_lN, t_lM) = Homu (N, M).

Exercise I11.2.4. Let A be a hereditary algebra. Prove the following.

(a) We have an isomorphism of functors t = Extk(—, A).

(b) mod A is equivalent to the full subcategory of mod A consisting of all modules
that have no projective direct summand.

(c) mod A is equivalent to the full subcategory of mod A consisting of all modules
that have no injective direct summand.

Exercise II1.2.5. Let M be an indecomposable nonprojective A-module. Prove
that the functors Hom, (M, —) and Torf(—,Tr M) from mod A to modk are
isomorphic.

Exercise II1.2.6. Let M be an indecomposable module. Prove that

(a) If M is nonprojective, then EndM is a skew field if and only if Endz M is a skew
field and, in this case, any nonsplit short exact sequence 0 — M — E —>
M — 0 is almost split.

(b) If M is noninjective, then EndM is a skew field if and only if Endt~'M is a
skew field and, in this case, any nonsplit short exact sequence 0 — M —>
F — t='M — 0 is almost split.
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Exercise II1.2.7. Let 0 — L — M — N — 0 be an almost split
sequence and P a nonzero projective module. Prove that the following assertions
are equivalent:

(a) P isisomorphic to a direct summand of M.

(b) There exists an irreducible morphism P —> N.

(c) There exists an irreducible morphism L — P.

(d) L is isomorphic to a direct summand of rad P.

(e) There is an indecomposable direct summand R of rad P such that N = t~!R.

(f) If v: V — N is a radical epimorphism, then P is isomorphic to a direct
summand of V.

Exercise II1.2.8. Let0 — L —f> M -%5 N —> 0 be a short exact sequence.
Prove that the following are equivalent:

(a) Itis almost split.
(b) L = N and g is right almost split.
(¢) N =t~ !'L and f is left almost split.

Exercise I11.2.9. Let0 — L $ M %5 N —> 0 be an almost split sequence.

Prove that:

(a) M is projective if and only if g is a projective cover.
(b) M is injective if and only if f is an injective envelope.

Exercise II1.2.10. Let S be a simple module. Prove that:

(a) If S is projective noninjective, then pd(r_lS) = 1 and End(z~!S) is a skew
field.
(b) If S is injective nonprojective, then id(7.S) = 1 and End(z S) is a skew field.

Exercise I11.2.11.

(a) Let M be indecomposable nonprojective and X arbitrary. Prove that
f: ™ — X is a section provided that the induced morphism
Exti‘ M, f): Exti1 M, tM) — Extl\ (M, X) is a monomorphism.

(b) Let M be indecomposable noninjective and Y arbitrary. Prove that
g: Y — 1t7'M is a retraction provided that the induced morphism
Exti‘(g, M): Exti‘(t_lM, M) — Ext}A(Y, M) is a monomorphism.

Exercise I11.2.12. Let / be an indecomposable injective, and P an indecomposable
projective A-module. Prove that there exists no irreducible morphism / — P.

Exercise I11.2.13. For each bound quiver below, consider the corresponding alge-
bra and

(a) Compute the almost split sequences starting at P; andat 7 ~! P, fori = 1,2, 3, 4.
(b) Compute the almost split sequences ending at /; and at t/; fori = 1, 2, 3, 4.
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I 3
(i)‘><\
2 4
4

)1 L2t ap =0

2
(iii)]‘ﬁ/ \4
‘6\3/

III.3 Examples of constructions of almost split sequences

I11.3.1 The general case

In general, constructing an almost split sequence is a difficult exercise. There
is, however, a technique that is implicit in the proofs of Theorem II.3.10 and
Proposition 11.3.11. Namely, assume that we want to construct an almost split
sequence ending with a given indecomposable nonprojective A-module N. We start
by constructing a minimal projective presentation

PPy % N0

Let&y: Homy(—, N) — DHomyg (N, —) be the unique functorial morphism that
has the simple functor Sy as its image. We denote by

ap,: DHomy (Py, —) —> Homy (—, vPy)

the functorial isomorphism induced by the Nakayama functor, see Lemma 1.1.19.
Letu: N — v Py be a morphism making the following diagram commutative
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_ Homy (-, N)

Homp(—.u)_ - — = 7 J‘f
_ - N

Homy (—, vR) £=, DHomgy (Py, —) ———— DHomy (N, —) —— 0.
(1;0] Homy (17[), -)

IR

The existence of such a morphism u follows from the projectivity of Hom4 (—, N) in
the category Fun A, and from Yoneda’s lemma II.3.1. We then construct the fibered
product M of the morphisms u: N — vPyand vp;: vP; — vP.

The upper row in the commutative diagram with exact rows

f g

0 L M N 0
RN
0 L VP] n VPO

is an almost split sequence ending with N, as we now state.

Lemma II1.3.1. If the morphism u is chosen as shown above, then the short exact
sequence

f

0—>L—>M—g>N—>O

obtained by taking M as the fibered product of the morphisms u and vp1 is almost
split.

Proof. This follows directly from the proofs of Theorem II.3.10 and Proposi-
tion I1.3.11. ]

The fibered product M and the morphism g can be computed as the kernel term
in the exact sequence

g
0—>M(LZNGBVP1 (u—v>pl)vPo.

However, once one computes the module M and the morphism g, then it may
become necessary to decompose M into its indecomposable summands (and hence
g into its restriction to the summands). Carrying out this decomposition is either
very difficult or tedious. No general technique seems to be known, and it can
only be done efficiently in “small enough” examples. Our objective in this section
is to present some instances where the computation of almost split sequences is
reasonably easy.
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I11.3.2 Projective-injective middle term

We look here at the situation where an almost split sequence has a projective—
injective module as summand of its middle term. Our main result in this subsection
is the following.

Proposition II1.3.2. Let 0 — L L> M 55 N — 0 be an almost split

sequence, and write M = 69?2 | M; with the M; indecomposable. Then,

(a) If M; is projective and M j is injective, theni = j and M; is projective—injective.

(b) At most one of the indecomposable summands of M is projective—injective.

(c) If M admits an indecomposable projective—injective module P as a direct
summand, then this sequence is isomorphic to

(?)) rad P

P
0O—radP — P& (q—v>)

soc P soc P

where u,v are the inclusions and p,q the projections. In addition, the
summands of M other than P are neither projective nor injective.

Proof.

(a) Assume that i # j. Comparing lengths, we have /(L) < I(M;) and I[(N) <
[(M}). Therefore,

t
I(L) +L(N) < I(M;) +1(M}) <> 1(My) = I(L) + [(N),
k=1

a contradiction. Hence, i = j and M; = M is projective—injective.

(b) Suppose that M;, M; are projective—injective. Because M; is projective and M ;
is injective, the reasoning made in (a) yields M; = M.

(c) Write the sequence as

S
0—>L(£2P@M’(gl—>g”N—>o

with M’ in general decomposable. The projectivity of P implies that L is a
direct summand of its radical. However, because P is also indecomposable
injective, it has a simple socle, and therefore its radical rad P also has a simple
socle. This implies that rad P is indecomposable and thus L = rad P, and the
morphism fj: L — P is isomorphic to the inclusion u: rad P — P.

Dually, N = P/soc P has simple top and the morphism g;: P —> N is
isomorphic to the projection g: P —> P/soc P. Now we have
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IM'y =1(L) +1(N) = I(P)
= I(rad P) +1(P/soc P) — I(P)
=[(P) -2,

because [(rad P) = [(P/soc P) = I(P) — 1. In particular, f: L — M’
is surjective. But now, because rad P has a simple socle, then it has, up to
isomorphism, exactly one quotient of length /(P) — 2 = I(rad P) — 1, namely
its quotient rad P/soc P by its simple socle. Therefore, M’ = rad P/ soc P
and f> is isomorphic to the projection p: rad P —> rad P/soc P. Similarly,
g2 M’ —> N is isomorphic to the inclusion v of rad P/ soc P as the unique
maximal submodule of P/ soc P.

The last statement follows from the fact that, because of (a), M’ = rad P/ soc P
has neither projective nor injective summands. O

We point out that although rad P and P/soc P are indecomposable, the term
rad P/ soc P is, in general, decomposable and may in fact have an arbitrary number
of direct summands, see Exercise VI.4.2 below.

Example 111.3.3. Let A be given by the quiver
2
p—~ "~ a
1e ~ TN o4
3

bound by 8 = y§. Here,

4
Pr=1=23
1

2
1

its quotient by the socle is P4/ soc Py = 243 . Finally, rad P4/ soc P4 = S2 & S3, so
we get an almost split sequence

is indecomposable projective—injective. The radical of P4 is rad P4 = 3 whereas

4
— 233203 —
1

23
1

4
23

0— —0

where the morphisms are either inclusions or projections. This is the sequence we
obtained at the end of Example I11.2.11.
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111.3.3 Almost split sequences for Nakayama algebras

We recall from Subsection 1.2.4 that an algebra A is a Nakayama algebra if all
its indecomposable projective and injective modules are uniserial. We have also
seen that, if NV is an indecomposable A-module, then there exist an indecomposable
projective A-module P and an integer ¢ > 0 such that N = P/rad’ P. We now
describe the almost split sequence ending with N.

Proposition IIL.3.4. Let A be a Nakayama algebra and N = P/rad’ P an
indecomposable nonprojective A-module. Then the almost split sequence ending
with N is isomorphic to the sequence

rad P (;:) P radP gj) P
—> — (&) —> —>
rad'tl p radt' P~ rad' P rad’ P

where i, j are the inclusions and p, q the projections.

Proof. Clearly, the sequence in the statement is exact and nonsplit. In addition, both
end terms are uniserial and hence indecomposable. Because of Corollary I1.3.13, it
suffices to prove that the morphism (g j) is right almost split.

Letv: V — P/rad’ P be aradical morphism. We may assume without loss of
generality that V' is indecomposable (and then v is simply a nonisomorphism). We
consider two cases.

(a) If v is not surjective, then its image is contained in the unique maximal
submodule rad P/ rad’ P of P/rad’ P. Therefore, in this case, v factors through
the middle term.

(b) If, on the other hand, v is surjective then, because V is also uniserial, it
must have the same top as P/rad’ P. It follows from the description of the
indecomposable A-modules, see Theorem 1.2.25, that V' = P/rad® P with
s > t. But then, v clearly factors through P/rad’*! P and we are done.

O

There is a similarity between almost split sequences over Nakayama algebras
and almost split sequences with projective—injective middle terms. Indeed, letting
U = P/rad™*! P, the almost split sequence in the proposition can be written as

rad U U
—

0—radU — U®
soc U soc U

— 0,

see Exercise II1.3.4 below.

Corollary II1.3.5. Let A be a Nakayama algebra and N an indecomposable
nonprojective A-module. Then, [(tN) = I(N).

Proof. If N = P/rad’ P for some projective A-module P and some ¢ > 0, then
TN Zrad P/rad’*! P so that [(tN) =t = [(N). 0
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In particular, if S is simple, then so are 7.5, 728, etc.

Example 111.3.6. Let A be given by the quiver

bound by «fy = 0. The indecomposable projective modules are

Py =

L= W

1
P= 2 P, =
3

LN — Wi

We deduce a complete list of the isoclasses of indecomposable nonprojective
A-modules

radp radp, radp;
P 1 b _2 P _3
rad’ P, 2 rad’p, 3 rad2P3 1
2
P _ § P ? p__3
rad’p, 1 rad’p; 2 rad*p, ;

Proposition I11.3.4 above gives all almost split sequences in mod A

2

O—>2—>% —1—0 O—>3—>3 —2—0
3 2 ! 1
OHIHI —3—0 0*>3 —2 @2%2 —0
3
3 2 2 1 3 3
0—>1 —3 @3—>3 —0 O—>2 —>1@1—>1 — 0
1 2
3 % 3 2 ! T 3
0—1 — @1 —3 —0 0—2 —, @2 —1 —0
2 ) 1 3 3 2
3 2, 2
1 3
O—>2 —s1 D1 — —0
3 2 2 2
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where the morphisms are either inclusions or projections. The reader will notice that
P> = I3 is projective—injective; thus, the last sequence provides an example of an
almost split sequence with a projective—injective middle term.

Example 111.3.7. A particularly interesting example of a Nakayama algebra is the
algebra A = K[t]/ (t"), with n > 2. It is given by the quiver

bound by «” = 0. In this case, a complete list of the isoclasses of indecomposable
A-modules is obtained as follows. Let I = (¢) / (¢"*) be the unique maximal ideal
of A and thus its radical. Then, because A is indecomposable projective, the list is
A, A/l A/12, e, A/I"". The almost split sequence ending with A/I’, where ¢
issuchthat 1 <t <n — 1, is of the form

A A A
O—>F—>W®F—>F—>O.

If t = n— 1, then the middle term is indecomposable and equal to A/I"~2, whereas,
if # = 1, then the middle term has the projective—injective module A 4 as a direct
summand. In particular, for every indecomposable nonprojective A-module M, we
have tM = M.

111.3.4 Examples of almost split sequences over bound quiver
algebras

Example 111.3.8. Let A be given by the quiver
2
B * '\a
1e " o4
3

bound by o8 = y§. We wish to compute the almost split sequences ending and
starting in the simple module S3, which is neither projective nor injective.

We first compute 7.53. The projective cover morphism g: P; — S3 has as a
kernel S; = P1, so that a minimal projective presentation of S3 is

O—)Pl—p>P3i>S3—>O
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where p is the inclusion morphism. In particular, pd S3 < 1. Applying the
Nakayama functor yields an exact sequence

0— 1853 — I i>I3.

Now

4 4
I =23 and 13:%.
| 3

Up to scalars, there is exactly one nonzero morphism I; — [3: it is surjective

with kernel P, = % . Thus, 83 = P,. The middle term M of the almost split
sequence ending with S3 is the fibered product of the morphisms

S3

Ju
vp

L —— 1

In our case, there is exactly one nonzero morphism S3 — I3 up to scalars, namely
the inclusion of S3 as the socle of I3. Then, M is the kernel term in the short exact
sequence

O—)M—>11®S3(ﬂ)13—>0.

Indeed, (vp, u) is surjective because so is vp. We claim that M = 213 . Clearly, the

composition factors of M are Si, >, S3. Moreover, P, = % lies in the kernel of
vp and is a proper submodule of M. On the other hand, (vp, u) maps diagonally
the direct sum of the two composition factors of 71 & S3 isomorphic to S3 onto the
socle of I3. Therefore, the kernel must contain a copy of S3 located above S in its
composition series. This may be viewed in the following sequence

23
1

00— — 0.

4 4
—>23693—>3
1

Thus, the required almost split sequence is:

O—»z 23 —3—0.

1 1

Dually, to compute 7! S3, we start with a minimal injective copresentation
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0—)53—i>13—j>14—>0

where i is the inclusion and j is the projection. Applying v~! yields an exact
sequence

—1.
P v 4 Py — 1 183 —0.
Now

3 4 3
P321,P4:213 and P3=1.

Up to scalars, there is exactly one nonzero morphism P; —> Py: it is injective

with cokernel g = I. Thus, 77183 = I,. The middle term N of the almost split
sequence starting with S3 is the amalgamated sum of the morphisms

v
Ps—— P
J/V
S3

In our case, there is, up to scalars, exactly one nonzero morphism P; —> S3. This
is the projection of P3 onto its top. So N is the cokernel term in the short exact
sequence

v
V’l_/
0— P S3ePy —N—0

where we have used the injectivity of v~! j. Reasoning as above, we get

3
1

4

23—>0

4
00— 7 —3323 —
1

SoN = 243 and the required almost split sequence is

4 4

O—>3—>23—>2 — 0.

In the previous example, we used essentially the fact that, between two of the
modules under consideration, the morphism space is at most one dimensional.
Obviously, this is not the case in general. To perform the calculation, we need, given
an indecomposable nonprojective module M, and a minimal projective presentation

Pl—p>P0—>M—>O,
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to compute the image of the morphism p: P — Py under the action of the
Nakayama functor v, because tM = Ker(vp). Dually, if M is indecomposable
noninjective and has a minimal injective copresentation

0—>M—>Il—j>11,

we need to compute v™! j, because ™' M = Coker(v! ).

We show how to solve the first problem, leaving the dual case to the reader,
see Exercise I11.3.5. Given projective modules P; = ej A, P, = exA (with e, e2
idempotents), we have

Homy (Py, P1) = Homy (e A, e1A) E e1Aen

and the isomorphism is given by left multiplication by an element w € e1 Ae,. That
is, every morphism epA —> e A is of the form epa — wa € e1A, for some
w € e1Aey. In particular, the image of e; is exactly w.

We also remind the reader that, given an idempotent e € A, we have canonical
isomorphisms p : eA ®4 DA — eDA givenby e ® f —— ef and ¢ : eDA —>
D(Ae) given by ef —— f(-e) where the latter is the linear form ae — f(ae).

Lemma II1.3.9. Let p: epA —> e A be given by left multiplication by w € ey Aes.
Then, vp: D(Aey) —> D(Aey) is the morphism f +— (ae1 — f(aw)).

Proof. Let n: D(Aez) —> D(Aey) be defined by f + (ae; — f(aw)). Because
v = — ®4 DA, it suffices to prove that the following square commutes.

p@DA
2A® DA ——  ¢1A®4 DA

mlg ;P]

e;DA e1DA
fpzl% %lq)]
D(Ae;) —— 1+ D(Aey)

where the 1, ¢; are the canonical isomorphisms. For this, letex ® f € e2A ® DA,
then

ngap2(er ® f) =nea(eaf) =nf(-e)
is the linear form mapping ae; € Ae; to f(awey) = f(aw). On the other hand,
P11 (p@®DA) (2@ f) = p1u1(p(e2)® f) = 11 (w® f) = p1(wf) = (wf)(-e1)

is the linear form that maps ae; € Aej to (wf)(ae;) = f(aw). The proof is
complete. O



134 IIT Constructing almost split sequences

Example 111.3.10. Let A be given by the quiver

a
le ———— o2

bound by Bafa = 0. We want to compute tS;. For this purpose, we first need a
minimal projective presentation. The projective cover of S is clearly

o
Il
— N — N —

with kernel equal to the indecomposable projective P». Thus, the required minimal
projective presentation is

0—>P2—p>P1—>Sl—>O,

where p is the inclusion. Identifying paths to their classes modulo the binding ideal,
the basis of A as a k-vector space is {ey, €2, @, B, af8, Ba, afa, BaB, afap}, that
of Py is {e1, o, aff, afa, afaf} and that of P is {ez, B, Ba, BaB}. We see easily
that the morphism p is given by left multiplication by «. Applying the Nakayama
functor v yields an exact sequence

0—)1’51—>12£>I].

Denoting by {e), ey, a”, B, (@B)", (Ba)", (@Ba)”, (Bap)", (afap)”} the dual
basis to the above basis of A, we see that the basis of I is {ey, o, (Ba)", (aBa)"},
see Lemma 1.2.17. Because of the previous lemma, vp maps f € D(Aez) to the
linear form ae; — f(aw). Thus,

(vp)(ey)(aer) = e; (ac) =0 foreverya € A
(vp) () (aer) = a”(a) # 0 because oV (o) = 1

(p)(Ba)¥)(aer) = (Ba)’ (ac) # 0 because (Bar)” (Bat) = 1
and similarly (vp)(aBa)Y (ae;) # 0. This proves that tS; = Ker(vp) is the one-
dimensional vector space spanned by e;'; thus, 7S] = .
Example I11.3.11. Let A be the Kronecker algebra with quiver

a
le I——— o2
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and consider the indecomposable nonprojective module

2
M:i(x
1

We wish to construct the almost split sequence ending with M.
A minimal projective presentation of M is

O—>P11>P2—>M—>O

where the morphism p is given by left multiplication by 5. Applying the Nakayama
functor v yields an exact sequence

0—>rSl—>Ilﬂ>12.

Denote by {e}, ey, ", B} the dual basis to the k-basis of A given by {ey, 2, a, B},
we have I, = D(Aey) = S», whereas I} = D(Ae) has a basis {e}’, &, 8} and is
in fact the module

2 2
(xv\*l'/ﬁv

The morphism vp: I} —> [, maps f € D(Aey) to the linear form ae; — f(ap).
Thus, we see that

(vp)(ey)(ae)) = ey (af) =0 foreverya € A
(wp)(@V)(ae)) =aV(@B) =0 foreverya € A
whereas (vp)(8Y)(aer) = BY(aB) # 0 because B8V (B) = 1.

A basis of M is {e;, &V} so that

2
‘L‘M:ia.
1

In particular, t™M = M.
Next, the middle term H of the almost split sequence

0O— M —H—M—790
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is the fibered product of the morphisms

M
ul
Dp/
I % b

where u is as in Subsection II1.3.1. Again, up to scalars, there is a unique morphism
u: M — I, = S,: it is the surjection with kernel S7. Hence, H is the kernel term
in the short exact sequence

(Dp.u)
O— H—11eM — S —0.

We get that H is the module

and, in particular, is indecomposable. This module H will appear again below in
Subsection IV.4.1.

Exercises for Section I11.3

Exercise II1.3.1. State and prove the dual of Lemma II1.3.9.

Exercise I11.3.2. Let A be given by the quiver

bound by o = 0.

(a) Applying the techniques of this subsection, for each indecomposable nonpro-
jective A-module M, compute M by exhibiting in each case a k-basis of this
module.

(b) Same question for ! M, where M is indecomposable noninjective.

Exercise II1.3.3. Same exercise if the quiver is bound by SafBaf = 0.

Exercise II1.3.4. Let A be a Nakayama algebra and U an indecomposable A-
module.
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(a) Prove that the support of U, namely the full subquiver

suppU = {x € (Qa)o | Uey # 0}

is a nonzero path w in Q4.

(b) Let «, B be the unique arrows (if they exist) such that ¢ (o) = s(w) and s(8) =
t (w). Prove that the quotient of A by the ideal I generated by the classes of the
paths c¢w and wg is a Nakayama algebra.

(c) Prove that U is a projective—injective A/I-module.

Exercise II1.3.5. Let A be an algebra, and ey, e; idempotents of A. Given a
morphism j : D(ejA) —> D(ezA), compute the morphism v=1j : e A —> s A.

Exercise II1.3.6. For each of the following Nakayama algebras given by their
bound quivers, give a complete list of all the almost split sequences.

@10 b 3. 4P 5.2 ¢ ap =0,By5e=0

1 ’ 3
0 T _a ap =0

3
a

(O e ———) apaf =0
¢ 5

1 —2 .2
(d)[é \/3 ap =0,py =0

3

Exercise II1.3.7. An algebra A is called selfinjective if the module A 4 is injective.
Prove that each of the following bound quiver algebras A is selfinjective and
compute the almost split sequences with a projective—injective middle term.

2
3

p a
(a) 1/ \4 ap =ys,8ea =0, fey =0
‘5\ /

3

B N af = 0,ey = 0.eff = by, 5 = 0,

(b) 1&_2/'3 ye =0,fe =yéa,aye =0,ey6 =0
o
4
© 1+——=29 3 af =76, Py =0,6a =0
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Aa =pf =vy,ap=0,av =0, pA =0,
pv =0,y =0,yu=20

III.4 Almost split sequences over quotient algebras

I11.4.1 The change of rings functors

Let A be a finite dimensional algebra, E a two-sided ideal in A and B = A/E. Our
aim in this section is to derive relations between the Auslander—Reiten translations
74 in mod A and tp in mod B. In this situation, we have the four classical change
of rings functors, namely the functors — ® 4 Bp and Homy4 (g B4, —) from mod A
to mod B, and the corresponding functors — ®p A4 and Homp(4Ap, —) from
mod B to mod A. There exist several adjunction relations between these functors,
but moreover we have the following lemma.

Lemma II1.4.1. There exist isomorphisms of functors

(@) —®pAs®a Bp = ljods-
(b) Homu(gBa, Homp(aAp, —)) = lmod B

Proof. The proof of (a) is clear.
For (b), we observe that, for every B-module M, we have functorial isomor-
phisms

Homy (g B4, Homp(4Ap, M)) = Homp(pBs ®4 Ap, M) = Homp(gBp, M) = Mp.

O

It is important to observe that the reverse compositions of these functors are not
isomorphic to the identity in mod A. Another important observation is that, because
B = A/E, there exist a surjective morphism of algebras ¢ : A — B, so that
every B-module M can be viewed as an A-module when one defines multiplication
as follows

xa = x¢(a)

for x € M and a € A. Then, mod B is fully embedded in mod A and can actually
be identified with the full subcategory of mod A consisting of all the A-modules M
that are annihilated by E, that is, such that M E = 0, see Exercise 111.4.2.
Corresponding to an arbitrary A-module M, there are two modules that are
clearly annihilated by E, namely, the quotient module M* = M/ME and the
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submodule M, = {x € M: xE = 0}. Thus, M* and M, are B-modules. We prove
that these constructions are other versions of using the change of rings functors.

Lemma II1.4.2. Let M be an A-module. We have functorial isomorphisms:

(a) M®4 B= M*.
(b) Homu (B, M) = M,.

Proof.

(a)

(b)

Applying M ® 4 — to the short exact sequence of left A-modules 0 — E LN

AL B—0 yields a commutative diagram with exact rows

M&UE 2 M@, A M@, B——0
T
0 ME M o 0

where i and p are respectively the inclusion and the projection, f: M®4 A —>
M is the well-known functorial isomorphism given by the multiplication map
m®ar ma(form €¢ M,a € A), f': M ®4 E — ME is the induced
morphism defined also by m @ a + ma (form € M, a € E) and f” is obtained
by passing to cokernels. In particular, the surjectivity of p and the fact that f
is an isomorphism imply that f” is surjective. On the other hand, M E is, by
definition, generated by all products ma with m € M and a € E. Therefore,
[/ is also surjective. But then the snake lemma gives that f” is injective and is
thus an isomorphism.

Let p: Ay —> B4 denote, as in (a), the canonical projection. There is a well-
known functorial isomorphism f: Homg(A, M) — M givenby f : u +—>
u(l) for u € Homy (A, M). We claim that the image of the composition of f
with Homyu (p, M): Homu (B, M) —> Homyu (A, M) lies in M,. Indeed, if
¢ € Homy (B, M), then

J Homy(p, M)(¢) = f(pp) = ¢p(D).
For every a € E we have
gp(Da = ¢p(a) =0
because E = Ker p. This shows that ¢p(1) € M, as required, implying the

existence of a morphism f’: Homyu (B, M) —> M, making the following
square commutative
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Homy (p, M)

Homy (B, M) Homy (A, M)
J E l ;
M, ! M

where j is the inclusion. In particular, the injectivity of f and that of
Homy (p, M) imply that of f’. There remains to show that f’ is also surjective.
Letm € M,,thenm € M and mE = 0. Because m € M, there exists ¢,, €
Hom4 (A, M) such that ¢, (1) = m. But then ¢,,,(E) = ¢, (1)E = mE = 0.
Because E = Ker p, there exists ¢,,: B —> M such that ¢, p = @.
Hence, f'(¢,,) = ¢,,p(1) = @,(1) = m. This shows that f’ is surjective
and completes the proof.

O

I11.4.2 The embedding of mod B inside mod A

Using the assumptions and notation of the previous subsection, we prove that
every B-module, which, when considered as an A-module annihilated by E, is A-
projective, must also be B-projective (and dually).

Lemma II1.4.3. Let M be a B-module.

(a) If M is projective in mod A, then it is also projective in mod B.
(b) If M is injective in mod A, then it is also injective in mod B.

Proof. We only prove (a), because the proof of (b) is dual.

If f: L — L’ is an epimorphism in mod B, then it is also an epimor-
phism in mod A. Because M is projective, Homy (M, f): Homy(M,L) —>
Homy (M, L') is surjective. Because mod B is a full subcategory of mod A, we have
Homs (M, N) = Homp(M, N) for every B-module N. Hence, Homp(M, f) =
Homa (M, f) is surjective. O

We now see how, starting from a right minimal almost split morphism in mod A
ending in a B-module, we can construct the corresponding right minimal almost
split morphism in mod B ending in the same module.

Lemma I11.4.4.

(a) Let N be an indecomposable B-module and g: M — N right minimal almost
split in mod A. Then its composition g, with the inclusion M, — M is right
almost split in mod B. In addition, if N is nonprojective, then g, is surjective.

(b) Let L be an indecomposable B-module and f: L — M left minimal almost
split in mod A. Then, its composition f* with the projection M —> M* is left
almost split in mod B. In addition, if L is noninjective, then f* is injective.

Proof. We only prove (a), because the proof of (b) is dual.
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We have a commutative diagram in mod A

N

M——N

in which M, and N are B-modules.

First, we prove that g, is a radical morphism in mod B. If it is not, then it is a
retraction and there exists g': N —> M, suchthat g,g’ = 1y.Butthen gjg’ = 1y;
thus, g is itself a retraction, a contradiction.

Let v: V — N be a radical morphism in mod B. Then, v is also radical in
mod A (for, otherwise, v would be a retraction in mod A and hence in mod B) and
there exists v': V. —> M such that v = gv’. But V is a B-module; hence, for every
x € V we have v/(xE) = 0. Therefore, the image of v’ lies in My, providing a
morphism v”: V. —> M, such that v = gjv” = g,v”. This completes the proof
that g, is right almost split in mod B.

Because of Corollary 11.2.22, the morphism g, is isomorphic to a morphism of
the form (gp, 0): My ® L — N with go: My —> N right minimal almost split in
mod B. Clearly, if N is nonprojective in mod B, then g is surjective. Hence, so is
8- O

In the situation of (a) above, if N is projective, then g is the (proper) inclusion
of a summand of the radical of N into N. In this case g, is not surjective.

Let N be an indecomposable nonprojective B-module. Because of Lemma I11.4.3
above, it is also indecomposable nonprojective in mod A. Therefore, there exist two
almost split sequences ending with N, one in mod A and the other in mod B. We
explain the relation between them.

Proposition II1.4.5. Let 0 — L —f> M 55 N — 0 be an almost split
sequence in mod A.

(a) Assume that N is an indecomposable nonprojective B-module, then there exists
a short exact sequence in mod B

0— L, 1% M, 25 N —0

that is isomorphic to the direct sum of an almost split sequence

0—> Lo =% My 2% N —0

in mod B with a sequence of the form() — X — X — 0 — 0.
(b) Assume that L is an indecomposable noninjective B-module. Then, there exists
a short exact sequence in mod B

* *

0— L1 M* 25 N*— 0
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that is isomorphic to the direct sum of an almost split sequence

1o g°
0—L 2 M 25N 0

in mod B with a sequence of the form() — 0 — Y — Y — 0.

Proof. We only prove (a), because the proof of (b) is dual.

First, N, = N, because N itself is a B-module. Applying the functor
Hom4 (B, —) to the given almost split sequence in mod A yields a left exact
sequence

0— L, % M, 55 N, = N,

where f, = Homa (B, f) and g, = Homy (B, g). Because N is nonprojective in
mod B, Lemma I11.4.4 yields that g, is surjective and right almost split. In particular,
it is not a retraction; thus, we have a nonsplit short exact sequence

0— L, 1% M, 55 N — 0.

In addition, as seen in the proof of Lemma I11.4.4, g, is isomorphic to a morphism
of the form (go, 0): My & X —> N with gg right minimal almost split in mod B.
This shows that the latter short exact sequence is actually isomorphic to a sequence
of the form

fo O
,0
0—>L0@X(°—1¥)MO@X(‘§L>)N—>0.

In particular, it is isomorphic to the direct sum of an exact sequence of the form
0 — X — X — 0 —> 0 and another of the form

0— Lo My 25 N —0
with go right minimal almost split in mod B. Then, because of Theorem I1.2.31, the

latter sequence is almost split in mod B. O

It is possible to prove that the module X in (a) above is actually a projec-
tive B-module, whereas the module Y in (b) is an injective B-module. This is
Exercise I11.4.1 below. Recall that we denote by t4 and 7p the Auslander—Reiten
translations in mod A and mod B respectively.

Corollary II1.4.6.

(a) If N is an indecomposable nonprojective B-module, then tg N is isomorphic to
a submodule of ToN.
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(b) If L is an indecomposable noninjective A-module, then Ty 'L is isomorphic to
a quotient of tXlL.

Proof. We only prove (a), because the proof of (b) is dual.
Using the notations in the proof of Proposition I11.4.5, the statement follows from
the inclusion morphisms

IBN=ELy—> Lo® X =Ly > L =14N.

O

Corollary II1.4.7. Let M, N be indecomposable B-modules. If there exists an
irreducible morphism f: M — N in mod A, then this morphism remains
irreducible in mod B.

Proof. Because of Theorem I1.2.24, there exists a right minimal almost split
morphism in mod A of the form (f, g): M & X —> N.Now we have (M & X), =
Homu (B, M®X) = Homyu (B, M)®Homy (B, X) E M, H X, = M@ X, because
M is a B-module. For the same reason, f, = f: M — N and it is a nonzero
morphism. Therefore, there exists a direct sum decomposition X, = Xo @ Y such
that (f, g)«: M @ X, —> N is of the form (f, g9,0): M & Xo ® Y — N with
(f, go) right minimal almost split in mod B. This implies the statement. O

Example 111.4.8. Let A be given by the quiver
2
b "~ a
1e TN o4
3

bound by a8 = y§. Let E = Ae3z A be the two-sided ideal of A generated by the
idempotent e3. As a vector space, E has the basis {es, y, §, Y&} whereas A has the
basis {e1, ez, €3, es,, B, v,8, ¢ = y8}. Therefore, B = A/E is given by the
quiver

°—
o
o\

bound by aff = 0. Indeed, this relation comes from the fact that in A we have
af =ySandy§ € E.
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We have previously computed in Example II1.2.11 the almost split sequence
ending in S, in mod A

0—>? — 213 —2—0.
Because S» is also a simple B-module, the almost split sequence in

mod B ending with S> is a direct summand of the short exact sequence
OH(?) *)(213) —2—0.
* *

Because the functor (—). is actually Homu (B, —), a direct calculation gives

3 _ 23 _ 2
(- o ()t

Thus, the corresponding almost split sequence in modB is

2

| —2—0.

0—1—

In this example, the module X of Proposition II1.4.5(a) is equal to zero.

111.4.3 Split-by-nilpotent extensions

Again, let A be a finite dimensional k-algebra, E a two-sided ideal of A and B =
A/E. Given a B-module M, we ask whether one can relate the Auslander—Reiten
translates of the modules M ® 4 B and Homp (A, M) in mod A with those of M
itself in mod B. This problem is difficult in general, but there is one case where
computation is actually possible.

Let B be a finite dimensional algebra and E a B—B-bimodule, finite dimensional
over k. We wish to consider the case where elements of £ may be multiplied
together. We say that E is equipped with an associative product if there exists a
morphism of B—B-bimodules £ ®p E —> E, denoted as x ® y —> xy, for
x,y € E, such that x(yz) = (xy)z forall x, y,z € E.

Definition II1.4.9. Let B be an algebra and E a B—B-bimodule equipped with an
associative product. The k-vector space

A=B@®E={0b,x)|beB,x € E}
together with the multiplication defined by

b, x)(V,x") = (bb,bx" + xb' + xx')
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for (b, x), (', x") € A is an algebra called a split extension of B by E. In addition,
if E is nilpotent as an ideal in A, then A is called a split-by-nilpotent extension.
In this case, there is a short exact sequence of k-vector spaces

: P
0—E—>A=—>B—0
q

where the projection p : (b, x) — b is an algebra morphism having as a section
the inclusion ¢ : b —— (b, 0), which is also an algebra morphism. Thus, the above
sequence is split as a short exact sequence of B—B-bimodules, but not as a short
exact sequence of (left or right) A-modules.

The assumption that E is nilpotent amounts to saying that £ C rad A. As an
easy consequence, rad B = (rad A)/E: indeed, (rad A)/E is nilpotent as an ideal in
B = A/E; in addition,

AJE _ A
(rad A)/E ~ rad A

is semisimple. This establishes our claim. Incidentally, the isomorphism A/rad A =
B/rad B implies that the projection p : A — B induces a bijection between
the idempotents of A and those of B. In the sequel, we always assume that E is
nilpotent.

Example 111.4.10. Let A be an elementary algebra. As seen in Subsection 1.2.2,
A = A/rad A @ rad A. Therefore, A is a split extension of the semisimple algebra
A/rad A by the nilpotent bimodule rad A.

Example Ill.4.11. Assume B = k and E = k> equipped with the (obviously
associative) product

(b, o)V, ") = (0,bb)

forb, c,b’, ¢’ € k. Itis easy to prove that the split extension of B by E is isomorphic
to the truncated polynomial algebra A = k[z]/(r3), that is, the algebra given by the

quiver

Example 111.4.12. Let A be given by the quiver

bound by a® = 0.
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P

C:)
‘y '&.4

le

bound by a8 =0, 5y =0, ,03 = 0.Let £ = (@, p). Then, A is a split extension of
the algebra B given by the quiver

bound by §y = 0.

As the previous examples show, if A is a split-by-nilpotent extension of B,
passing from A to B may be thought of as “dropping arrows” (according to certain
rules, which are not within the scope of these notes). On the other hand, the points
of the quiver (that is, the idempotents) remain the same, as mentioned above.

Let A be a split extension of B by the nilpotent bimodule E and M an A-module.
As seen in Subsection II1.4.1, there exist a canonical epimorphism pp: M —>
M* and a canonical monomorphism j;: M, —> M. We also recall that M* =
M ®4 B whereas M,, = Homy (B, M). We prove that pys and jjs are respectively
superfluous and essential, in the sense of Example 11.2.17.

Lemma I11.4.13. Let M be an A-module. Then:

(a) The canonical epimorphism py;: M —> M ®4 B is superfluous.
(b) The canonical monomorphism jy: Homy (B, M) —> M is essential.

Proof.

(a) It follows from Nakayama’s lemma that the canonical epimorphism f: M —
M/Mrad A is superfluous. Because £ C rad A, there exists a canonical
epimorphism g: M/ME — M /M rad A such that f = gpys (here, we use
that, because of Lemma I11.4.1, we have M/ME = M @4 B).Leth: L — M
be such that pysh is surjective, then so is gpyh = fh. Now, f is superfluous.
Hence, 4 is surjective.

(b) To show that jjs is essential, it suffices to prove that M, = Im jj; intersects
every nonzero submodule of M, see Exercise 11.2.3. Let L € M be a nonzero
submodule. Because E is nilpotent, there exists s > 1 such that L E* -1 # 0 but
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LE® = 0.Let! € LES~! be a nonzero element. Then, [E = 0 yields [ € M,.
This shows that M, N L # 0.
O

Corollary I11.4.14. Let M be an indecomposable B-module. Then,

(@) M ®p A is indecomposable in mod A.
(b) Homp (A, M) is indecomposable in mod A.

Proof. We only prove (a), because the proof of (b) is dual.
Assume M ®p A = X1 @ X, in mod A. Then,

MZ=ZMRpARsB=(X1®4B)®(X2®4 B).

Because Mp is indecomposable, we have either X1 ® 4 B = 0 or X, ®4 B = 0,
say the former. Because px,: X1 —> X| ®4 B is superfluous, then X; ® 4 B =0
implies X1 = 0. Therefore, M ®p A is indecomposable. O

Corollary I11.4.15. Let M be a B-module. Then, there exist bijections between the
isoclasses of indecomposable summands of M in mod B and

(@) Those of M ®p A inmod A, given by N — N ®p A.
(b) Those of Homp (A, M) in mod A, given by N — Hompg(A, N).

Proof. We only prove (a), because the proof of (b) is dual.

In view of Corollary II1.4.14, it suffices to prove that Ny = N if and only if
N1 ®p A = Ny ®p A. Indeed, if Ny = N>, then clearly N| ®p A = N> Qp A.
Conversely, if Ny ® p A = N> ®p A, then N1 p A®4 B = N> ®p A ®4 B and
the result follows from Lemma I11.4.1. m|

Applying Corollary [11.4.15 to Bp and BQp A = A4, we get a bijection between
the isoclasses of indecomposable projective B- and A-modules given by Pp >
P ®p A. Dually, there is a bijection between the isoclasses of indecomposable
injective B- and A-modules, given by /g — Hompg (A, I).

We now look at the correspondence between projective covers (injective
envelopes) in mod B and mod A.

Lemma II1.4.16. Let M be a B-module.

(@) If f: P —> M is a projective cover in mod B, then
f®BAZP®BA—>M®BA

is a projective cover in mod A.
(b) Ifg: M — I is an injective envelope in mod B, then

Homp(A, g): Homp(A, M) — Homp(A, I)

is an injective envelope in mod A.
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Proof.
(a) Viewing P and M as A-modules, we have a commutative diagram of A-modules
and epimorphisms

A
PRpA LM@BA

PP®BAJ/ me ®pA
f

P————————M

where the vertical morphisms are those of Lemma I11.4.13(a). Because P ®p A
is projective and f ®p A is an epimorphism, it suffices to prove that f Qp A
is superfluous. Let h: X — P ®p A be such that (f ®p A)h is surjective,
then so is fppgzah = pueya(f @p A)h. Because both f and ppg,a are
superfluous, % is surjective.

(b) The morphism Dg: DI — DM is a projective cover in mod B°”. Applying
(a) yields that A ® 3 Dg: A ® DI — A ®p DM is a projective cover in
mod A°P. The result then follows from the commutative diagram

A®gD,
A®pDI — 2828 A@DM

‘L DHomg(A,g) J

DHomg(A,]) ———— DHomg(A, M)
where the vertical maps are functorial isomorphisms.

Corollary I11.4.17. Let M be a B-module.

p P . . Lo .
(@ If P AN Py M — 0isa projective presentation in mod B, then so is

A A
Pros A2 poop A 25 M@p A —> 0inmod A. In addition, if the

first presentation is minimal, then so is the second.

®) If0 — M LN Iy EiN 11 is an injective copresentation in mod B, then so

H A, jo H A,j .
is 0 —> Homp(A, M) ™27 Homp(A. Ip) """ Homp(A. 1) in

mod A. In addition, if the first copresentation is minimal, then so is the second.

Proof. We only prove (a), because the proof of (b) is dual.

The first statement is obvious. Assume that the first presentation is minimal.
Because of Lemma [11.4.16, po ®p A: Ph g A —> M ®p A is a projective
cover in mod A. Also, because p;: P —> p1(Py) is a projective cover in mod B,
then p®pA: PIQ®p A — (p1 ®p A)(P1 ®p A) = Ker(pg ®p A) is a projective
cover in mod A. m|

We are now able to state and prove the result announced at the beginning of this
subsection.
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Proposition I11.4.18. Let M be a B-module. Then,

(@) TA(M ®p A) = Homp(A, tgM).
(b) 7, Homp(A, M) = (r;' M) ®p A.

Proof. We only prove (a), because the proof of (b) is dual.
If e € B is a primitive idempotent and P = eB, then we have functorial
isomorphisms

Homy (P ®p A, A) = Homy(eB ®p A, A) = Homy(eA, A) = Ae = A Qp Be
= A ®p Homp(eB, B) = A ®p Homp (P, B).

Therefore, for every projective B-module P, we have a functorial isomorphism
¢: Homy (P ®p A, A) = A ®p Homp (P, B).

Let P; AN Po 2 M —> 0 be a minimal projective presentation of M in mod B.
Because of Corollary 111.4.17,

A A
P1®3Ap@> P()®BAP@); M®gpA—0

is a minimal projective presentation of M ®p A in mod A. Applying Homy (—, A)
yields the upper row in the commutative diagram with exact rows

Homy (Py®@pA,A) —— Homy (P ®pA,A) —— Tr(M ®pA) —— 0

ry J/E Ppy lg

A®Homg(Py,A) —— A®@ Homp(Py,A) —— AQpTrM —— 0.
We deduce that Tr(M ®p A) = A ®p Tr M in mod A°P and so we get, in mod A,
TA(MRpA) =DTr(M®pA) = D(A® 5 Tr M) = Homp(A, DTr M) = Homg (A, 15 M).

O

Example 111.4.19. Let B be given by the quiver
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bound by oy = 0, and A by the quiver

Y‘
14

5 o — "+ o4

e

bound by «y = 0 and §afSda = 0. It is easily seen that A is a split extension of the
algebra B by the B—B-bimodule E generated by the arrow §. In addition, one has

2 e

1 3
Bp =3 ©2®,4 D4
2
whereas
1
3
3 2
2 1 24
Ag =1 @3 & 3 @ 4
3 2 >
2 1 1
1
from which we deduce
3
1 3
Epg = g @ (1)°.

Indeed, writing A as a B-module amounts to deleting the arrow § in the indecom-
posable projective A-modules, thus getting the direct sum decomposition

11 1 3 1
Ap=|3 @3 ®1|®|203 @l]a| 274 ®3 0l |04

Writing Ap = Bp ® Ep, we get Ep as required. Similarly, one has

1
(DB)s = 183 @5 &)
2

whereas
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(DA)s =

N L = PN W) =
2]
W= DN W=
S2)

B W

SR W W e
S

so that a calculation similar to the one above yields

Now, in mod B, the simple projective S4 = 4 is a radical summand of P; = 23 4

and of no other indecomposable projective module. Therefore, we have an almost
split sequence in mod B.

3

24 —0

0—4— —

3
2
and, in particular, tp (; ) = 4. We wish to compute g ®p A and T4 % ®Xp A ).
For this purpose, we consider the almost split sequence above as a minimal

projective presentation of M = g in mod B

P4—>P3—>3 — 0.

2

We apply the right exact functor — ® p A, obtaining an exact sequence

P,®pA — P3;QpA — g ®gA — 0.

Now, P4 ®p A and P; ®p A are the indecomposable projective A-modules
corresponding to the points 4 and 3 respectively. We thus get

3
4

4 — —>§®BA—>O

— N W=

and therefore g Rp A =

— W =W
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To compute the Auslander—Reiten translate in mod A of the module g ®p A, we

recall that 1:3(2 ) = 4. Applying Proposition 111.4.18, we need to find Hompg (A, 4).
For this purpose we consider the minimal injective copresentation of 4
0—s4—3 !
4 3

in mod B, to which we apply the left exact functor Homp (A, —) obtaining an exact
sequence

0 — Homp(A,4) — Homg(A, ] ) — Homg(A, ] ).

Now

from where we get

TA(% ®pA) = Homgp(A, TB; ) = Homgp(A,4) = 4.

Exercises for Section I11.4

Exercise I11.4.1. Assume B = A/E,and0 — L — M — N —> 0Oisan
almost split sequence in mod A. Prove that:

(a) If N is an indecomposable nonprojective B-module, then the short exact
sequence 0 — L, — M, — N — 0 is the direct sum of an almost
split sequence 0 — Ly — My —> N — 0 and a sequence of the form
0— P — P — 0 — 0, where P is a projective B-module.

(b) If L is an indecomposable noninjective B-module, then the short exact sequence
0 — L — M* — N* — 0is the direct sum of an almost split sequence
0 — L — M° — N° — 0 and a sequence of the form 0 — 0 —
I — I — 0, where [ is an injective B-module.

Exercise I11.4.2. Let B = A/E. Prove that there exist an equivalence between
mod B and the full subcategory of mod A consisting of the modules M such that
ME =0.

Exercise I11.4.3. Let B = A/E. Prove the following facts.

(a) A module X is projective in mod A if and only if:
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(1) X ®4 B is projective in mod B, and
(i) X ®4 B®p A = X inmod A.

In addition, X is indecomposable if and only if X ® 4 B is indecomposable too.
(b) A module Y is injective in mod A if and only if:

(i) Homy4(By, Y) is injective in mod B, and
(ii)) Hompg(Ap, Homy (B4, Y)) =Y inmod A.

In addition, Y is indecomposable if and only if Hom4 (B, Y') is indecomposable
too.

Exercise I11.4.4. Let B = A/E. Prove that, for each A-module X, we have short
exact sequences

(a) 0 — Torf(X, B)— X®4 E — XE — 0,
(b) 0 — X/X,. — Homu(E, X) — Ext, (B, X) — 0.

Exercise II1.4.5. Let A be a split extension of an algebra B by the nilpotent
bimodule E. Prove that, for a B-module M

(a) pd(M ®p A) < lifand only if pd Mp < 1 and Homp(DE, tg M) = 0.
(b) idHomp(A, M) <l if and only ifid Mp < 1 and HomB(tglM, E)=0.

Exercise I11.4.6. Let A be a split extension of an algebra B by the nilpotent
bimodule E. Prove that, for a B-module M

(a) pd(M ®p A) < 1and Ext}i(M ®p A, M Q@p A) =0ifand only if pd Mp < 1,
ExtL (M, M) = 0, Homg(DE, t5M) = 0 and Homg(M ®p E, T4M) = 0.

(b) idHompg(A, M) < 1 and Extk(HomB(A, M),Homp(A, M)) = 0 if and only
if idMp < 1, Ext}g(M, M) = O,HomB(rglM,HomB(E, M))) = 0 and
Homp(tz'M, E) = 0.

Exercise I11.4.7. Let B be given by the quiver

and A by the quiver
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bound by Bn = 0, naf = 0, nay = 0. Prove that A is a split extension of B by a
nilpotent bimodule E such that E> = 0. Compute the right and the left B-module
structures of E. Compute M ®p A, where

4 4
Mp=1® 3 @3 @4
21 1

Exercise I11.4.8. Let A be a split extension of an algebra B by a bimodule E. Prove
that:

(a) The quiver Q4 of A has the same points as the quiver Q p of B.
(b) The set of arrows from x to y in Q 4 equals the set of arrows from x to y in O p
plus

E
i
ik €x <E.radB fradB.E + E2> e

additional arrows.

Exercise IIL4.9. A split extension by a bimodule E such that E2 = 0 is called
a trivial extension. Let A be a trivial extension of B by E, and % the category
consisting of the pairs (M, ¢)r) where M is a B—B-bimodule and ¢y : M ®p
E —> M is a morphism in mod B such that ¢y (¢y ® E) = 0 ; a morphism
f+ (M,py) — (N, @) is a morphism f in mod B from M to N such that
fom = on(f ® E). Prove that mod A is equivalent to %'.

Exercise I11.4.10. Let A = (1\(;1 ﬁ) be the one-point extension of an algebra C by a

C-module M, see Exercise 1.2.21. Prove that A is the split extension of B = C x k
by some bimodule E. Compute the right and the left B-module structures of E.

Exercise I11.4.11. In each of the following examples, prove that A is the split
extension of B by some bimodule E. Compute the right and the left B-module
structures of E.

(a) B 1 2 3

A m Prapy =0.
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1 3 4
(b B lr ay =0,
2
o
/\
A 1 b 3 a 4 ay =0,6apéa = 0.
lr
2
© B P S B ap =0,
14
A 1<ﬁ—2477’3 afp =0,yay =0.
(d B 11— / 324 afy =0,
14
A /\ aﬂy:O,/}yé:O,
149 8 3 2y yoa =0, éap = 0.

Exercise I11.4.12. Let A be as in Exercise 111.4.11(c). For each indecomposable
B-module M, compute M ®p A and 14 (M ®p A).

Exercise I11.4.13. Let A be as in Exercise [11.4.11(d). Let M = g and N = ? .

(a) Prove that the almost split sequence in mod B ending with M remains almost
split in mod A.

(b) Prove that the almost split sequence in mod B ending with N does not remain
almost split in mod A. In this case, compare the two sequences.



Chapter IV )
The Auslander-Reiten quiver of an oy
algebra

Let A be a finite dimensional k-algebra. As seen in Corollary II.3.13, every inde-
composable A-module is the source, and the target, of an almost split morphism, and
thus fits into an almost split sequence. The knowledge of all almost split sequences
implies the knowledge of all indecomposable A-modules, up to isomorphism, and
all irreducible morphisms. We have seen several examples and some suggest the
possibility of constructing all almost split sequences over an algebra, using a
recursive procedure, see, for instance, Example I11.2.11 or Example I11.3.8. To carry
out this recursion efficiently, it is practical to arrange the results in the form of
a quiver. This is the Auslander—Reiten quiver of the algebra, which we define in
the present chapter. We give a construction procedure for the simplest Auslander—
Reiten quivers, and study the shape of some of their connected components. In the
third section, we show how the Auslander—Reiten quiver can be used for computing
radical morphisms, and in the fourth, we compute the Auslander—Reiten quiver of
the Kronecker algebra.

As usual, we assume throughout that A is a finite dimensional k-algebra, but here
in this chapter as well as in the rest of the book, we assume that the base field k is
algebraically closed. The reason is that, as we shall see, thanks to the assumption,
several statements take on a simpler form and in particular, almost split sequences
and irreducible morphisms are easier to visualise directly in the Auslander—Reiten
quiver.

IV.1 The Auslander-Reiten quiver

IV.1.1 The space of irreducible morphisms

We know that the morphisms occurring in almost split sequences are just the
irreducible morphisms between indecomposable modules. Now, if M, N are
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indecomposable A-modules, a morphism f: M — N is irreducible if and only if
it belongs to rad4 (M, N) \ radi (M, N), see Lemma I1.2.2. Therefore, the quotient
vector space rad4 (M, N)/ rad/z4 (M, N) can be considered as a measure for the set
of irreducible morphisms from M to N. This leads to the following definition.

Definition IV.1.1. Let M, N be indecomposable A-modules. The space of irre-
ducible morphisms is the k-vector space

rada(M, N)

Irra (M, N) ol 1)’
Our first objective is to describe a basis of this space. Because each irreducible

morphism can be completed to a left, and also to a right, minimal almost split

morphism, it is reasonable to use the latter to construct the required basis.

We need some notation. Let M = €B§=1Mim " be an A-module, with the M;
indecomposable and pairwise nonisomorphic (thatis, M; 2 M fori # j). For each
i,with1l <i <t, we denote by M;1, ..., M;,, the different copies of M; occurring
in the above decomposition of M. In this notation, we have M = @/_ (69'}11 M;)),
and M;; % My, if and only if i # k. Then, a morphism f: L —> M induces,
for each pair (i, j), a morphism f;;: L —> M;; obtained by composing f with
the projection M — M;;. Also, a morphism g: M —> N induces morphisms
gij: M;j —> N by composing the inclusion morphisms M;; —> M with g.

Proposition IV.1.2. Let L, N be indecomposable and M as above.
(@) A morphism f: L —> M is left minimal almost split if and only if

(i) foreach i, the set of residual classes
{fir +radi (L, Mi), ..., fim, + rad} (L, M7)

is a basis of Irro (L, M;), and
(i) if Ier(L, M"Y # O with M’ indecomposable, then there exists i such that
M = M.

(b) A morphism g: M — N is right minimal almost split if and only if

(i) for each i, the set of residual classes
{gi1 +radi(M;, N), ..., gim; +rad3(M;, N))

is a k-basis of Irr 4 (M;, N), and
(i) if Ir(M’, N) # 0 with M’ indecomposable, then there exists i such that
M = M;.

Proof. We only prove (a) because the proof of (b) is dual.
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Necessity. Because of Corollary I1.2.25, each f;; is irreducible, so that f;; €
rada (L, M;) \ radi(L, M;). Because (ii) follows directly from Theorem I1.2.24, it

remains to prove that the classes f_,J = fij + rad%4 (L, M;) constitute a basis of
Irra (L, M;).

We first show their linear independence. Suppose ZT‘: LA ]f_l] = 0 in
Irra (L, M;), where the A;; are scalars. Assume that there exists j such that A;; # 0.
Then, the morphism A = (A1, ..., Aim;): M;"i —> M; is a retraction. Indeed, an
associated section is (0, ..., 0, AIJI,O L0 M, — Mim", where )Li;l occurs in

the coordinate j. Let f; = (f,l,.. fim)'t L — M then A f; = Y"1, Ajj fij
is irreducible, because of Corollary I1.2.25. But this contradlcts the hypothesis that
it belongs to rad2 (L, M;). Therefore, A;; = 0 for all j, and the fii ; are linearly
independent.

We next prove that the f_,] generate the K-vector space Irra (L, M;). Let h €
rad4 (L, M;). Because f: L —> M is left almost split, there exists u: M — M;
such that 4 = uf. Decomposing M into its indecomposable summands, this equality
becomes

tom
h=73"> wjfi

=1 j=1

where u;j: Mjj —> M, is the composition of # with the inclusion M;; — M.
First, assume [ # i. Then, M;; # M; and so u;; € rada(M;;, M;). Because fj; €
rada (L, M;;), we have uy; fi; € rad124(L, M;). On the other hand, if [ = i, then uy;
is an endomorphism of M;. Because End M; is local, and the field k is algebraically
closed, we have End M;/rad(End M;) = K. Therefore, there exist o;; € k and
u;.j € rad(End M;) such that, for every j with 1 < j < m;,

!/
uij = oijly; +uy;

Because f;; € rads(L, M;), we have u;jfij € radi(L, M;). Passing to residual
classes, we have

_ t mj o mj o
=D D Wil =) wiify.
=

1 j=1 j=1

This completes the proof that the f_l] form a basis of Irr4 (L, M;) and thus the proof
of the necessity part.

Sufficiency. Let f': L —> M’ be left minimal almost split and M’ =
‘;.ZIM} ™ where the M} are indecomposable and pairwise nonisomorphic.
Because of (ii), for each j, we have M;. = M; for some i. Because m/] =
dimy Irr4 (L, M’) = dimg Irra (L, M;) = m;, we get that M’ = M. On the other

hand, f,] # 0 implies f;; € rada(L, M;) \rad (L, M;), that is, it is irreducible.
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Therefore, f itself is irreducible and so is radical (because L is indecomposable,
see Lemma I1.2.2). Hence, there exists h: M’ —> M such that f = hf’. Because
/' is not a section, & must be a retraction and in particular, an epimorphism. But
M’ = M; hence, h must be an isomorphism. m|

The hypothesis that k is algebraically closed was used essentially in the proof
of the necessity part to show that the induced morphisms generate the space of
irreducible morphisms. An immediate but useful consequence of this result is the
following corollary.

Corollary IV.1.3. Let 0 — L — &!_ M — N —> 0 be an almost split
sequence with the M; indecomposable and pairwise nonisomorphic. Then, for each
i, we have

dimy Irr4 (L, M;) = m; = dimg Irr4 (M;, N).

Proof. This follows from parts (i) of both (a) and (b) of Proposition IV.1.2. O

We warn the reader that this corollary does not hold true if the base field k is not
algebraically closed.

Example IV.1.4. Let A be the Kronecker algebra with quiver

Every irreducible morphism starting from the simple projective module P; has as
a target a projective module, hence must be a morphism from Pj to P> and therefore
the inclusion of Pj as a direct summand of rad P». Because rad P, = Plz, there exist
exactly two linearly independent irreducible morphisms from P; to P, which are
two embeddings f1, f» of Pj into rad P». Therefore, a basis of Irr 4 (P1, P>) is given
by the residual classes fl, f2 of f1, f» respectively, modulo rad? 4 (P1, P2). Now,
rad? 4 (P1, P2) = 0.For, assume that f = o1 fi+az f> € rad> 4(Pr, Pz), with oy, ap €
k. Then, there exist a module M and radical morphisms h: PL— M, g M —
P, such that f = gh. Because g is radical, it is not surjective; hence, it factors
through rad P, = Plz, that is, there exists a morphism g’': M — P12 such that f
is the composition of g’k with the inclusion P12 — P,. But Pj is simple; hence,
gh: P — P12 is injective, and every monomorphism Py — P12 is a section.
Therefore, A itself is a section; thus, it is not a radical morphism, a contradiction. In
this example, we have Irr4 (Py, P») = rada(Py, P,) = Homy (Py, P>) spanned by
{f1, f2}. The almost split sequence starting with P is given by

bj!
O—>P1(£2P22—>N—>O.
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An easy calculation yields that N = P22/ P; is the indecomposable module
represented as follows

2 2
° L]
7YX X
T N
compare with Example 11.4.3.

IV.1.2 Defining the Auslander—Reiten quiver

We define our main object of study in this chapter.

Definition IV.1.5. The Auslander-Reiten quiver /" (mod A) of the algebra A is
defined as follows

(a) The points of I"'(mod A) are the isoclasses of indecomposable A-modules. For
an indecomposable A-module M, we denote simply its isoclass by M, thus
identifying them.

(b) For points M, N, the arrows are in bijection with the vectors of a basis of the
k-vector space Irrs (M, N). In particular, the number of these arrows equals
dimy Irr4 (M, N).

Remark IV.1.6.

(a) Let M, N be indecomposable A-modules. There exists an arrow from M to N
in I"(mod A) if and only if there exists an irreducible morphism from M to N,
that is, if and only if Irr4 (M, N) # 0.

(b) Because there are no irreducible morphisms from an indecomposable module
to itself, the Auslander—Reiten quiver has no loops.

(c) Let N be an indecomposable nonprojective A-module (so that TN exists) and
let M be indecomposable. It follows from Corollary IV.1.3 above that we have
m arrows from M to N in I"'(mod A) if and only if we have m arrows from T N
to M.

(d) Assume that we have an almost split sequence

0— L1 @_ M" 5 N—0

with the M; indecomposable and pairwise nonisomorphic. It follows from (c)
that it induces in I" (mod A) a so-called mesh
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1
an ﬁ“
‘ N

M, '

where the arrows o;;: L —> M; (with 1 < j < m;) are in bijection with the
morphisms induced from the compositions of f with the projections M —>
M;, and the B;; : M; —> N are in bijection with the compositions of g with the
inclusions M; — M.

If N is indecomposable projective, then the right minimal almost split
morphism ending at N is the inclusion g: rad N — N. Setting rad N =
ealeM;"i with the M; indecomposable and pairwise nonisomorphic, we see

that g induces a “half-mesh”
K
N
4
B

with the ;; as before. Dually, if L is indecomposable injective and L/ soc L =
®_ 1Ml.m i with the M; indecomposable and pairwise nonisomorphic, the left
minimal almost split projection morphism f: L —> L/ soc L induces a “half-

mesh”
/
[¢4] miy

L

M

L

M,
M;

M,

(431
oy my

M;
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(e) The situation described in (d) above shows that the Auslander—Reiten quiver has
a remarkable combinatorial structure. Every point, and every arrow, occurs in
a mesh or in a half-mesh; therefore, I"(mod A) is the union of these meshes or
half-meshes. In particular, every point of I"(mod A) is the source, and the target,
of at most finitely many arrows, a situation expressed by saying that I" (mod A)
is locally finite, see Definition IV.1.17 below. In general, an Auslander—Reiten
quiver has infinitely many connected components. But the local finiteness of
the quiver implies that each of these components has at most countably many
points and countably many arrows. In particular, I"(mod A) is a finite quiver if
and only if A is a representation-finite algebra. We prove later in Chapter VI
that, if an Auslander—Reiten quiver admits one finite connected component,
then this component is the totality of the quiver and therefore the algebra is
representation-finite. This is a theorem due to Auslander, which we admit for
the time being.

Before giving examples, we should mention that, in the important special case of
a representation-finite algebra, the Auslander—Reiten quiver has no multiple arrows.

Proposition IV.1.7. Let A be a representation-finite algebra and M, N indecom-
posable A-modules. Then

dimy Irrg (M, N) < 1.
Proof. Assume that there exist indecomposable A-modules M, N such that
dimg Irrg (M, N) > 2. Because every irreducible morphism is either a
monomorphism or an epimorphism, we must have dimkM % dimxN. Without
loss of generality, we assume that dimg M > dimg N. In particular, this implies that
N is not projective. Therefore, there exists an almost split sequence:
0— TN — M>’®X — N — 0.
But then,
dimgt N = 2dimgM + dimg X — dimg N > 2dimgM — dimgN > dimy M
due to our hypothesis that dimgkM > dimgN. In addition, Corollary IV.1.3 yields

dimg Irrg (tN, M) = dimg [rry (M, N) > 2.

We may therefore repeat the procedure, replacing N by M and M by tN.
Inductively, we get that none of the modules t' N or t' M is projective and we have

dimgN < dimgM < dimgtN < dimgtM < ... < dimkriN < dimkriM ...

In particular, all these indecomposable modules are nonisomorphic. This contradicts
the assumption that A is representation-finite. O
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Example IV.1.8. In the previous section, we proved that the Kronecker algebra A

le I—— o2

p

has an almost split sequence of the form
0—>P1—>P22—>t71P1—>0

2

with 771 P = 11 2 1 - This yields a mesh of the form

Py

7N

Py ‘L'_lPl

Because we have multiple arrows, the previous proposition says that A is
representation-infinite, a fact already seen in Example 11.4.3.

IV.1.3 Examples and construction procedures

In general, constructing an Auslander—Reiten quiver can be extremely difficult:
indeed, its construction presupposes the knowledge of all (isoclasses of) inde-
composable modules and all irreducible morphisms between them. We have this
knowledge in the case of Nakayama algebras, which we illustrate in two examples.

Example IV.1.9. Let A be given by the quiver

1 Y 2 p

e
IS
W~

bound by ey = 0. Applying Proposition II1.3.4, we get all almost split sequences
in mod A

0—3—% —4-—0 0—2—3 —3-—0

3 2

2
1

2

1 —0

0—1l—7 —2—0 0— —>2€B2—>§
1
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O—>;—>3@3—>4

3

— 0.

This gives rise to five meshes, which we draw below

VANV AN
N,/ N,/

It is customary, when drawing (a mesh of) the Auslander—Reiten quiver, to
put translates on the same horizontal line and to join them with a dashed line.

Assembling the meshes above in the obvious way, we get the Auslander—Reiten
quiver

2 3
1 2
Observe that
3 4
2 and 3,
1 2

though lying on the same horizontal line, are not joined by a dashed line: indeed,
both are projective—injective and are not translates of each other.



166 IV The Auslander—Reiten quiver of an algebra

Example IV.1.10. Let A be as in Example II1.3.6, that is, A is given by the quiver

N

1.<7.3

bound by «fy = 0. We had computed all the almost split sequences in mod A:

o_>2_>;_>1_>o o_>1_>3;’%3_>0
2 2 ! 1
O—>3—>3—>2—>O O—>3—>2@2—>2—>O
3
o_>f_>3@3_>§_>o o_>;_>1@1_>f_>0
2
! L 3 3 3 3 2
O—>2*>2€92*>1*>0 0%1%1@1H3—>0
3 3 2 2 ) 1
2
;3 33
O—>2—>1@1—>1—>0
3 2 2 2
3
This gives rise to the following nine meshes
2 —- -~ 1 1------ 3 3------ 2
3
2 1 3
2 1 3
2 _ 1 1 ______ 3 3 ______ 2
3 2 2 1 1 3
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1 3 H

1 2
NG LN, SN
D —— 1 1------ 3 1--o--- !
Nyt NG NG

> ; !

3 P 2

where again the dashed lines denote the Auslander—Reiten translations. Assembling
these meshes, we get the Auslander—Reiten quiver

where one has to identify the two copies of the arrow g — 2 so that I"(mod A)
lies on a cylinder.

We show a simple technique, known as knitting, which consists of using in a
systematic manner the following already proven facts and their duals.

1. The sources of I'(mod A) are the simple projective modules, see Lemma I11.2.8.

2. Every arrow in I"(mod A) starting in a simple projective ends in a projective, see
Lemma I11.2.10.

3. Every arrow in I'(mod A) ending in a projective starts at an indecomposable
direct summand of its radical, see Example 11.2.21 and Theorem I1.2.24.

4. If an indecomposable module L is not injective and one knows the left minimal
almost split morphism f: L —> M, then t—'L = Coker f, and, for every
indecomposable module X, we have n arrows L — X if and only if there exist
n arrows X —> 1L, see Lemma I11.2.9 and Corollary IV.1.3.

The knitting technique works perfectly well for all finite acyclic Auslander—
Reiten quivers. The technique can be written as a formal algorithm, but we prefer to
illustrate it using examples.



168 IV The Auslander—Reiten quiver of an algebra

Example IV.1.11. Let A be the path algebra of the quiver

1 Y 2 B 3 a 4

The indecomposable projectives are

P=1 P= 2 Py=3 Py=3.

One sees immediately that rad P, = P; & P; whereas rad P4 = P3. Because of facts
1, 2 and 3 above, we have a full subquiver of I"(mod A) of the form

1
~ 5

/13
3
\4
3

Because all projectives are already present, we systematically apply fact 4, that
is, we compute cokernels successively until we reach the injectives. Because of fact

2

2, the left minimal almost split morphism starting at 1 is the inclusion I — 5.

Therefore, 7! (1) is the cokernel term in the almost split sequence

2 2

O—>1—>13—>3 — 0.

Similarly, =1 (3) is the cokernel term in the almost split sequence

24

0—>3—>123@§ — 55 —0.
Thus, we get the meshes
N 3
N,
13
N
PO R
N,
3

We claim that the morphism 123 — % <) 1234 is left minimal almost split.

Indeed, if 123 —> M is irreducible with M indecomposable, then either M
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is projective and 123 is an indecomposable summand of its radical, or we have

an irreducible morphism tM —> 123. Now, all the projectives have already
appeared; thus, M is not projective and we are in the second case. However, the

only irreducible morphisms of target 123 and of indecomposable source are the

2

inclusions 1 — and 3 — 123. Therefore, either M = 77(1) = % or

13
MZ13) = ]234 . This establishes our claim.

Consequently, ! 123 is the cokernel term in the almost split sequence

4 2 4

2 2 2
—3® 3 — 3 —0.

0%13

Similarly, 77! (g ) is the cokernel term in the almost split sequence
— 0.

_)2

0 4 24 :

3 13

Thus, we get two new meshes
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Now I} = % ,h =213 = 234 and 14 = 4. We have reached all the injectives
and thus finished knitting a connected component of I"(mod A).
Because of Auslander’s theorem, see Remark IV.1.6(e) above, this component is

the whole Auslander—Reiten quiver.

Example IV.1.12. Let A be given by the quiver

S

bound by ay$ = 0, By = 0. The indecomposable projectives are

p=1 p=1 Py =5 py=1 Ps =
1= 2= 3—% 4= 3 5 =

[\SEOVRV Y

An acyclic quiver, such as the quiver of A, always has a sink; thus, A has at least
one simple projective module. Here, P; = 1 is the only simple projective. Every
arrow of source P; admits a projective as a target, and the target admits P; as a
direct summand of its radical. This yields a unique arrow starting with P;, namely
the inclusion P —> P, which is thus left minimal almost split. Because Pj is not
injective, we get an almost split sequence

0—1-—% —7(1)=2-—0.

Let us search for the indecomposable modules X such that there exists an irreducible
morphism % — X. Either such an X is projective, and % is a direct summand of

its radical, or there exists an irreducible morphism tX —> % . In the first case,

3
X = P3 = 2, and in the second X = 1 (1) = 2; hence, the almost split sequence
1

2
1

3
00— —>2€92—>g — 0.
1

These two almost split sequences allow us to start the construction
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The module P; = = I is projective—injective. On the other hand, the

— N W

morphism 2 — g is left minimal almost split, so we have an almost split sequence

3

5 —3—0.

0—2—

On the other hand, rad Ps = % and rad P4 = 3, from which we deduce the following
full subquiver of I"(mod A)

____________ e
NSNS
NN

All projectives have now appeared. Therefore, the construction proceeds by
constructing cokernels recursively until we reach the injectives.
This yields the whole Auslander—Reiten quiver
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Example IV.1.13. Let A be given by the quiver
2
y * ‘\l
le \ ‘ﬁ/ w\a
v ° 6
L
5

bound by o = y§ and A = Bv. Here,

Pi=1, B=2, P=3 P—23, P=3 and Ps— +s
1=4 2= 1> 3= 1> 4*2137 5*? an 6*213 .
The knitting procedure gives easily I"(mod A)
6
45
AN
? %g 465 4 6
/\/\/\/\6 o N\
1 23 232333 — 23H2H42435%435H465 6
NN N SN e N
1 4
N PR / N / N /

3
1

Example IV.1.14. Sometimes, the knowledge of one or more projective—injectives
is very helpful, because one may apply Proposition II1.3.2. Let A be given by the
quiver
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bound by ¢ = y8, yu = 0 and B = 0. Here we have

2 3 4

h=1 P=7, b=, and P4:213
4

11=213 L= K=% and L=4

Because P4 = I is projective—injective, we have an almost split sequence

4
—23P2H3 —
1

23
1

4

39 —0

0—
hence the mesh

1 \ /23

1
2

On the other hand, 2 is a direct summand of rad P3 = 2 @ 1. The other summand
1 is also equal to rad P> so we have a full subquiver of I"(mod A)

We now have all projectives. We may continue knitting and deduce I" (mod A)
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NN N
NN NN
N NN
SN TN TN
NSNS

where one has to identify along the vertical dashed lines in such a way that the upper
part of I"(mod A) lies on a M&bius strip.

Example IV.1.15. The previous example shows that even if the Auslander—Reiten
quiver is not acyclic, it is sometimes possible to use the knitting procedure together
perhaps with other ingredients to construct the quiver. We give another example of
this type.

Let A be given by the quiver

bound by fa = 0. Here

_ _ 3
| and P3_12.

Although P; = rad P, the radical of P; has two indecomposable summands P;
and Sy = 2, the latter being neither projective nor injective. We compute 7! 5,. We
have a minimal injective copresentation of S>:

O—>Sz—>12—j>13—>0

1

and, because of Lemma I11.1.8, t~!S, = Cokerv~!j. Applying v™!, we get
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—1:
P Y P — 1_152 — 0.

Because P, = % and P; = 231 , the morphism v™—!j maps the simple top of P, to

the isomorphic summand of the socle of P3. Hence, 7718, = Cokerv™! j= ? and
we have an almost split sequence

O—>2—>231 —>? — 0.

Thus, we have the following full subquiver of I"(mod A)

2

/1
1

\3

2/21\3

—_

in which all projectives are present. Knitting gives I"(mod A)

i >
\

1

avi

- — N = —

23/
NG,
12\3/1

where one identifies along the vertical dotted lines.

For the next example, we recall from Subsection I.1.4 the definition of dimension
vector: if Sp, ..., S, form a complete set of representatives of the isoclasses of
simple A-modules, and M is an indecomposable A-module, the integer wu;(M)
denotes the number of composition factors of M that are isomorphic to S; for
each i with 1 < i < n. The dimension vector of M is then defined as dimM =

(ni1 (M), ..., pn(M)).
Example I1V.1.16. Let A be the Kronecker algebra with quiver
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The knitting procedure, starting from the indecomposable projectives P; = 1

and P, = 121 gives a connected component of /" (mod A)

INENED

The modules M; are precisely those constructed in Example 11.4.3.

This component is infinite. To prove this fact, it is convenient to use the
dimension vectors of the modules occurring in the component.

Indeed, an immediate induction shows that, for every indecomposable module
M; in this component with ¢+ > 0, we have dim M; = (¢ + 1, t). Dually, knitting
backwards from the indecomposable injectives yields another infinite connected
component

,,,,,,, 22222,,,,, o

For every indecomposable N; in this component, we have dimN; = (s, s + 1).
In particular, these two components are disjoint.

IV.1.4 The combinatorial structure of the Auslander—Reiten
quiver

The particular combinatorial structure of Auslander—Reiten quivers sometimes
allows statements to be neatly formulated in graphical terms that may otherwise
appear technical. We describe this structure in more detail.

Given a quiver Q = (Qg, Q1) and a point x € Qg, we denote the set of arrows
entering x by
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xT ={x e Qr:t(a) = x}
and the set of arrows leaving x by
xt={aeQr:s@) =x}.

We have used informally in Subsection I'V.1.2 the expression locally finite quiver.
We give a formal definition of local finiteness.

Definition IV.1.17. A quiver Q = (Qp, Q1) is called locally finite if, for each
x € Qp, the sets x* and x ™ are finite.

In particular, in a locally finite quiver, every point has finitely many neighbours.

For instance, every finite quiver is locally finite. Also, every connected com-
ponent of an Auslander—Reiten quiver is locally finite, because every almost split
sequence has at most finitely many indecomposable middle terms. We now define
the notion of translation quiver.

Definition IV.1.18. A translation quiver is a pair (I", t) where I' = ([, ') is a
locally finite quiver without loops and t: I\ Iy —> I\ I'y is a bijection defined
between two subsets of I such that, for any x € I\ I}, and any direct predecessor
y of x, there is a bijection from the set of arrows from y to x to the set of arrows
from 7x to y.

The partially defined bijection 7 is called the translation. The set I'; of points on
which 7 is not defined is called the set of projective points, and the set I';)’ of points
on which 7! is not defined is called the set of injective points. A full translation
subquiver (§2, w) of (I', T) is a pair such that £2 is a full subquiver of I" and, if
Xx € £2¢ is such that tx € 29, then wx = tx. If there is no ambiguity, we denote a
translation quiver (I, ) simply as I".

Given a nonprojective point x in a translation quiver I", the full translation
subquiver having as points x, Tx and all direct predecessors of x has the following

1

shape:
Y
;1177L1 /ilmll
; T
a . Pu
K ‘ﬁtmt
Yt

and is called a mesh. The following lemma is now obvious.

Tr
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Lemma IV.1.19. The Auslander—Reiten quiver of a finite dimensional algebra,
equipped with the Auslander—Reiten translation T has a natural translation quiver
structure. O

Of course, there exist translation quivers that are not Auslander—Reiten quivers.
We give examples below.

Example 1V.1.20. Let Q = (Qo, Q1) be a finite, connected and acyclic quiver. We
define its repetitive quiver Z Q as follows. The set of points of Z Q is the set

(Z Q=7 x Qo ={(n,i): n€Z,i e Qo}.
For each arrow «: i —> j in Q and each n € 7Z, there exist two arrows:
(n,a): (n,i) — (n,j) and n,o): (n+ 1, j) — (n,i)

in Z Q, and all arrows in Z Q are of one of these forms. For a given n € Z, the full
subquiver {n} x Q of Z Q with points {n} x Qo = {(n,i): i € Qp} is isomorphic
to Q and therefore Z Q may be viewed as consisting of an infinity of copies of Q
indexed by n € Z, together with additional arrows (n, ') going from the copy
with index n + 1 to the copy with index n. The translation is defined for every
(n,i) € (ZQ)oby t(n,i) = (n+ 1,i). The translation is thus an automorphism of
Z Q.

Let, for instance, Q be the quiver

d a b c

-—
° L] () °
-—

then Z Q is given by

//\\//\\//\\//\\2
\/\/\/\/
/\/\/\/\

(3,¢) (2,¢) (1,¢) (0, ¢) (-1 0¢)

(2 a)

Clearly, repetitive quivers are not Auslander—Reiten quivers: they contain neither
projectives nor injectives. However, repetitive quivers may occur as connected
components of the Auslander—Reiten quivers of some algebras.
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Translation quivers consist of meshes glued together. There are, therefore, two
types of paths in a translation quiver, those that factor through a mesh and those that
do not factor. This leads to the following definition.

Definition IV.1.21. A path x) — x; —> ... —> X, in a translation quiver I is
called sectional if, for every i with 0 <i < m — 2, we have 7x;42 # X;.

Sectional paths are easy to read off on a translation quiver. For instance, in the
example above, there is a sectional path

2,¢c) — (1,b) — (0,a) — (0, d),

but we may see that no path from (2, ¢) to (—1, a) is sectional.
If there is a sectional path from xq to x,, in I", then x( is said to be a sectional
predecessor of x,,, and x,, a sectional successor of xg.

Example IV.1.22. Let Q be the quiver Ay

1 2

oW

(infinitely many points and infinitely many arrows all oriented to the right). Then
Z Q has the following configuration:

NS

This repetitive quiver has infinite sectional paths: for each n € Z, one can
construct the following infinite path, which is clearly sectional:

n,1) — n,2) — ... — (n,i) — (n,i +1) — ...

Example IV.1.23. Let Z A be as constructed above and m > 0 an integer. Identify
each point x € (Z A)o with 7”"x and each arrow x — y with the arrow t"x —>
y. This identification gives a translation quiver, which we call stable tube (of
rank m, if we need to be more precise). For m = 2, for instance, the quiver looks
like
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sz

NSNS
NN
NSNS
NN

X
. .
| |
| |
| |
| |
| |
| |
| |
. .
| |
| |
| |
| |
| |
| |
| |
. .
| |
| |
| |

where one has to identify along the vertical dotted lines giving an infinite cylinder,
as follows

This translation quiver also has infinite sectional paths.

Stable tubes also occur as components of the Auslander—Reiten quiver for some
algebras, see, for instance, Section [V.4.

Example I1V.1.24. Let Q be a quiver. One can construct both N Q and (—N)Q in
the same fashion as we have done for Z Q. Let Q be the quiver
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then NQ

...... NN\
""" N NN\

and (—NQ)

NN
NV AVAV

For N Q, each point of the form (0, x) for x € Qo is an injective point whereas,
for (—N) Q, such a point is projective.

In Example IV.1.16 above, the connected component of the Auslander—Reiten
quiver of the Kronecker algebra containing the projectives is of the form (—N) Q°?,
whereas the component containing the injectives is of the form N Q°P, where Q is
the quiver of the Kronecker algebra.

IV.1.5 The use of Auslander—Reiten quivers

Why does one draw an Auslander—Reiten quiver? Certainly, it is an interesting
way to record and visualise the information we have about almost split sequences
and the way they fit together. This is already structural knowledge on the module
category. But there is more than that: the Auslander—Reiten quiver is also a
computational tool. For instance, the knitting procedure explained in Subsec-
tion IV.1.3, when applicable, gives a recursive way to construct indecomposable
modules and irreducible morphisms. If the connected component of the Auslander—
Reiten quiver one is knitting turns out to be finite, then, because of Auslander’s
theorem, see Remark IV.1.6(e), one gets in this way a complete set of isoclasses
of indecomposable modules. In addition, one can extract new information from the
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Auslander—Reiten quiver once it is constructed. Here are instances of homological
information that can be obtained.

(a) Computing morphisms. Because arrows in the Auslander—Reiten quiver repre-
sent irreducible morphisms, paths correspond to compositions of irreducible
morphisms. Thus, because of Corollary 11.4.6, one can compute from the
Auslander—Reiten quiver all morphisms between indecomposable modules that
do not belong to the infinite radical. Indeed, any such morphism corresponds to
a linear combination of paths in the Auslander—Reiten quiver. This procedure is
especially efficient if one is dealing with a representation-finite algebra, because
in this case the infinite radical of the module category is zero, as we shall see in
Chapter VI, and therefore every nonzero morphism is a linear combination of
irreducible morphisms. Also, over a representation-finite algebra, the absence of
multiple arrows in the Auslander—Reiten quiver, see Proposition IV.1.7, implies
that arrows can be identified with basis vectors of the space of irreducible
morphisms.

On the other hand, the Auslander-Reiten quiver does not represent the
morphisms lying in the infinite radical: returning to Example 11.4.3, we see that
the morphism §; — M lying in the infinite radical is not shown as a path in
the quiver. This is sometimes expressed by saying that the Auslander—Reiten
quiver represents the quotient category mod A/ rad’.

A nice application is the following: because of Proposition III.1.11, one can
recognise modules of small homological dimensions by means of morphisms:
indeed, for a module M, we have pdM < 1 (or idM < 1) if and only if
Homy (DA, M) = 0 (or Homy (t 7'M, A) = 0 respectively).

(b) Computing extensions. Because of the Auslander—Reiten formulae, Theo-
rem I11.2.4, extensions of the first order can be viewed as morphism sets: indeed,
let M, N be A-modules, then

Ext} (M, N) = DHom ,(z~'N, M) = DHomu (N, t M).

Extensions of higher order can be reduced to extensions of the first order
using dimension shifting: let M be a moduleand) — L — P — M —>
0 a short exact sequence with P projective, then, for every n > 1, we have
Ext (M, —) = Ext’, (L, -).

One can also get information on the tensor product and torsion groups
between modules. Indeed we recall well-known homological formulae: if M, N
are A-modules then we have, for every n > 0, a functorial isomorphism

Tor (M, DN) = DExt", (M, N).
In particular,

M ®, DN = DHomy (M, N).
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These will be proved in Proposition V.2.17 below.

In a given problem, it may not be necessary to know the whole of the
Auslander—Reiten quiver, but a small part of it may suffice to obtain the required
information. We illustrate these computations in an example.

Example IV.1.25. Let A be given by the quiver

bound by e = 0, oA = 0, yu = 0, «f = y4. Its Auslander—Reiten quiver
I"'(mod A) is given by

\/\V“\

/\/\];/64577\/
AN

\/\/V\V
/\/

\
/\7/
\/ NS

—
[Sa{=rEN|

Suppose we wish to find
Hom, (4253 45 ) :

Because A is representation-finite, every nonzero morphism is a sum of compo-
sitions of irreducible morphisms (see the previous remarks), and each of these
compositions is a path
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6
45 fa_45 Je 1.6
P B —>425—>45,and

45 fa_45 f8 fo. 6
2377 g 4 s

where the irreducible morphisms fi, ..., fo are the obvious inclusions and projec-
tions. But we also have almost split sequences

S o
0—>4253(f—4>>§@425 BRs o and

fs
(&)
5 \fs

00— 42 456 465 694(fﬂ>§) 465 — 0.
2
so that
f fs
Pfit+fsfa=(fafs) (fi) =0and f3fs+frfet+fofs =(f3/1f)| f6 | =0
f8

because of the exactness of these sequences. Therefore,

45 6
HomA( 23’45>

is two-dimensional and one may take, for instance, { f3 f> f1, fo fs f4} as a basis of
this vector space. Observe that the morphisms f3 f> f1 and fo fs fa have as their
respective images the simple modules 5 and 4. In addition, the morphism

ffefa=—fafsfa— fofsfa= 3201 — fofsfa

factors through the projective—injective
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45

and thus both
Hom, (4253 , 465> and Homy (4253 , 465 )

are one-dimensional vector spaces, generated respectively by {f3f>f1} and

{f32f1).

Assume that we wish to find

1 6 4
ExtA<45,]2>.
Applying the Auslander—Reiten formula yields
Exty (4657 142) = DHom, (142’T (465)> =
= DHomy (142 , 425> = DHomy (142 , 425) .

Indeed, no morphism

factors through an injective module, because no injective lies on a path

4 45

~

12 2

Homy < 142 , 425 >

is one-dimensional and spanned by a morphism with image g . Therefore,

(6 4
EXtA<45’12>

Now, it is easily seen that
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is one-dimensional. It is actually easy to see that there is a nonsplit short exact
sequence

4
12

6

45*>O

6
0— —>‘1‘®45*>
2

with the obvious morphisms. The class of this sequence is a basis of the Ext!-space
under consideration. Similarly, we have

Ext} (Z;‘) >~ DHomy (‘2‘T<g>) ~ DHomy (;‘g) =0
Homy <§,g) =0.

Suppose now we want to compute

7 5
Extf, (6’23)'

Clearly, we have a short exact sequence

because

7
0—5—>6 — . —0

7
5 6

with a projective middle term. Dimension shifting and the Auslander—Reiten
formulae give

Ext} <Z) , 253> >~ Ext} (5, 253> =~ DHomy (253 ,‘L’(S))

= DHomy (253 , 4253 > = DHomy (253 , 4253 >

which is one-dimensional. It is easily seen that a basis for this extension space is
given by the class of the exact sequence

1

0— > —>5@5—>g—>7—>0
23 2 V3 6 :

5
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Looking for the indecomposable modules M such that Homy (DA, tM) = 0, we
find all indecomposable modules M such that pd M < 1. These are

6
4 5 4 45 5 45 455 4 6
17273712723a425a271 2 3525 2 351 2 737175747457

[ Ne NN

Similarly, all indecomposable modules M such thatid M < 1 are

6 6 6 45
16, 405045:5 12

If one looks for pd 7, one can construct the following minimal projective resolution,
which gives pd7 = 3:

6 7
O—>1—>142*>45—>6 — 7 —0.
2 5

Doing the same calculation for the other simple modules, one easily gets
gl.dim. A = 3.
Exercises for Section I'V.1

Exercise IV.1.1. For each of the following bound quivers, compute the correspond-
ing Auslander—Reiten quiver.

@ 1223 P oat 5% affyd =0,yée =0
1 a 2
(b) [5 lﬂ ap=0,py=0
4 ; 3
1 & 2
(©) {5 lﬂ apy =0
4 3



188 IV The Auslander—Reiten quiver of an algebra

y’Q ’ 3\}" apy =0, pyé =0
d 1 4 y6€ =0, 564 =0
‘k(s € 5,/5 €la =0, daff =0
1,\a
@) PN R R SO S S 57 =0
T
1y . 4
O Sar o =0
T
L. p a4 af =0
(2 &3/ a6 =0
v =
2‘4 ‘y\5 r6 =0
1‘{ ‘a/4
(h) 3 af =0
T
P Sed =0
) ydel =0,
M 1 %o F LA S el =0
e
0 1 4 afp =y
‘kg/
; 2
(k) 1/ \4 “gzg
}/:
T T
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2
‘y '& B
M1 4 afp =0
‘XB/
‘yz‘& afp =0
(m) 1 4 y6 =0
‘Xg/ re =0
5/
3
A % \Q a
n1<——2 5 «— 6
e T
g af =0
(01 5 y6 =0
x ‘/7, 6e=0
3-574
1 4 ye =0
~ T N 55 =0
P 2+~——3 7 5 af =0
Y 3 p
/1 2/ \5 a
ST s T
(a) 1 4 7
\ /
6
v 3B
(r)1<572/ \4 u
‘8\6,/u \5
i~ T

EN|

afyd = w
Py = o¢

189
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()1 4 QOa ap =0,a%2=0

5 4
2 3 4
S ~J afy =0
1 /s-Lg alu =0
proe = Juvw
@5 6 74
v u
(04
(w1 2 3. 4 af =0
p
v af = yo
)1 2 3 Sa=0
0 pr=0
2
B TN af =y, e =0
w) 1 £ 4 oe=0,ea =0
2
BT TNa af =rs
®) 1 £ 4 Sea =0
5 7 per =0
3
ap =y?
(y)}/Cl:’2 ya =0
pr =0
2

/
% Aa =uf =vy,au =0,av =0, =0,

pv =0,y4 =0,yu =0

Exercise IV.1.2. Let A be the path algebra of the quiver
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1\\\\3////4
2“//’ \\\5

(a) Construct the component of I"(mod A) containing the indecomposable pro-
jective modules and show that this component contains no indecomposable
injective. Next, show that this component is infinite.

(b) Construct the component of 1" (mod A) containing the indecomposable injective
modules and show that this component contains no indecomposable projective.
Next, show that this component is infinite.

(c) Exhibit an indecomposable A-module belonging to neither of these compo-
nents, so that I"(mod A) has at least three connected components.

Exercise IV.1.3. Let A be the matrix algebra

K000 2000
kk0O bec0O

A= = ta,b,..., k
kK0KkO d0eco | @b8e
K00k £00g

with the ordinary matrix addition and multiplication. Let S; be the only simple
projective A-module. Prove that dim(Homy (S1, 77181)) = 2.

Exercise IV.1.4. Let A be given by the quiver

431 1 ==
£

bound by fa = 0, e = 0 and By = y€S.

(a) Compute the almost split sequences ending in the simple modules S and S3.
(b) Compute the almost split sequences that have projective—injective middle terms.
(c) Deduce the Auslander—Reiten quiver of A.

Exercise IV.1.5. Let A be a finite dimensional algebra. Prove that there is no arrow
in I'(mod A) from an injective to a projective, but there may be arrows from a
projective to an injective.

Exercise IV.1.6. Let A, be the algebra given by the quiver
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1 An-1 ) In 3 eeeees n—-1 .L n
bound by «;o;jy1 = 0 for all i. Compute, in terms of n, the extension group

EXt,{x,, (S, S1) forall j such that 1 < j < n.

Exercise IV.1.7. Let Q, Q' be quivers that have the same tree as the underlying
graph. Prove that Z Q and Z Q' are isomorphic quivers.

Exercise I'V.1.8. Give an example showing that the result of Exercise IV.1.7 above
is no longer true if one does not assume that the underlying graph is a tree.

Exercise IV.1.9. Show that the following translation quiver is not an Auslander—
Reiten quiver

/'

b

TG/C\G
\b/

IV.2 Postprojective and preinjective components

IV.2.1 Definitions and characterisations

This section is devoted to the study of two types of connected components that
occur frequently in Auslander—Reiten quivers. These are the so-called postprojective
and preinjective components, the second being dual to the first. The reason for
looking at this type of component is that, if they exist, then they can always be con-
structed using the knitting algorithm. In particular, postprojective and preinjective
components are acyclic. Thus, we start by explaining what we mean by an acyclic
component.

Let A be an algebra. We recall from Definition I1.4.7 that, if M, N are
indecomposable A-modules, then a radical path from M to N in ind A of length
t is a sequence

M=MoL5 My — . — M L5 m =N
where all M; are indecomposable and all f; are radical morphisms. A cycle through

an indecomposable module M is a radical path from M to itself of length greater
than or equal to one.
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IfM = M, i> M — ... — M;_ i> M; = M is a cycle through M
with all f; irreducible morphisms (that is, a path of irreducible morphisms), then it
can be identified to a cycle in the quiver I"(mod A). In this case, t > 2, because
there are no irreducible morphisms from a module to itself. In addition, all the M;
lie in the same connected component of /" (mod A), so that one can speak of a cycle
in that component. A component I" of I"(mod A) is called acyelic if it contains no
cycle.

For examples of cycles in I"(mod A), we refer to Examples IV.1.10, IV.1.14
and IV.1.15 above. All other components constructed in Subsection IV.1.3 are
acyclic. To motivate the next definition, we refer the reader to Example IV.1.9 above
showing the Auslander—Reiten quiver of the algebra given by the quiver

1 5y 2 5 3 a 4
O+ 0 +— @ +— 0

bound by a8y = 0. The quiver is acyclic and can be represented as follows:

N NN
. ./ N g/”

that is, every indecomposable module M can be written in the form T~/ P, where
t > 0 and P is indecomposable projective, or, equivalently, in the form 7°7, where
s > 0 and [ is indecomposable injective. This leads us to the following definition.

Definition IV.2.1. An acyclic component I" of I"(mod A) is called postprojective
(or preinjective) provided that every indecomposable M in I" can be written in the
form t—' P, with ¢t > 0 and P an indecomposable projective (or in the form t°1,
with s > 0 and / an indecomposable injective respectively). An indecomposable
module is called postprojective (or preinjective) if it belongs to a postprojective
component (or preinjective component respectively).

These concepts are dual to each other: applying the duality functor D to a
postprojective component yields a preinjective component in the module category
of the opposite algebra, and conversely.

The example preceding the definition shows that, given a representation-finite
algebra with acyclic Auslander—Reiten quiver, then this whole quiver is at the same
time a postprojective and a preinjective component.

We observe that M = ¢! P holds if and only if 7'M = P. Therefore, an acyclic
component is postprojective if and only if, for every M in that component, there
exists t > 0 such that 7'M is indecomposable projective. Another observation
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is that, if M = 77 'P lies in a postprojective component, where ¢t > 0 and P
is indecomposable projective, then ¢ and P are unique. Indeed, if M = t7'P =
77" P/, then we may assume without loss of generality that # > r and we get that
P = ¢'7" P’ is projective, from which we deduce that t = r and P = P’. The dual
observations hold for preinjective components.

We say that the indecomposable A-modules M and N belong to the same t-
orbit if there exists an integer ¢ such that M = t'N. Thus, if M, N belong to the
same t-orbit, then they must belong to the same component of I"(mod A). Clearly,
belonging to the same t-orbit is an equivalence relation. The equivalence classes
are the sets {t'M:t € Z,M in ind A}, called the t-orbits of I"(mod A). Thus,
one can define postprojective components to be acyclic components in which every
indecomposable lies in the t-orbit of an indecomposable projective. This implies
that the number of t-orbits in a postprojective component is bounded by the number
of isoclasses of indecomposable projective modules. In particular, the number is
finite. As we now see, postprojective components of Auslander—Reiten quivers can
also be characterised as being those acyclic components in which every module has
only finitely many predecessors, or, equivalently, such that every path ending in a
module is finite. Dual remarks can be made for preinjective components.

Proposition IV.2.2. Let I" be an acyclic component of I'(mod A). Then,

(@) I' is postprojective if and only if every module in it has finitely many
predecessors in I.

(b) I is preinjective if and only if every module in it has finitely many successors
inl.

Proof. We only prove (a) because the proof of (b) is dual.

Assume first that " is postprojective and that there exists a module M in I
that has infinitely many predecessors in I". Then, there exists an infinite path of
irreducible morphisms:

.— M, — M | — ... — M| — My=M

with all M; in I'. The acyclicity of I" implies that M; 2% M; for i # j. By
hypothesis, for each j > 0, there exists #; > 0 such that v/ M is indecomposable
projective. Because the infinitely many M distribute among the finitely many -
orbits of projectives in I”, there must exist an indecomposable projective module P
such that the set J = {;j: t'i M; = P} is infinite. Consider the function¢: J — N
defined by j + t;. It cannot be strictly decreasing, because J is an infinite set.
Therefore, there exist i, j € J such that we have bothi < j and#; < ¢;. But then
tiM; = P = t'iM; yields M; = t'i~"i M;. This relation implies the existence of
a path of irreducible morphisms M; ~ M; in I" of length at least one. In addition,
i < j also states that there is a path of irreducible morphisms M; ~» M; in I" of
length at least one. Combining these paths, we get a cycle in I", a contradiction.
This proves necessity.

Conversely, assume that I" is not postprojective, but every indecomposable
module in I has only finitely many predecessors in I". Because I" was assumed
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to be acyclic, but not postprojective, there exists an indecomposable module M in
I" such that, for every n > 0, " M is not projective. Then, for each n > 0, there
exists a path of irreducible morphisms:

M —>x—t"M—5x— .. —TM—%x—M

in I", and this contradicts our hypothesis that M has only finitely many predecessors
in I". |

For examples of infinite postprojective and preinjective components, we refer
the reader to Example IV.1.16, where we constructed these components for the
Kronecker algebra.

Other important properties of postprojective and preinjective components are
recorded in the following propositions. Observe that, in the same fashion as
for the radical in Subsection II.1.3, we can define a subfunctor rad%o(M ,—) of
Homy4 (M, —) and a subfunctor radjo(—, M) of Homu (—, M).

Proposition IV.2.3. Let I be a component of I'(mod A) and M, N indecompos-
able modules. Assume that N belongs to I.

(a) If I is postprojective, then

(i) rad%’(—, N) = 0. In particular, N has only finitely many predecessors in
ind A.

(1) If M is an indecomposable module such that rads (M, N) # 0, then there
exists a path of irreducible morphisms M ~~ N in I".

(b) If T is preinjective, then

(i) rad%’(N, =) = 0. In particular, N has only finitely many successors in
ind A.

(i1) If M is an indecomposable module such that rads (N, M) # O, then there
exists a path of irreducible morphisms N ~» M in I".

Proof. We prove only (a) because the proof of (b) is dual.

(i) Let f: M — N be a nonzero morphism in rady’ (M, N), where M is an
indecomposable module. Because of Proposition I1.4.9, there exist for every
i > 0, a path of irreducible morphisms

N[&N[_IH...—)Nlﬁ)N():N

and a morphism f; erad}°(M, N;) such that g; ... g; f; # 0. The acyclicity of
I' guarantees that the N; are distinct. But this contradicts the fact that, because
of Proposition IV.2.2, N has only finitely many predecessors in I". Therefore,
radff(M , N) = 0. The second statement follows directly.

(i1) This follows from Corollary I1.4.8(b) using item (i).
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Proposition IV.2.4. Let I' be a postprojective or preinjective component
of 'modA) and M an indecomposable in I'. Then, EndM = Kk and
Exth (M, M) = 0.

Proof. Suppose End M Z k. Because End M is local, we infer that rady (M, M) =
rad(End M) $# 0. Thus, there exists a nonzero radical morphism M — M.
Because of Proposition IV.2.3, this means that there exists a cycle through M lying
in I", a contradiction to its acyclicity.

Assume Ext/{‘ (M, M) # 0. Because of the Auslander—Reiten formula

Ext! (M, M) = DHom4 (M, M)

we deduce the existence of a nonzero morphism M — t M, and hence of a path
of irreducible morphisms M ~» tM in I'. Now, this path gives rise to a cycle
M ~~ tM — % —> M lying in I", and this is again a contradiction. O

IV.2.2 Postprojective and preinjective components for path
algebras

Let Q be a finite, connected and acyclic quiver. Because of Proposition 1.2.28,
the path algebra kQ is hereditary. We now prove that kQ always admits exactly
one postprojective component containing all indecomposable projectives and one
preinjective component containing all indecomposable injectives. Recall that, to
each point x in Q, we can assign an indecomposable projective kQ-module Py,
an indecomposable injective kQ-module 7, and a simple kQ-module S, such that
P./rad Py = Sy = soc Iy.
We need the following lemma.

Lemma IV.2.5. If A = kQ, then:

(a) The predecessors of points in I'(mod A) corresponding to indecomposable
projective A-modules also correspond to indecomposable projective modules.

(b) The successors of points in I'(mod A) corresponding to indecomposable
injective A-modules also correspond to indecomposable injective modules.

Proof. We prove only (a), because the proof of (b) is dual.

Assume that P is indecomposable projective and that f: M — P is
irreducible. Because of Theorem I1.2.24 and Example 11.2.21, f is the inclusion of a
direct summand of rad P into P. But then M is isomorphic to a submodule of P and
hence is projective, because A = kQ is hereditary. This proves that every immediate
predecessor of P is projective. The statement follows from an easy induction. O
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It follows from the preceding lemma that the full subquiver of I"(mod A)
consisting of the indecomposable projectives is connected and so lies in a unique
component of I"'(mod A). Dually, the full subquiver of I"(mod A) consisting of
the indecomposable injectives is connected and so lies in a unique component of
I'(mod A).

Lemma IV.2.6. If A = KQ, then the full subquiver of I (mod A) consisting of the
indecomposable projective (or injective) A-modules is connected and isomorphic to

Q.

Proof. We give the proof for the projectives, the proof for the injectives being
similar.

We know that the full subquiver of I"'(mod A) consisting of the projectives is
connected. To prove that the subquiver is isomorphic to Q°P, it suffices to prove
that, for any points x, y in Q, we have

o rad A
Irra (Py, Py) = ex —radzA ey.

We have Py = ex A, Py, = ey A, and hence functorial isomorphisms

rada (Py, Py) =rada(eyA, exA) = Homy(ey A, rad(exA))
=rad(eyA)ey = ex(rad A)ey.

Passing to the radical square, we have similarly

rad% (Py, P,) = rad(e, A, rad(e, A)).
Because A = KkQ is hereditary, rad(ex A) is projective (decomposable in general)
so rad4 (ey A, rad(ex A)) consists of those morphisms that are not sections, that is,

those whose image lies in rad(rad(ex A)) = radz(exA). Hence,

rad} (Py, Py) = Homy (ey A, rad® (e, A))
= rad’(ey A)ey = ey (rad” A)ey.

Passing to the quotients, we get

Irrg (Py, Py) =

rads (Py, Py) ~ ex(rad A)e, < rad A ) .
X y

rad2(Py. Py)  ec(rad® Aye,  \rad’ A

as required. O

Proposition IV.2.7. Let Q be a finite, connected and acyclic quiver and A =
kQ. Then I'(modkQ) admits a unique postprojective component containing all
indecomposable projectives and a unique preinjective component containing all
indecomposable injectives.
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Proof. Because of Lemma IV.2.6, there is a full connected subquiver of I"(mod A)
isomorphic to Q°7 and consisting of all indecomposable projectives. Let I" be the
unique connected component of I"(mod A) containing this subquiver.

We claim that every indecomposable module in I' is of the form 7~/ P, with
t > 0and x € Qy. If this is not the case, then there exists a module M that is not in
the T-orbit of a projective. Without loss of generality, we may assume that there exist
amodule L = 77" P and an irreducible morphism L — M or M — L. Assume
the former; then, the irreducible morphism t™" P — M induces an irreducible
morphism P — "M (by applying t"). By hypothesis, M does not lie in the t-
orbit of a projective, and so, in particular, T M is nonzero, and nonprojective. But
then we have an irreducible morphism t"*'M — P and Lemma IV.2.5 implies
that "' M is projective, a contradiction to our assumption on M.

It remains to prove that I” is acyclic. Indeed, suppose that

M=My-L% My — . — My DS M, =M

is a cycle (of irreducible morphisms) in I". Because of our claim above, for each i,
there exist an m; > 0 and an x; € Qg such that M; = v~ Py . Lett =min{f;: 1 <
i < m}. Then we have a cycle

M=t My L M — My S M, = oM

in I". In addition, this cycle contains a projective module. Because of Lemma I'V.2.5,
all the T’ M; are projective; thus, we get a cycle of indecomposable projective
modules in I". However, the full subquiver of I" consisting of the indecomposable
projectives is isomorphic to Q°7, because of Lemma IV.2.6. The acyclicity of Q%
then yields a contradiction.

The proof is similar for the preinjective components. O

Example IV.2.8. Let Q be the quiver

The indecomposable projective kQ-modules are

Pi=1 P=2 P=3 P =33

whereas the indecomposable injective kQ-modules are
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4
1

4

5 1324 Iy =4.

I = 3

L =

The full subquiver containing the indecomposable projectives is

Using the knitting procedure, we construct the postprojective component of
I'(modkQ)

OD

N /\
/1\1:’/ \/

Because we reach the injectives, this is the whole Auslander—Reiten quiver (thus,
kQ is representation-finite). Alternatively, one could construct the quiver starting
from the injectives, that is, with the full connected subquiver

4
1

.

J—— 4

/

4
3

4
2

and knit backwards.

Example I1V.2.9. Let Q be the quiver
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The indecomposable projective kQ-modules are

P=1 P=2 P=3 Py=4  Ps= 4,

Using the knitting procedure one gets the beginning of the postprojective component
of I'(modkQ)

1 55
234 11234

555

11223344\ 111299333404 —
, 5 55

3 / i 124 / \ 12334 / \
A 5

55
123 12344

This component is infinite and never reaches an injective. To see this, it is enough
to show (by induction, for instance) that dimg (t =" P5) = 5+6n and dimg(t 7" P;) =
143n,foreachn > landi € {1, ..., 4}. Dualising the procedure, we can construct
the preinjective component, which is infinite and does not contain any projective.

555 55 5

11234 234 1

. \\ / . \ / 5 \
13380 — o 7 e A B i
. 129 — i, /1234\ .
12334/ \124 / \ 3 /
555 55 5

12344 123 4
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As we have seen, I'(mod A) contains an infinite postprojective component
containing all indecomposable projectives, and an infinite preinjective component
containing all indecomposable injectives. One could ask whether these two are
the only components of I"(mod A). The answer is negative. Indeed, consider the

indecomposable module M = % of Examples 11.4.3 and II1.3.11. It lies in neither
the postprojective nor the preinjective component of I"(mod A). Indeed, as seen
in Example IV.1.16 above, the dimension of every indecomposable module lying
in one of these two components is odd, whereas dimxkM = 2. Now, we have a
projective cover morphism p: P, —> M. Because P, and M belong to different
components, it follows from Corollary I1.4.5 that p € rad%o(Pz, M). In particular,
rad’° (P, M) # 0.

Dually, the epimorphism ¢ : M — I with kernel S lies in rad}” (M, I»). Now
the composition gp: P, —> I is easily seen to equal the projection of P> onto
Py/rad P, = S, = I,. Therefore, gp € (rad%o(Pz, 12))2 is nonzero. This shows
that not only do we have rady” (P2, ) # 0 but also (rad}° (P2, 1))? #0.

IV.2.3 Indecomposables determined by their composition
Jactors

It is a standard question in representation theory to ask which indecomposable
modules over a given algebra are uniquely determined by their composition factors.
More precisely, let M, N be indecomposable modules over an algebra A. Assume
that M and N have exactly the same composition factors: does this condition imply
that M = N? In fact, we defined in Subsection I.1.4 a numerical invariant, called the
dimension vector, which counts the composition factors of a module. Our problem
may be reformulated as follows: assume that M, N are indecomposable A-modules
such that dim M = dim N: do we then have M = N? This is not true in general, as
the following example shows.

Example IV.2.11. Let A be the k-algebra given by the quiver

SN

le °3
bound by o = 0.
The indecomposable projective P3 = 123 and the indecomposable injective

L = 213 have the same composition factors but are not isomorphic.
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There are, however, some situations where the answer to our question is
positive. This is the case, for instance, when the indecomposable modules lie in
a postprojective (or preinjective) component.

Theorem IV.2.12. Let I" be a postprojective (or preinjective) component of
I'(mod A). If M, N are indecomposable modules in I" such that dimM = dimN,
then M = N.

Proof. Up to duality, we may assume that I" is postprojective.

We assume that M Z N andlet M — &;_, Ei, N — @],_, F}; be left minimal
almost split, where each of the E;, F; is indecomposable. We consider the sets &
and .# of predecessors of the E; and the F; in I", namely

& ={K € I' : there is a path of irreducible morphisms K ~- E;, for some i}
Z ={L e I : there is a path of irreducible morphisms L ~ F;, for some j}

Because I" is a postprojective component, both sets & and .# are finite, see
Proposition 1V.2.2. In addition, & and .% are closed under predecessors, that is,
if K € & (or L € %) and there is a path of irreducible morphisms K’ ~ K (or
L’ ~ L respectively), then K’ € & (or L’ € F respectively).

We divide our proof into several steps.

We first claim that t='M ¢ & and t~!N ¢ .%. Indeed, assume that 1! M € &.
Then there exist i and a path of irreducible morphisms =1 M ~ E;,. However, we
have an almost split sequence

0— M — @®_Ei — 1 'M — 0.

Hence, we get a cycle t™'!M ~ E;, — t7'M in I', a contradiction to its
acyclicity. The proof is the same for T~ !N ¢ .%Z. We have established our first
claim.

We next claim that either !N ¢ & or t~!N ¢ .Z. For, assume that this is
not the case, then both t™'N € & and t=!N € .Z. Thus, there exist i, j and
paths of irreducible morphisms t'N ~ E; and t~'M ~~ F;. Using the previous
almost split sequence and the corresponding one for N, we get a cycle of irreducible
morphisms

TIM~ Fj — t'Nw E — 7'M

again a contradiction to the acyclicity of I". This establishes our second claim.
Because of this second claim, we may assume without loss of generality that
TIN ¢ &,
Now we claim that, for every X € &, we have

dimg (Hom(X, M)) = dimg(Hom(X, N)).
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We prove the statement by induction. We define #(X), for an indecomposable
module X in I" to be the maximal length of a path in I" from a projective to X.

If h(X) = 0, then X is projective and the statement follows from our hypothesis
that dim M = dim N and Lemma I.1.19. Assume A (X) = n. From our hypothesis,
we may assume that X is not projective. Hence, there exists an almost split sequence:

(%) 0— X —>&_Yi—X—0

with the Y; indecomposable. Clearly, X € & implies tX, Yy € & for all k. In
addition, h(tX) < n and h(Yy) < n, for all k. Furthermore, 7 X is isomorphic
neither to M nor to N because neither ~' N nor ! M belongs to &, see our first
claim.

We claim that Extll(X, M) = 0. Indeed, the Auslander-Reiten formula
Extl (X, M) = DHom,(t~'M, X) states that if this is not the case, then
there exists a nonzero morphism t='M — X that gives rise to a cycle
"M ~ X ~ E; — 1t 'M in I', a contradiction. Therefore, applying
Hom 4 (—, M) to the almost split sequence (x) yields

0 — Homu (X, M) — @,_, Homy (Yy, M) — Homu(z X, M) — 0.
Similarly, we get a short exact sequence
0 —> Homu (X, N) — &} _, Homs (Y, N) — Homyu(tX, N) — 0.
Because h(Yy) < n for all k and A(rX) < n, the induction hypothesis gives that

dimg Homa (X, M) = Y, _, dimgHom4 (Yx, M) — dimkHomu (z X, M)
= > _; dimg Hom4 (Yg, N) — dimx Homu (t X, N)
= dimg Hom4 (X, N).

This completes the proof of our claim.

Because M € &, the previous claim gives that Homy4 (M, N) contains a nonzero
morphism f. Because we assumed M % N, the morphism f cannot be an
isomorphism and so must factor through the left minimal almost split morphism
M — &]_, E;. Therefore, there exists i such that Homa (E;, N) # 0. Applying
our last claim again yields Homy (E;, M) # 0, leading toacycle M ~» E; ~ M, a
contradiction that completes the proof. O

As an easy application, if A is a representation-finite algebra whose Auslander—
Reiten quiver is acyclic, then the indecomposable A-modules are uniquely deter-
mined by their dimension vectors.
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Exercises for Section I'V.2

Exercise IV.2.1. Construct the postprojective and preinjective components for each
algebra given by the following bound quivers

2
p
() 1‘/ ‘\“4
T T
2
S
(b) ! ‘k 4 / g bound by af =yé
u A
3/ \6
2
P ay
(©) 1'43‘k5 bound by a1 + a2fs +azfs =0
3 a
1 ‘ﬁ/ \ 6
(d ‘5\4‘/2 afp =yo, Ay =vp
2 / \ 7
I
1‘\/1
4
‘/3/ ‘\a )
(e) 2 6 aff =yé
T T
T

w
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2 P 5
® 1 ENS3 4 \aﬁ af =16 yv =4
=76 yv =
/r /i
4 H 7

Exercise IV.2.2. Let A be the algebra given by the quiver

S I

1m7//—2 +«—3— 1

bound by a8 = 0, By = 0. Prove that there exists one indecomposable projective
in the preinjective component, and that there exists one indecomposable projective
that belongs neither to the postprojective nor to the preinjective component.

Exercise IV.2.3. Let A = kQ, where Q is the quiver

Prove that the indecomposable module Ps/(S3 @ S4) belongs neither to the
postprojective nor to the preinjective component.

Exercise IV.2.4. If I" is a postprojective or preinjective component, and M lies in
I, prove that Ext, (M, M) =0 foralli > 1.

Exercise IV.2.5. Let A = kQ be a hereditary algebra. Prove that the following
conditions are equivalent:

(a) A is representation-finite.

(b) The postprojective component of I"(mod A) contains injectives.
(c) The preinjective component of I"(mod A) contains projectives.
(d) The postprojective and the preinjective components coincide.

Exercise IV.2.6. Let A be a representation-finite algebra with an acyclic
Auslander—Reiten quiver. Prove that gl. dim. A < oo.
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Exercise IV.2.7. Let A be a representation-finite algebra and Py, Py indecompos-
able projective modules such that dim P, = dim P,. Prove that, if P, 2 Py, then
there is a cycle in I'(mod A) passing through Py and Py.

Exercise 1V.2.8.

(a) Let I" be a postprojective component of I'(mod A). Prove that, for every
indecomposable module M in I, there exists a path of irreducible morphisms
between indecomposable modules

h fr
with P projective and f; ... f1 # 0.
(b) Let I' be a preinjective component of I'(mod A). Prove that, for every

indecomposable module M in I, there exists a path of irreducible morphisms
between indecomposable modules

M=Ny 5N — ... 5N, =1

with [ injective and g; ... g1 # O.

Exercise IV.2.9. Let A be a representation-finite algebra. Assume that there exists
an indecomposable module M such that Hom4 (P, M) # 0 for all indecomposable
projective A-modules P and that M does not lie on any cycle in I"(mod A). Prove
that:

(a) If L is such that there exists a path L ~» M in I'(mod A), thenpd L < 1.
(b) If N is such that there exists a path M ~» N in I'(mod A), thenid N < 1.

Deduce thatpd M < landid M < 1.

IV.3 The depth of a morphism

IV.3.1 The depth

Let A be an algebra, and M, N indecomposable modules. As seen in Lemma 11.2.2,
an irreducible morphism f: M — N lies in radg (M, N) \ radi(M , N). We are
now interested in the composition of irreducible morphisms in ind A. Indeed, let

M=My-L My — . m=nN

be a path of irreducible morphisms between indecomposable modules, we certainly
have f;... fi € rad’,(M, N). But it is not clear whether f; ... fi does not also
belong to a higher power of the radical, or even whether it is nonzero (actually,
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if f;...f1 =0,then f;... f] € rad%o (M, N)). It is useful to define a numerical
invariant expressing to which highest power of the radical a morphism belongs. For
this purpose, we recall from Subsection I1.4.1 that, given modules M, N, there exists
a sequence of vector subspaces:

Homu (M, N) = rad} (M, N) D rada(M, N) 2 radi (M, N) 2 ... D rad¥ (M, N).

Thus, given any morphism f: M —> N not lying in the infinite radical, there exists
a unique integer d > 0 such that f € rad‘f‘ (M, N)\ radiﬁ'l (M, N).

Definition IV.3.1. Let A be an algebra, M, N modules (not necessarily indecom-
posable) and f: M — N a morphism. We say that the depth of f is infinite
if f € radff(M , N), and otherwise is the unique natural number d such that

f eradd (M, N)\ radit! (M, N). We denote the depth of f by dp(f).

Thus, the zero morphism always has infinite depth. Let M, N be indecomposable
modules. Then

(a) The morphisms from M to N of depth zero are exactly the isomorphisms.

(b) The morphisms from M to N of depth one are exactly the irreducible.

(c) If M, N lie in distinct components of the Auslander—Reiten quiver of A, then,
because of Corollary I1.4.8, every morphism from M to N has infinite depth.

(d) If f: M — N has depth d, then, because of Corollary I1.4.8, there is a path
of irreducible morphisms of length d from M to N.

Example I1V.3.2. Let A be given by the quiver

Tt

bound by o = 0 and «® = 0. Its Auslander—Reiten quiver is as follows:

0 ]
NS \@
2/”\1/

where one identifies the two copies of S1 = 1. Consider the composition

f:f3f2f1:P1:112—>i — 11— 112
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mapping the simple top S; of Pj to the isomorphic direct summand of its socle. We
claim that dp(f) = 3. Indeed, f is the composition of three irreducible morphisms
and so lies in radi(Pl, P1). On the other hand, there is no nonzero path from P; to
P of length at least four. Indeed, the almost split sequence

1 1 1
0O— ), —,&, —1—0
gives that any such path is of the form f” for some m > 2, then f2 = 0 implies the
statement. Thus, f € radi(Pl, P1) \rad4(P1, P1) and so dp(f) = 3.

IV.3.2 The depth of a sectional path

As we have done for translation quivers, we define sectional paths for the module
category (compare with Definition IV.1.21). We say that a path of irreducible
morphisms

M=My2L My — . Lo =N

between indecomposable modules of length # > 1 is sectional if, for every i with
1 <i <t,wehave tM; Z M;_» (that is, the path factors through no mesh of the
Auslander—Reiten quiver). Our objective in this subsection is to compute the depth
of the composition f; ... f; and, in particular, to see whether the composition is
nonzero.

We start with an example that illustrates the typical behaviour of such a
composition.

Example IV.3.3. Let A be given by the quiver

bound by fa = 0. The Auslander—Reiten quiver I"(mod A) is as follows
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N SN
NN

N, e
© ; ©

where one identifies the two copies of the simple S, = 2, see Example IV.1.15. The
following path is sectional

2 f .23

hi 23 h h3 3 ha 23 g 3
| T T T 2 o T )

and is nonzero, with image Sy. It is the composition of six irreducible morphisms;
therefore, dp(ghahshohy f) > 6.

Lemma IV.3.4. Let
M=MyL5 My — . — M LM =N

be a sectional path. If there exist morphisms g: M —> L and f/: L —> N such
that (fy, f{): My—1 ® L —> N is right minimal almost split, then f/g+ f;... fi ¢
rad " (M, N).

Proof. The proof is done by induction on ¢ > 1. Assume ¢ = 1 and that there exist
fi: M — N irreducible, g: M — Land f{: L — N suchthat (f1, f{): M @
L —> N is right minimal almost split. The morphism (g,) M — M®Lisa

section, because (1 0) (;,) = 1.Then, f{g+ f1 = (f1 f{) (;,) is the composition of
the right minimal almost split, and therefore irreducible, morphism (f; f{) with a
section. Thus, it is irreducible because of Corollary I1.2.25. In particular, f{g+ fi ¢
radzz4 (M, N).

Assume that 7 > 2 and the statement holds true for all sectional paths of length
t — 1. If the statement does not hold true for the path

M=M01>M1—>...—>Mt_1i>Mt=N,

then there exist morphisms g: M —> L and f/: L —> N such that
(ft f}): M;—1 ® L —> N is right minimal almost split and also f/g + f; ... f1
belongs to radf:'1 (M, N).
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Because f/g+ f; ... f1 is aradical morphism and (f; f;) is right minimal almost
split, there exists (2’/) M —> M,_; & L such that

fih+ f0 = (£ 1) (,ﬁ‘) = flg+ fi... f1-

In addition, the fact that f/g + fi... f1 € rad’AH(M , N) implies that (}f‘,) €
rad, (M, M;_; & L). The previous equality reads

fith— fici . fO+ fl(W —g) =0

and therefore the morphism

()M — Mool
factors through the kernel K of (f; f/) that is, there exists k: M —> K such that
the following diagram with an exact row is commutative.

</J ) (fi 1)

O——K—M, | &L —— N

h—fi—1..fi
k h—g
M

Thus, h — fi—1...f1 = jk or, equivalently, h = jk + f;_1... f1. Now, the
morphism (j f;—1): K& M;_» — M,_; is irreducible. Indeed, we have two cases
to consider: if N is projective, then K = 0 and clearly (0 f;_1): 0bM,_; — M;_
is irreducible, whereas, if N is not projective, then the above left exact sequence is
almost split because (f; f/) is right minimal almost split. Hence, j is irreducible
and so is f;_1; therefore, (j f;—1) is irreducible because of Theorem 11.2.24.

Applying Theorem I1.2.24 again, there exist a right minimal almost split
morphism (j I f;—1): K ® K' & M;_» —> M;_; and a morphism

k
0 M —> K@K &M,
=2 i

(if t = 2, then M;_» = Mo = M and we take f;_; ... f to be the identity 1,s) such
that

(i o
J1fic1) <f,

)ij+ft—1ft—2---fl =h,
2. f1
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which lies in rad’, (M, M;_1). Then the induction hypothesis gives a contradiction.
This completes the proof. O

This lemma allows us to prove that the composition of morphisms lying on a
sectional path is always nonzero. In addition, its depth equals the length of the path.

Theorem IV.3.5. Let M = M) i) M, — ... — M;_, L M; = N be a
sectional path, then dp(f; ... f1) = t. In particular, f; ... fi # 0.

Proof. Indeed, it is easy to see that f;...f; € rad,(M,N). Suppose that
fi-.-fi € rad’AH(M , N). Because f; is irreducible, Theorem I1.2.24 gives
f{+ L —> N such that (f;, f/): M;—1 @ L —> N is right minimal almost split.
Taking g: M — L equal to zero, we get a contradiction to the previous lemma
and the result is established.

In addition, if f; ... fi = 0O, then the composition belongs to the infinite radical
and so it would have infinite depth, a contradiction. O

The next result is due to Bautista and Smalg.

Theorem IV.3.6. Let M i> M — ... — M;_4 i> M; be a path of
irreducible morphisms between indecomposable modules. If f; = f1, then this path
is not sectional.

Proof. Indeed, assume that the path is sectional and consider the cyclic subpath

M=Mo 25 My — I m =

If we compose this cycle with itself m times, then we still get a sectional path,
because fi: M — M; and f;: M;—y —> M, are the same. Writing f =
fi—1 ... f1, Theorem IV.3.5 above says that f™ # 0 for all m. However, f €
radq (M, M) = rad(End M); hence, f is nilpotent, a contradiction. O

The previous theorem is sometimes expressed by saying that “there are no
sectional cycles”. But one has to be careful: what the theorem really says is that
there are no sectional “cycles” where the first morphism and the last coincide. We
show this in an example.

Example 1V.3.7. Let A be the algebra of Example 1V.3.3 and consider the following
sectional path

23 m 23 M h3 3 hy 23
—>2—>12—>12.

The path starts and ends at the same module; therefore, it is a cycle in the module
category. However, if we add, as in the previous theorem, the morphism /4 either at
the beginning or /1 at the end, then the new path is no longer sectional.
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1V.3.3 Composition of two irreducible morphisms

It is not true in general that the depth of a composition of irreducible morphisms
equals the length of the corresponding path. As an example, we study here the
shortest nontrivial paths of irreducible morphisms, namely those of length two.
Assume that

Lt w5 N

is a path of irreducible morphisms between indecomposable modules. Because f, g
are irreducible, we have gf € radz(L, N). Because of Theorem IV.3.5,if tN Z L
then gf # 0 and dp(gf) = 2. In particular, gf ¢ rad?4 (L, N). If, however, the path
is not sectional, then it is reasonable to ask when do we have gf = 0 and, even
if gf # 0, do we have dp(gf) > 3? We start with an example showing that this
situation may occur.

Example IV.3.8. Let A be the algebra of Example IV.1.15, that is the one given by
the quiver

2
[ ]

AN

le 3
4
bound by Sa = 0. Because
2 f.23 & .3
0— 7 — " —5 —0

is an almost split sequence, we have g f = 0. Consider the morphism & = hqh3hoh
of Example IV.3.7. As seen before, i # 0. Therefore, define

f=f+nf:1 —27,.
We claim that f” is irreducible. Indeed, it is easy to see that 4> = 0 and therefore
A+hA—-h)=1=0—-h)(1+h),

that is, (1 + &) is invertible. Applying Corollary I1.2.25, we deduce that /' = (1 +
h) f is irreducible, because f is. In addition, gf = 0 implies that

gf =g(f +hf)=gf +ghf = ghf.
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But we have seen in Example IV.3.3 that ghf is the composition of six irreducible
morphisms lying on a sectional path. Therefore, dp(ghf) = 6, because of

2 3

Theorem IV.3.5. Then, gf’ also has depth 6. In particular, gf’ € rad>, (1 ‘5

Lemma IV.3.9. Let f: L — M and g: M —> N be irreducible morphisms
between indecomposables. If dp(gf) > 3, then there exist almost split sequences:

O—>Li>Mi>N—>O and O—>LL>ML>N—>O.

Proof. Because gf € radi (L, N), we infer from Theorem IV.3.5 that the path

L i) M & N is not sectional and so TN = L.

We claim that g is right minimal almost split. If this is not the case, then, because
of Theorem I1.2.24, there exists an irreducible morphism g’: M’ —> N such that
(gg): M ® M — N is right minimal almost split.

Because of Theorem I1.2.31, there exists an almost split sequence:

k
0—>L<L)>M@M’(g—g>)1v—>o.

Because gf < radi(L, N), there exists a factorisation gf = vw where w €
radi(L, X) and v € rads (X, N) for some module X. It follows from the definition

of almost split sequences and the fact that v is radical that there exists (:/ ) X —
M & M’ such that

v=(gg) (;‘/) =gu-+gu'.
Now,

(gg) (”w’f) =guw —gf +g'u'w = (gu+g'u)w—gf =vw—gf =0.

u'w
Hence, (“f,;f ) factors through (,f, ), that is, there exists [: L — L such that
uw—f\ _ [k
(') = ()1
or equivalently
(uw ) . <f+kl)
vw ] =\ 1 )

Because w € radi(L, X) we have dp(uw) > 2 so that dp(f + kl) > 2 thatis, f +
kl € rad%(L, M). Because f and k are irreducible, this implies that / is not a radical
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morphism. Therefore, I : L — L is an isomorphism. Then, k'l is irreducible,
again because of Corollary 11.2.25. But k'l = u’w and dp(u’w) > 2 so we get a
contradiction. This establishes our claim.

Because of Theorem I1.2.31, we deduce the existence of an almost split sequence

h ..
0— L — M- N—O. Dualising the argument, one gets the other almost
split sequence. O

We deduce necessary and sufficient conditions for the composition of two
irreducible morphisms to be nonzero and lie in the radical cube of the module
category (that is, have depth at least three).

Theorem IV.3.10. Let L, M, N be indecomposable modules. The following condi-
tions are equivalent:

(a) There exist irreducible morphisms h: L — M and h': M —> N such that
the composite h'h is nonzero and lies in radi (L,N);

(b) There exist an almost split sequence 0 — L i) M- N — 0anda
morphism ¢ € radi (M, M) such that gof # 0;

(c) There exists an almost split sequence 0 —> L i) M -5 N — 0and

rads (L, N) # 0.

Proof. (a) implies (b). Because of the above lemma, there exists an almost split
sequence:

0—L-L M2 N—o0

Using that radS(L, N) # 0, we have a path

L xS N
where f and [ are irreducible and k € rad4 (X, N) is such that kIf # 0. Clearly,
M Z X because there exists no irreducible morphism from M to M. Now, k: X —

N is a radical morphism; hence, there exists v: X —> M, making the following
diagram commute
X
v
| Jk
f |

0 L M N 0.

Because M Z X, the morphism v is also radical. The morphism / being irreducible,
we have ¢ = vl € rad?4 (M, M) and also

gof = gulf =kif #0.
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This completes the proof of this implication.

(b) implies (c). Indeed, g, f irreducible and ¢ € rad% (M, M) imply gof €
radi(L, N) Crada(L, N). Then, gof # 0 gives rad4 (L, N) # 0.

(c) implies (a). Let u: L —> N be a nonzero radical morphism. Then, there
exists v: L —> M such that u = gv:

L
e
0 Ll MmN 0

Assume first that v is irreducible. Because of Proposition IV.1.2, the residual class
f+ radi (L, M) is a k-basis for

rada (L, M)

Irrpa (L, M) = .
a ) radi(L,M)

Thus, there exist A € k and v’ € rad?(L, M) such that v = Af + v’. Then, we have
Ofu=gv=gOf+v)=gv.
Because gv’ € radi(L, N), we get radi (L, N) # 0, as required.

Assume now that v is not irreducible. Because v is radical, there exists
w: M —> M such that wf = v

The morphism w € End M is not an isomorphism, because otherwise v would be
irreducible. Consider # = f + wf: L —> M. Because w is a nonisomorphism, it
is nilpotent. Let m > 0 be such that w” = 0. Then

A+wy(d—wH+w?—... + =D w1 =1

says that 1 4+ w is invertible, so h = (1 4+ w)f is irreducible, because of
Corollary I1.2.25. Setting 4’ = g and using that gf = 0, we get

Wh=g(f+wf)=gf +gwf=gv=u#0.

This completes the proof. O
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Exercises for Section I'V.3

Exercise IV.3.1. Prove that the equivalent conditions of Theorem IV.3.10 are
equivalent to the further conditions:

(a) There exist an almost split sequence

0—L-1 M5 N—0

and nonisomorphisms ¢; : L —> X and ¢» : X —> N such that X is an
indecomposable module not isomorphic to M and ¢r¢1 # 0.
(b) There exist an almost split sequence

0—L-1 M5 N_—0

and rad% (L, N) # 0.

Exercise IV.3.2. Compute the depth of each nontrivial path in the module category
of the algebra of:

(a) Example IV.3.2.
(b) Example IV.3.3.

IV4 Modules over the Kronecker algebra

IV.4.1 Representing Kronecker modules

The objective of this section is to construct the Auslander—Reiten quiver of the
Kronecker algebra, namely the path algebra of the Kronecker quiver K>

le I———— o9

see 1.2.6. Throughout this section, we set A = kK. As seen in Example IV.1.16,
the quiver /" (mod A) has an infinite postprojective component & of the form

Mi=p7 - My = PP - Ms == --

N NS

My = 232
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and an infinite preinjective component 2 of the form

22222 ,,,,,,,,,,,,

To study representation-infinite algebras, one needs new techniques not discussed
so far. Indeed, if we want to compute all the indecomposable modules over a
representation-finite algebra, it suffices (though this is not always easy) to construct
a finite component of the Auslander—Reiten quiver and then apply Auslander’s
theorem, see Remark IV.1.6(e). For representation-infinite algebras, we must thus
devise techniques that allow us to check whether or not we have obtained all
isoclasses of indecomposable modules. These techniques are beyond the scope of
this book. For the Kronecker algebra, we use an ad hoc method with elementary,
but tedious, linear algebra. In particular, we prove that indecomposable A-modules
lying neither in & nor in 2 must belong to tubes in the sense of Example 1V.1.23.

Our first step is to define a category that we call category of representations of
K> and we denote as rep K». To motivate the introduction of this category, consider

the indecomposable projective module P, = M| = 121 . The top of the module is
the one-dimensional vector space Pre; = Sp and its radical is Pre; = S1 & S,
which is two-dimensional. Because of Lemma 1.2.15, Pre; admits as a basis {«, }
anda = eyaer, B = exBej belong to the two indecomposable summands of Pre
respectively. This amounts to saying that P, consists of two vector spaces P,e, and
Preq and two k-linear maps from Pep to Pre; explaining how the basis of Pe;
maps into Pre.

We let the objects of rep K> be quadruples (E», Eq, f, g), where E», E; are k-
vector spaces and f, g : Eo —> E are k-linear maps. Such a quadruple is called a
representation of K, and is depicted as follows:

(sa)

The maps f, g are called the structural maps of the representation.

f f
A morphism from ( E; —= E; )to ( E} —— E| ) is a pair (u,v) of
k-linear maps u : E; — E}, v : E — E| suchthatvf = f'u and vg = g'u,
that is, u, v are compatible with the structural maps.
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!
E; —/=F,

|, |

/ f/ /

E} :,§ Ej

8
The composition of morphisms in rep K; is defined componentwise: if (u, v) :
! f! f!

(Ep —= E1 )— ( E} —= E} )and(',v): ( Ef —= E| ) —
8 g g

f//
( Ef —= E{ ),then (', v')(u,v) = (u'u, v'v).
g//

We prove that the category of representations of the Kronecker quiver is
equivalent to the module category of the quiver’s path algebra. This is not specific
to the quiver K;. One can define, in the same way, representations of an arbitrary
acyclic quiver and this category of representations is equivalent to the module
category over the path algebra, see Exercises 1.2.22 and 1.2.20. In this book, we
only need this result in the context of the Kronecker quiver.

Lemma IV.4.1. We have an equivalence of categories mod A = rep K».

Proof. We first construct a k-functor F : modA — rep K. Let M be an A-
module. Recall from Subsection 1.2.6 that

A= {((b"c)2> :a,b,c,dek}

has e; = ((1) g) and e; = (g ?) forming a complete set of primitive orthogonal

idempotents. Set E; = Me, E; = Mej: these are finite dimensional vector spaces
because so is M. The structural maps f, g are defined by

0 0 0 O
fm:x((LO)O) and g(x)=x<<0,1)0>

for x € E>. The matrix equalities

( 0 o)(m)_( 0 0) and( 0 o)(oo)_( 0 0)
a,oo0/\oo/)  \a,00 ©o,nDpoJ\o1/)  \© DO

show that f(x), g(x) € E;. Clearly, f, g are k-linear. Let ¢ : M — N be a
morphism of A-modules. Then set F(¢) = (u, v) where u : Me; —> Nej, v :
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Mey; —> Ney are the restrictions of ¢ to Me; and Me, respectively. It is easily
checked that F is indeed a k-functor.

f
We next construct G : repKy; —> modA. Let ( Ex ——= E; ) be a
g

representation of K. Then the vector space M = E; @ E;| becomes a right A-
module if one defines multiplication as follows:

() (o) = Creoms e )
y (b,eyd)  \ fx)b+gx)c+ yd

f
forx € Ez,y € Ey,a,b,c,d € k. Let G( E; —= E; ) = M. A morphism
g

f f
(u,v) : ( By —= E; ) — ( E; —= E| ) inrep K> induces a k-linear
g <

map (6 8) : Ey ® Ey — E, @ E|. Itis A-linear because

u0 X a 0\  [(ux) a 0
[(0 v> (yﬂ ((b, ©) d) B (v(y)) <(b, c) d)
_( u(xa) )
-\ fu@)b + g'ux)c +v(y)d

_( u(xa) )
“ \uf ()b + vg(x)e + v(y)d

_(u0 X a 0

B (0v> [(y)((bm)d)]'

We set G(u, v) = (g O). The rest of the proof is the verification that G is a
v
k-functor, quasi-inverse to F. O

Because of this lemma, the problem of studying the module category of the
Kronecker algebra reduces to that of studying the category rep K». It is useful
to reformulate some statements in this latter context. For instance, if (u, v)

(Ep — = E1 )— ( E} —= E} )and(u',V):( Ej} —= E| ) —

( Ej —= E{ ) are morphisms, then the sequence of representations

(u,v) W' v

0—( Ey —= E; )—— ( Ey —= E} )——> ( Ejf —= E] )—0



220 IV The Auslander—Reiten quiver of an algebra

’
is exact if and only if the sequences of vector spaces 0 —> E3 5 E} N E]l — 0
and0 — E| > E| 5 E { — O are both exact. In particular, the structural maps

of ( E; ——= E; ) are (isomorphic to) the restrictions of the structural maps of

( E} —= E/ ). Direct sums of representations occur in the usual way:

0
f / r / / gf, /
(B=5E )8 (B =35 = (BoE = Fi o)
8 8
0g

In the sequel, we consider this equivalence mod A = rep K> as an identification.
We show how to view indecomposable postprojective modules as representations.

Let Py =1, P = 121 be the indecomposable projective A-modules. Applying the
formula of Lemma IV.4.1 for F yields

1
F(Pl):(O%;k) and F(Pz):(k%;kQ )
1

In general, M,, = is such that dimy M, e» = n, dimyM,e; = n + 1. Let
{ui, ..., u,} be abasis for Mye;, and let {vy, ..., v,41} be a basis for M, e;. Then,
f(ui) = vi, g(u;) = vjy41, for each i such that 1 <i < n, owing to the definitions
of f, g in Lemma IV.4.1 above. Diagrammatically, the actions of f, g are depicted
as

22..2

751 Uus Up
V Y V Y V Q\
V1 Vo V3 Vi Vi 41
In other words, we recover the picture for M, = 1212.::1'21 obtained in
Example 11.4.3.
For instance, taking M, = 12121, and letting {ug, uz}, {v1, v2, v3} be the

canonical bases in Mye;, Myej respectively, we get that f, g are respectively given
by the matrices

10 00
01 and 10
00 01
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Both f, g are injective: each of them maps a basis of E» to a linearly independent
setin E.

The situation with preinjective modules is dual and we leave it to the reader as
an exercise.

We now construct an infinite family of representations of K; that are neither
postprojective nor preinjective. Let n > 1, A € k, and J, (1) be the n x n-Jordan
block

200---0
1A0--

J,00=]1014---0

(=)

000---2

Denoting by I, the n x n-identity matrix, we set

Thus, if n = 1, we have Hxl = ( k —= k ). In general, if we denote by
)
{ui, ..., u,} the canonical basis for both coordinate spaces K", we get f(u;) = u;
for all i, whereas g(u;) = Au; + u;4 foralli # n, and g(u,) = Au,.
This corresponds to the picture

NI\ -\

In particular, the module Hg is the module H of Example I11.3.11.
Lemma IV.4.2. For every n, A, the representation H}! is indecomposable.

Proof. Because representations are modules, as seen in Lemma 1V.4.1, it suffices
to prove that End H,' is a local algebra. An endomorphism of H' is a pair (U, V)
of n x n-matrices compatible with the structural matrices I, J, (1). Compatibility
with I,, gives U = V, whereas compatibility with J,, (A1) is expressed by the equality
UJy(M) = J,(MU. Let U = [a;j];,; where a;; € K for all i, j. Comparing the
products U J, (A) and J, (MU yields a;; = 0if i < j,a;; = aj; and a;; = a;41,j+1
ifi > j. Thus, End H;' is isomorphic to the matrix algebra
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a 0 0 ---0

ar daj 0---0
R={|aaa 0| |geckforl<i<n

an ......... al

equipped with the ordinary matrix operations. Now, let

00 O0--0
a 0 0 ---0

I = azax 0 -0 g ek for2<i<n
Gy oo ere e 0

Then, I is an ideal of R, we have I" = 0 and R/I = k. Because of Theorem 1.1.7,
I = rad R. In addition, / is a maximal two-sided ideal in R. Therefore, R is local
and H;' is indecomposable. O

Corollary 1V4.3.

(a) The indecomposable representations H,' are neither postprojective nor prein-
jective ;

(b) EndH} =k ;

() Hy = H) ifand only ifn = m and » = p.

Proof.

(a) As seen in Example IV.1.16, the k-dimension of an indecomposable postpro-
jective or preinjective module is always odd, whereas dimy H;! = 2n for every
A.

(b) This follows from the proof of the lemma.

(c) Anisomorphism H! — H /T is given by a pair of invertible matrices (U, V)
compatible with the structural matrices. Then, n = m and compatibility with
the identity matrix gives U = V. Compatibility with the Jordan blocks yields
UJ,(\) = J,(uw)U. Because U is invertible, J,, (1) = Uu-ly, (u)U. Uniqueness
of the Jordan form gives A = u.

O

Dually, the representations

In(2)
Ky = (K" 1:; k")

are indecomposable for every n, A and neither postprojective nor preinjective. We
shall see later that, except for one particular case, K f can be reduced to H)t’.
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The representations H,' and K} and the corresponding modules are called
regular.

IV.4.2 Modules over the Kronecker algebra

The objective of this subsection is to prove that every indecomposable module over
the Kronecker algebra is isomorphic to a postprojective, or a preinjective or a regular
module. We follow here the proof of Burgermeister, which uses only elementary
linear algebra.

f
As a first reduction, we observe that a representation ( E;, —= E;| ) is
g

Df
indecomposable if and only if its dual ( DE; ——= DE, ) is as well. Thus, we
Dg
may, without loss of generality, assume that dimg £y < dimgE}.
f

From now on, we denote by M a representation ( E; —= E; ) of K> such
g

that, additionally, dimg E> < dimgE.

f
Lemma IV.4.4. Assume that M = ( E; ——= E| ) is indecomposable and not
g

simple. Then:

(a) Ker fNKerg =0;
®) Imf+Img = E;.
Proof.

(a) Assume that F = Ker f N Ker g is nonzero. Then, M has a direct summand
of the form ( F ——= 0 ). Because M is indecomposable, we have M =

(F —= 0 )anddimgkF = l.Butthen M = (k —= 0 ) = S, a
contradiction.

(b) Assume that Im f + Im g ; E; and F are such that £y = F & (Im f +

Img). Then ( 0 ——= F ) is a direct summand of M. Again, we get M =

( 0 —= k ) = S|, another contradiction.
O

Lemma IV4.5. Let n = dimgE>, n +m = dimgEy, for m > 0, d = dimg Ker f,
d = dimgKerg, andset W =Im f NImg, V = f~ L (W) N g~ ' (W). Then:
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(a) dimgW =n—d —d' —m;
(b) dimgV >n—d—d —2m;

(¢) ( V. —= W ) isa subrepresentation of M.

Proof.

(a) Because Im f +Im g = Ej, we have

dimg W = dimk(Im f) + dimx(Im g) — dimg £
= dimk £y — dimg (Ker f) + dimg E2 — dimg (Ker g) — dimg £
=n—d+n—-d —-—n—-m
=n—d-—d —m.

(b) dimy (W) = dimg W +dimy Ker f = n—d’ —m. Similarly, dimg ="' (W) =
n — d — m. Therefore,

dimgV = dimy f =1 (W) + dimgg = (W) — dimi (f~' (W) + g~ (W)
>Q@n—d—d —2m)—n
=n—d—d —2m.

(c) This is obvious.
O

In view of Lemma IV.4.5 above, let > 0 be such that dimyV =n —d — d’ —
2m + r. We need more notation. Let K = Ker f NV, K’ =KergNV and L, L' be
such thatKer f = L @ K,Kerg = L’ ® K’. Finally, set k = dimg K, X' = dimgK'.

Lemma IV.4.6.

(@) The sum V + L is direct. If H is such that f~' (W) = V & L & H, then
dimgkH = k+m—r;

(b) The sum V + L' is direct. If H' is such that g~" (W) = V @ L' ® H', then
dimgH' = k' +m —r;

(¢c) The sum (V® L@ H) + (L' ® H') is direct and its dimensionisn — r.

Proof.

(@) Assume x € VN L,thenx € V and x € L C Ker f so that x € K. Because
LN K =0, we getx =0. Therefore, V N L = 0 and the sum V + L is direct.
Let H be such that f~'(W) =V & L @ H. Then

dimg H = dimy f~1(W) — dimy L — dimy V
=n—d -m—d—-k—n—d—d —2m+r)
=k+m-—r.

(b) This is similar to (a).
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() Letx e (VOL®H)N(L' & H'). Then, x € f~'W)yng=l(w) = V.
But VN (L' @ H') = 0. Hence, x = 0 and the sum is direct. Its dimension is
n—d—d -2m+r)+d-k)+d -+ k+m—-r)+ &K +m—r)=n—r.

O

Lemma IV.4.7. Let X be suchthat E; =V ®LOHSL dH ®XandY =
f(X)+ g(X) C Eq. Then we have

@ Imf =W+ f(L)+ f(H) + f(X);

(b) Img =W + g(L) + g(H) + g(X);

(¢) We have isomorphisms L' = f(L'), H = f(H"), L = g(L) and H = g(H).
In addition, E; =W @& g(L)®g(H)® f(L® f(HYDY.

Proof.
(a) Because f(L) =0, we have f(V) + f(H) = ff~'(W) C W. Therefore,

Imf = f(V)+ f(H)+ f(L)+ fH) + f(X)
SW+f(L)+ f(H)+ f(X)
ClIm f

sothatIm f = W + f(L") + f(H) + f(X).
(b) This is similar to (a).
(c) Because of Lemma IV.4.4(b), we have

Er=Imf+Img=W+ f(L") + f(H) + g(L) + g(H) + Y.

The dimension of E; does not exceed the sum s of the dimensions of the
subspaces on the right-hand side. Because of Lemma IV.4.6(c), we have
dimg X = r; therefore, dimy f(X) < dimgX = r and similarly dimgg(X) < r.
Thus, we have

n+m=<s
<(m—-d-d —m)+ -+ d—k)+k+m—r)+&'+m—r)+2r
=n+m

where we have used Lemma IV.4.6(a) and (b). This implies that s = n + m
and we have the stated isomorphisms L' = f(L"), H = f(H'), L = g(L),
H = g(H). In addition, E=W @ g(L) ® g(H)® f(L) ® f(H) @Y.

O

Corollary IV4.8. M is isomorphic to one of the four subrepresentations

0
@ M=(L—=gL))=K,=(k —= k),
1
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1
b M=(L —= f(L) )=H =(k —=2 k);
0

(6)
0
COM=(X —=Y ) )=My=(k —= K ),
(®)
A M=(VeOHOH —= Wo f(HYDg(H) ).
Proof. Because M was assumed to be indecomposable, it follows from the
direct decompositions of E,, E; and the isomorphisms of Lemma IV.4.7 that

M is isomorphic to one of the four subrepresentations ( L —= g(L) ),

(L —= f) ), (X —=2 Y )and(VOHOH—= W f(H)Dg(H) ),

and the others vanish. In addition:

(@ M =( L —= g(L) ) then, because f(L) = 0, then M is indecompos-
able if and only if dimk L = 1. The statement follows.

(b) This is similar to (a).

(c) Because dimg Y = 2r (see proof of Lemma IV.4.7(c)), M is indecomposable
if and only if dimkX = 1, dimkyY = 2 and ¥ = f(X) & g(X). It is then
isomorphic to M.

(d) Follows from the previous arguments.

O

We already know that K 1 HO1 and M are indecomposable. Thus, it remains to
consider case (d). In this case, we have X = Y = L = L’ = 0; therefore, d = k,
d =k,r=0and

dimgV =n—d—d —2m
dmg W =n—d—-d —m
dimgk H =k4+m=d+m
dimg H =k'+m=d +m.

Also, K C f_l(W) =V ®Hand KN H = 0imply that K € V. Similarly,
K’ C V. The following picture shows how the maps f and g act
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Lemma IV.4.9. The subrepresentation ( V. —= W ) is indecomposable.

Proof. Assumethat( V. ——= W )E( V} —= W; Y&( Vo —= Wy )
is a nontrivial direct sum decomposition. Let W{ , Wﬁ be such that W; =
fV) @ W, W, = f(V») & Wj. Because f~'(W)) n f~'(Wy) N H <
f‘l(Wl) N f_l(Wz) = f‘l(Wl N W) = 0, we may choose a direct
sum decomposition H = U; @& U, so that f(U;) = Wl’ C W; and
fW) = W; € W,. Similarly, we choose a decomposition H = U; & Uj
such that g(U;) < W and g(U;) S W,. We then get a nontrivial direct

sum decomposition M = ( Vi@ U @ U —= W1 @ gWU) ® fU) ) @

(V20U20U;, —= W2®¢g(U2) @ f(Uy) ). This contradicts the indecom-
posability of M. O

We are ready to complete the proof of the classification theorem, saying
that every indecomposable module over the Kronecker algebra is postprojective,
preinjective or regular.

Theorem I1V.4.10. Let M = ( E; ——= E; ) be an indecomposable represen-
tation of Ko and n = dimg E».

(@) Ifdimg Ey = n, then M = H,! for some A € kor M = Kj;
(b) Ifdimg E| > n, then M = M,,;
(c) Ifdimg E < n, then M = N,,.

Proof.

(a) If dimg E1 = n = dimg E», then m = 0. We claim that one of f, g is an
isomorphism. This is proved by induction on n. If n = 1, this is trivial so let
n > 1.If d = d" = 0, then f, g are injective, and hence isomorphisms because
dimg E; = dimg E;. If one of d,d’ is positive, then we have dimg V =
dimk W < n. The induction hypothesis says that, in the indecomposable

subrepresentation ( V. ——= W ) of Lemma IV.4.9, the restriction of one of

f and g, say f,to V is an isomorphism. But then f~1(W) = V implies H = 0.
Therefore, f : V@& H —> W @ f(H’) is an isomorphism. This establishes

our claim.
As a consequence, M is isomorphic to a representation of the form
1 f
(E —= E ) or ( E—= E ), say the former. Consider E as a
4 1

module over the polynomial algebra k[¢] by setting ¢ - x = g(x) for x € E.
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(b)
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1
The indecomposability of the representation ( E ——= E ) implies the
8
indecomposability of the K[f]-module E. The structure theorem of modules
over a principal ideal domain implies that there exist an irreducible polynomial
p and s > 0 such that E = K[r]/ < p* >. Because k is algebraically closed,
g can be represented in some basis by a Jordan block J,(1). Thus, M = H'.

f
Similarly, M = ( E —= E ) implies M = K for some 1. Now, if 1 # 0,
1

1
then J,, (A) is invertible and so is f. Therefore, M = ( E —= E ) and we
f*l
are reduced to the case before.
Assume m > 1. We prove that if m > 2, then M is decomposable. This
is done by induction on n. If n = 1, this is trivial. If n > 1, consider

(V —= W ).WehavedimgW =n—d —d' —m = m+dimg V. Because

of the induction hypothesis, ( V. ——= W ) is decomposable, a contradiction
to Lemma 1V.4.9.

This implies m = 1. We prove by induction on n that M = M,,. If n =
then M = M|, = P,. Assumen = 2, thendimyV =n—d —d —2 >
implies d = d’ = 0 and V = 0. Therefore, dimyW =n—d —d' — 1 = 1,
dimgH =d+1=1and dimgH’' = d’' + 1 = 1. In this case, M can be written
in the form

1’

)=k W = g(H) =

that is, M = M.

Suppose n > 2. We know that ( V. ——= W ) is indecomposable. We
have t =dimyV =n—-d —-d —2 <nanddimyW =n—-d—-d —1 =
1 4 dimg V. The induction hypothesis applied to (V ——= W) yields that the

latter is isomorphic to M;. In particular, f and g are injective (see the remark
after Lemma IV.4.1). Therefore,d = 0,d’ = 0 and t = n — 2. But then M can
be written in the form
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H =k | k H=k
! g f g f g
f(H)4 \k/ \k/ k g(H) =k

where the part between the dotted lines is the subrepresentation (V. —= W)
= M,;. This shows that M = M,,.
(c) This is similar to (b).
0

This proof is not only long and tedious, but also very particular to the case of the
Kronecker algebra. There exist more general techniques, but, as mentioned at the
beginning of this section, we shall not cover them in this book.

IV.4.3 The Auslander—Reiten quiver of the Kronecker algebra

We already know that the Auslander—Reiten quiver of the Kronecker algebra admits
a postprojective component containing all indecomposables of the form M, and a
preinjective component containing all indecomposables of the form N,,. But there
remain modules of the form K or H;' for some A € k. To treat both cases as
one, we set K(’)‘ = H[; thus, our modules are of the form H;‘ with A € kU {oo}.
Alternatively, we may think of A as ranging over the projective line over k. We recall
that, because of Proposition 1.2.28, the Kronecker algebra is hereditary.

Lemma IV4.11. For each n > 2, there exist a monomorphism j, : H/{’_l — H/{'
and an epimorphism py, : H)' — H)f“l such that we have short exact sequences

. /
_ p
0— H' ' pr 25 gl 0

Jn P _
0— H' =5 H! 5 H'™' — 0

where j, = jn...jaand p,, = p2...py.

Proof. Indeed, let j, = (( ,n(i ' ) , ( 1’1(11 )) where each of the coordinate n x (n —1)-
matrices has a first row consisting of zeros and I, is the identity (n — 1) x (n — 1)-
matrix. [t is easily seen that j, : Hf_l —> H;! is a morphism of representations and
actually a monomorphism. Similarly, p, = ((I,—1,0), (I,-1,0)) : H)! — H){’_l
is an epimorphism of representations. The rest is a straightforward calculation. O
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One can visualise the maps p, and j,, using the picture before Lemma IV.4.2.
Indeed, letting n = 3, we have

and

On the left, the module Hf embeds as a submodule of Hf by means of j3, and
the quotient is isomorphic to H,', whereas on the right, we see that p3 maps Hf
epimorphically onto H7, with its kernel isomorphic to H,.

Lemma IV.4.12. If Homa(H)', H}') # O, then A = . In particular, if H}' and
H} belong to the same component of the Auslander—Reiten quiver, then A = p.

Proof. Assume Homy (H,/', H') # 0 with & # . We first claim that we may
assume m = n. If m < n then, because of Lemma IV.4.11, we have epimorphisms

P Pm+1
H!' S .. —— H"
I I
. . . . n . .
SO Pm+1 - - - Pn 18 an epimorphism. Hence, if f : H —> H;' is nonzero, neither is

fpmyr...pn Hy —> H}'. We treat the case m > n similarly, using the j, instead
of the p,. This establishes our claim.

Assume that f : H; — H}' is nonzero and let f be represented by the matrices
U,V which are compatible with the structural matrices. Compatibility with the
identity matrices yields U = V. Therefore, U = [q;;] satisfies U J, (u) = J,(M)U.
Equating the last columns, we get

ain 0 ain

axn Aain axn
wl .| = ) + A

Ann apn—1,n Ann

Using that A # u, we get a;, = 0 for all i. Equating the (n — 1)-st columns and
using that a;, = O for all i, we get similarly a; ,—; = O for all i. Descending
induction gives a;; = 0 for all i, j, thatis, U = 0, a contradiction. This proves the
first statement.

If H;' and H, belong to the same component, then there is a sequence of the form

Lo = HA", Li,...,.L; = H,T where the L; are indecomposable and for each i, we
have an irreducible morphism L; —> L;41 or L;11 —> L;. Applying repeatedly
the first statement, we get A = u. O

This implies that the indecomposable regular modules occur in a family of
connected components (.7;); of the Auslander—Reiten quiver, where each .73
contains all H;', with n > 1 (and no H, for o # 2). We now compute the almost
split sequences inside each .7;.
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Theorem IV.4.13. For every n > 1 and . € Kk U {00}, there is an almost split
sequence of the form

(')
-5

0 H)l:l 1 (=Pn+1 Jn)

1 —
H'"' & H) H' — 0
(where we agree that H)? = 0), and also all H}' with n > 1 belong to a tube of rank
1in I"'(mod A).

Proof. We use induction on n. If n = 1, then, because of Lemma IV.4.11, there is a
short exact sequence

0— H 5 5 H —0.
It is not split because Hf is indecomposable. Now, the short exact sequences 0 —>
Pp— P, — H)} —> 0and 0 — H)} — I — I, — OimplythattH)} =
Hkl, because vP; = I, vP» = I. Because of Corollary IV.4.3(b), End H)f = k.
Because of Exercise I11.2.6, the sequence is almost split.

Assume n > 1. The induction hypothesis says that there is an almost split
sequence

Jn .
0 —> H}tz_l (pn—l) H),:l @H);;,_z (=Pn jn-1)

H™'— 0.
A straightforward computation involving the explicit forms of the maps j, p, given
in the proof of Lemma IV.4.11 shows that the square

n Pn n—1
H?L Hk

W

Pn+1
HyH s HY

commutes. Hence, we have a short exact sequence

Jn+1 .
0 —s H{’ ( Pn ) H)tlH o H;“l (=Pn+1 Jn) Hf —0.
We claim that the sequence is almost split.

First, the short exact sequences 0 — P! — Py — H' — 0 and
0 — tH}! —> I} —> I} —> 0 show that the dimension vector dim (7 H;') =
ndimly —ndim/, = ndim P, — ndim P; = dim H' = (n, n). Because of the
classification theorem IV.4.10, there exists & € k U {oo} such that T H! = H;lz‘ On
the other hand, 7 H;' lies in the same Auslander-Reiten component as H,'. Applying
Lemma IV.4.12, we get 4 = A. This proves that T H]' = H;'.
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Because of the induction hypothesis, p, and j, are irreducible. We claim that
Pn+1, Jnt+1 are irreducible too. If not, then, because of Lemma I1.2.2(b), one of
them belongs to the radical square. But then pj,y1j,41 € radZ(H”, H)'). The
commutativity of the above square gives j,p, € radg (H}!, H}'). Because of
Lemma IV.3.9, j, is a proper epimorphism and p, a proper monomorphism, a
contradiction. This shows that p, 1, j,+1 are irreducible. Therefore, the last short
exact sequence is almost split.

Knitting together all these almost split sequences, we get a component of the
form

., "
o
.

where we identify along the vertical dotted lines to form a cylinder. This is indeed a
tube of rank 1. ]

We are now ready to describe the Auslander—Reiten quiver of the Kronecker
algebra. We need a notation. Let 4", Z be connected components of I"(mod A). We
write Homy4 (%, 2) = O if for all M in ¥ and N in &, we have Homu (M, N) = 0.

Corollary I1V.4.14. The Auslander—Reiten quiver I' (mod A) consists of a unique
postprojective component &2, a unique preinjective component 2 and an infinite
Sfamily (93)5.ekuico) Of tubes of rank one. In addition:

(a) Homu (F, J,,) = 0 whenever A # i,

(b) Homa (%, &) = 0 and Homu (2, ;) = 0 for every A;

(c) For every . € kU {oo}, H in J, M; in & and N; in 2, we have
Hom (M;, H) # 0 and Hom (H, N;) # 0.

Proof.

(a) This follows from Lemma IV.4.12.

(b) Assume that H in .75 and M; in &2 are such that Homu (H, M;) # 0. Let f :
H — M; be a nonzero morphism. Because H, M; lie in distinct components,
f is aradical morphism. If i > 1, there is a right minimal almost split morphism
Ml.z_1 —> M; through which f factors. Hence, Homs(H, M;_1) # O.
Descending induction yields Homy (H, M1) # 0. But M) is simple projec-
tive, and we get a contradiction. Therefore, Homy4 (23, &) = 0. Similarly,
Homu (2, 95) = 0.
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(¢) Let H lie in .75, and M; in £2. Then, there exist/ > 0 and k € {1, 2} such that
M; = t’lPk. Because H lies in .75, we have TH = H; hence, T lH = H.
Therefore, Homy (M;, H) = HomA(r’lPk, t’lH) = Homy (P, H), because
of Exercise II1.2.3(e). The latter equals He; = Ej and is seen to be nonzero for
every H in ; and k € {1, 2}. The last statement is proved similarly.

O

One may visualise I"(mod A) as follows

Tx, A€ kU {cx}

where maps go globally from left to right, taking into account that there is no map
from one tube to another, because of Lemma IV.4.12.

Exercises for Section I'V.4

Exercise IV.4.1. Prove directly that rep K; is an abelian category, without using
Lemma IV4.1.

Exercise IV.4.2. Prove that the finite dimensional k-algebra

a 0 -0
a a; .o

R= 24 la; € k
-
a, --- ap ap

with the ordinary matrix operations, is isomorphic to k[#]/ (t"*).

Exercise IV.4.3. Let A be the Kronecker algebra, S its unique simple projective,
S7 its unique simple injective and A € k U {oo}.

(a) Let M be any indecomposable postprojective module. Prove that there exist E
in .73, and a nonsplit short exact sequence:

O—M—E— S —0.
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(b) Let N be any indecomposable preinjective module. Prove that there exist F in
7, and a nonsplit short exact sequence:

00— S —F—N—0.

Exercise IV.4.4. Let A be the Kronecker algebra. Prove that every morphism from
the postprojective to the preinjective component factors through any tube, that is,
if M, N are respectively an indecomposable postprojective and an indecomposable
preinjective module, f : M — N is a nonzero morphism and A € k U {oco}, prove
that there exists X in .73 such that f factors through X.



Chapter V )
Endomorphism algebras oy

One of the constant lines of thinking in representation theory is the comparison
between the module categories of a given algebra and the endomorphism algebra of
some “well-chosen” module. For instance, the classical Morita theorem asserts that,
given a progenerator P of the module category of an algebra A, that is, a projective
module P that is also a generator of mod A, the categories mod A and mod(End P)
are equivalent. This implies that, from the point of view of representation theory,
we may assume that the algebras we deal with are basic, something we have done
consistently. If one takes the endomorphism algebra of a module that is not a
progenerator, then these modules categories are not equivalent, but nevertheless
several features from one may pass to the other. This approach, initiated with the
projectivisation procedure, much used by Auslander and his school, culminated in
the now very important tilting theory. The aim of this chapter is to present these
topics.

V.1 Projectivisation

V.1.1 The evaluation functor

Let A be an algebra. In Chapter II, we have seen how to translate certain statements
about modules into functorial language, that is, to pass from mod A to the category
Fun A of contravariant functors from mod A to modk. As we saw, this has the
advantage of reducing several problems about arbitrary A-modules to problems
about projective functors, which are easier to handle. Now, if instead of projective
functors, we have projective modules (over a different algebra), then the problem
may become even simpler.

Accordingly, in this subsection, we start from an algebra A, an A-module 7', and
set B = End4 (7). We recall that add T denotes the k-linear full subcategory of
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mod A consisting of the direct sums of summands of 7. As we shall see, the functor
Homy (T, —) maps modules in add T to projective B-modules. Thus, summands of
T become, via this functor, projective modules. For this reason, the technique we
are going to see is called “projectivisation”: it reduces some questions about 7 to
questions about projective B-modules.

It is convenient to start with the functor category Fun A of contravariant functors
from mod A to mod k. As in Subsection I1.3.1, we denote, for objects F, G of Fun A,
by Hom(F, G), the space of functorial morphisms from F to G. We define the
evaluation functor &: Fun A — mod B as follows: for every object F in Fun A,
we set

&(F) = F(T)
and, for every morphism ¢: FF —> G in Fun A,
&E(p) = @r: F(T) — G(T).

That is, functors and functorial morphisms are evaluated on the fixed object T.
To prove that the evaluation & maps Fun A to mod B, we must endow the vector
space F(T) with a B-module structure. Let x € F(T) and b € B. Thus, b is an
endomorphism of 7', which implies that F (b) is an endomorphism of F (7). We set

xb = F(b)(x).

We show that this is a B-module structure. Let b, ' € B. Then F(bb') = F(b")F (b)
because F is contravariant. Therefore, for every x € F(T),

x(bb")y = F(bb')(x) = F(b")F(b)(x) = F(b')(xb) = (xb)b'.

Thus, &(F) is indeed a B-module. In addition, for every functorial morphism
¢: F —> G, the morphism & (p) is B-linear, because

&(p)(xb) = g1 (xb) = @1 F(b)(x) = G(b)pr (x) = @1 (X)b = & (9)(x)b

for every x € F(T), b € B. This shows that the evaluation is a well-defined functor
from Fun A to mod B.

We prove that & induces an equivalence between mod B and a certain full
subcategory of Fun A, which is yet to be determined. To do this, we consider
the full subcategory proj B of mod B consisting of the projective B-modules. The
following lemma says that proj B is equivalent to the full subcategory &(T') of
Fun A consisting of all functors of the form Homy (—, Tp), with Tp in add T'.

We notice that, if Ty lies in add T', then Homu (T, Tp) = & Homy (—, Tp) lies in
addHomy (T, T) = add Bp, that is, is a projective B-module. Thus, & maps & (T)
into proj B.
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Lemma V.1.1. Let A be an algebra, T an A-module and B = End4(T). Then,

(a) For every Ty in add T, and every F in Fun A, we have an isomorphism
Hom(Homy (—, Ty), F) = Hompg(& Homy (—, Tp), &F).
(b) & induces an equivalence between & (T) and proj B.

Proof.

(a) Because we deal with k-linear functors, it suffices to prove the statement when
To = T. Because of Yoneda’s lemma I1.3.1, we have Hom(Homy (—, T), F) =
F(T) as B-modules. On the other hand,

Homp (& Homy(—, T), &F) = Hompg (Homu (T, T), F(T))
= Homp (B, F(T))
= F(T)g

This establishes the claim.

(b) Let Py be an indecomposable projective B-module. There exists a primitive
idempotent ep in B such that Py = egB = eg Homu (T, T) = Homu (T, eoT).
That is, there exists an indecomposable summand Ty = eqT of T4 such that
Py = Homy (T, Tp). This shows that &: Z(T) —> proj B is a well-defined
and dense functor. Because of (a), it is also full and faithful. The proof is
complete.

O

Because (a) in the above lemma offers only a restricted version of full faithful-
ness, we cannot expect that the equivalence &: &(T) — proj B would extend to
an equivalence from the whole of Fun A to mod B. We may however expect to find a
full subcategory of Fun A that would be equivalent to mod B. Let pres & (T') denote
the full subcategory of Fun A consisting of all functors F that admit a projective
presentation of the form

Homy(—, Ty) — Homu(—, Ty) — F — 0

with Ty, T} lying in add T, that is, Homy4 (—, Tp), Homy (—, T7) lying in Z(T),
such functors F are said to be & (T')-presented. We prove that the full subcategory
pres Z(T) of Fun A is equivalent to mod B.

Theorem V.1.2 (Projectivisation Theorem). Let A be an algebra, T a module and

B = End(T). Then the evaluation functor induces an equivalence of categories
& pres (T) —> mod B.

Proof. Clearly, &: pres #(T) —> mod B is a well-defined functor, because it is
the composition of the inclusion functor pres #(T) <— Fun A with the evaluation
&: FunA — mod B.

We first prove that & is dense. Let X be a B-module and consider a projective
presentation
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P1—P>P0—>X—>0

in mod B. Because of Lemma V.1.1(b), there exists a morphism f: 77 —> Tp with
Ty, Ty in add T such that Homu (T, f) = &(f) = p. Let F = Coker Homy (—, f).
We have an exact sequence

- _f
Homyu (—, T7) Onﬁ) ) Homy(—,Ty) — F — 0

in Fun A. Because Ty, T) € add T, we infer that F lies in pres & (T). Evaluating
the previous sequence on 7 and comparing with the original projective presentation
yield a commutative diagram in mod B with exact rows

Homa(T,f)

Homa (T'T1) Homu (T\Ty) —— F(T) —— 0

IR
IR

P

Py

b
[an)

Consequently, X = F(T) = &(F). This proves density.
To show that & is full and faithful, let ', G be objects in pres &?(T'). We have an
exact sequence in Fun A

Homy(—, T1) — Homy(—, Ty) — F — 0.

with Ty, T in add M. Applying to this sequence the functor Hom(—, G) yields an
exact sequence

0 — Hom(F, G) — Hom(Homy (—, Tp), G) — Hom(Homyu (—, T1), G).

Evaluating functors on T, and applying Lemma V.1.1(a), we get a commutative
diagram with exact rows

0 — Homp(F(T),G(T)) — Hompg(Homu (T, Ty), G(T)) — Homp(Homa (T, T1), G(T))

o~ >~

0 Hom(F,G) — Hom(Homu(—,Tp), G) Hom(Homu(—,Th),G)

The statement follows. m|

In the proof of full faithfulness above, we used that F lies in pres &?(T'), but not
that G lies in it. This is thanks to the statement of Lemma V.1.1(a).
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We have proved that the evaluation functor & induces horizontal equivalences in
the commutative diagram

P(T) ——E 5 proj B

| |

pres 2(T) — ¢ modB.

where the vertical arrows represent the inclusion functors.

Clearly, a similar statement holds if one uses covariant functors instead of
contravariant ones.

Another question arises: to which functors in pres &(T') do injective B-modules
correspond? Let inj B denote the full subcategory of mod B consisting of the
injective B-modules and W the full subcategory of Fun A consisting of all functors
of the form D Hom 4 (T, —) with Ty in add M.

Corollary V.1.3. The equivalence &: pres Z(T) — mod B restricts to an
equivalence W = inj B.

Proof. Let Iy be an indecomposable injective B-module and e( the corresponding
primitive idempotent in B. Then,

Iy = D(Beg) = D(Homu (T, T)eg) = DHomg (egT, T).

Thus, setting Ty = eoT, we get Iy = EDHomy(Ty, —). Let 4: mod B —>
pres Z(T) be a quasi-inverse of &, whose existence is granted by Theorem V.1.2.
Then we have 41y = DHomy(Ty, —). In particular, D Homy (7Tp, —) belongs to
pres Z(T). This shows that the evaluation functor &: W — inj B is well-defined
and dense.

It is full and faithful because of Yoneda’s lemma I1.3.1 and Lemma V.1.1(a) (in
both its contravariant and covariant versions), which imply that

Homp (D Homy (T, —), D Homy (T, —))
=~ Homp (D Homy (Ty, T), DHomyu (T, T))
= Homp (Homu (T, T), Homu (Tp, T))
= Hom(Homy (T, —), Homy (Tp, —))
= Hom(D Homy (Ty, —), DHomy (77, —))

where T1, Tp lie in add T. This completes the proof. m]

So far, we have been dealing with functors. It is time to give a module theoretic
interpretation of the projectivisation procedure. For this purpose, we observe what
happens when one evaluates a Hom-functor Homy(—, U): mod A — modKk,
where U is any A-module. Then,
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& Homy (—, U) = Homa (T, U) = Homa (T, —)(U).

Now, T has a canonical left B-module structure given by bt = b(¢t) fort € T
and b € B = End(T). This structure induces a right B-module structure on
Homu (T, U) as follows: forb € Band f: T —> U, we have

(fb)(1) = f(br) = (f o b)(t) = Homu (b, T)(f)(1)

for each t € T. This is exactly the B-module structure on & Homy (—, U) defined
at the beginning of the subsection. We may thus specialise Lemma V.1.1 and
Theorem V.1.2 to this context. We define pres 7 to be the full subcategory of mod A
consisting of all modules U4 such that there exists an exact sequence

Tl —_—> T() — U —0
with Ty, T1 in add T'. Such modules are called T-presented and the sequence is a
T -presentation.

Corollary V.1.4. Let A be an algebra, T a module and B = End4(T). Then

(a) For every Ty in addT and U in modA, there is an isomorphism
Homa(Tp, U) = HompMHomy(T, Ty), Homa(T,U)) given by f +>
Homu (T, f).

(b) The functor Homa (T, —) induces an equivalence between add T and proj B.

(c) The functor DHoma(—, T) induces an equivalence between the full subcate-
gory of pres T consisting of modules of the form DHomyu (Ty, T) with Ty in
add T, and inj B.

Proof.

(a) Because of Yoneda’s lemma II.3.1 and Lemma V.1.1(a), we have

Homy (Tp, U) = Hom(Homy (—, Tp), Homa (—, U))
= Hompg (& Homy (—, Tp), & Homa (—, U))
= Hompg (Homy (T, Tp), Homa (T, U))

the isomorphism being given by
f = Homy (=, f) = &Homy(—, f) = Homu(T, f).

(b) As seen in the proof of Lemma V.1.1(b), every indecomposable projective B-
module is of the form Py = Homyu (7, Tp), where Ty is an indecomposable
summand of T. This proves that &: addT —— proj B is well-defined and
dense. Full faithfulness follows from (a).

(c) The proof is similar to that of (b) and left as an exercise.
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Summing up, the functor Homy (7, —): mod A — mod B sends objects
in add T to projective B-modules whereas the functor D Homa(—, T) sends the
objects in add T to injective B-modules.

V.1.2 Projectivising projectives

Let, as in Subsection V.1.1, A be an algebra, T an A-module and B = End T. We
recall that 7 admits a left B-module structure defined by setting bt = b(t), for
b e B,t € T. Asaresult, T becomes a B — A-bimodule: indeed, every b € B isa
morphism in mod A from T to itself and so

b(ta) = b(t)a = (bt)a

fort € T, a € A. We have considered in Subsection V.1.1 the functor
Homu (7T, —): mod A — mod B. It is reasonable to consider the tensor functor
— ®p T: mod B — mod A too, sending each right B-module X to X ®p 7. The
latter has a right A-module structure defined by

x®ta = xQ (ta)

forx € X,t € T,a € A. We prove that X ®p T is T-presented.

Lemma V.1.5. The image of the tensor functor —®p T: mod B —> mod A lies
inpresT.

Proof. Indeed, an arbitrary B-module X admits a projective presentation of the
form

Pp— Php—>X—0

with Py, P; projective B-modules. Applying the right exact functor — ®p T yields
an exact sequence in mod A

PipT — PhyRpT — XQpT — 0.
Because BQp T4 = T4 and Py, Pylieinadd T, we have that Py ®p T and PyQ@p T

lie in add T'. Therefore, X @ p T is T -presented. m]

This lemma shows the existence of a functor — ® 3 T: mod B —> pres 7. We
ask under which conditions this functor is a quasi-inverse to the restriction to pres T
of the functor Homy (7, —): mod A — mod B. For this purpose, we recall the
well-known adjunction isomorphism

Homs (X ®p T, M) = Homp (X, Homa (T, M))
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bifunctorial in the B-module X and the A-module M. The existence of this
isomorphism entails the existence of the functorial morphisms

ey - Homa (T, MY®p T — M
/et = f()
forteT, f: T — M and

§x : X — Homu (T, X ®pT)
X t—x®1)

fort € T, x € X. These morphisms are respectively called the counit and the
unit of the adjunction. Using these morphisms, we can reprove Corollary V.1.4(b)
by showing that — ® g T restricted to proj B is a quasi-inverse of the restriction of
Homu (T, —) toaddT.

Lemma V.1.6.

(a) Let Ty be inadd T, then €7, is an isomorphism.
(b) Let Py be in proj B, then 6 p, is an isomorphism.

Proof. We only prove (a), because the proof of (b) is similar.
Because we deal with k-linear functors, it suffices to prove the statement when
To = T . But in this case, the counit

er: Homuy (T, T)® T =B @ T — T

is the morphism b ® t — b(t) = bt (for b € B, t € T), which defines the left
B-module structure of T. Therefore, it is an isomorphism of A-modules. O

We now assume that 7 is a projective A-module. In this case, there exists an
idempotent e € A such that T = eA. Then, B =End T = eAe.

Proposition V.1.7. Let e € A be an idempotent, T = eA and B = eAe. Then the
restriction to pres T of the functor Homy (T, —) and the functor — Qp T induce
quasi-inverse equivalences between pres T and mod B.

Proof. Tt suffices to prove that, for each T-presented A-module M and each B-
module X, the morphisms €)7 and §x are isomorphisms. Let M be in pres T. Then,
there exist Ty, 77 in add T and an exact sequence

T, — Ty — M — 0.
Because T is projective, Hom4 (7', —) is exact. Thus, we get an exact sequence

Homu (T, T1) — Homyu (T, Ty) — Homu (T, M) — O.

Applying the right exact functor — ® 3 T and comparing with the first sequence
above yields a commutative diagram with exact rows
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Homu (T\H)®p T — Homa(T,10)®p T — Homa (T ,M)Q®pT — 0

£y €Ty EM

T Th M 0

Because of Lemma V.1.6, e7, and &7, are isomorphisms. Hence, so is eyy.
Similarly, if X is a B-module, then there exists a projective presentation

PP—Ph—X—0

in mod B. Applying first the right exact functor — ® 3 T and then the exact functor
Hom4 (T, —) yields a commutative diagram with exact rows

Pl P() X 0

op, op, Ox

Homa (T, P, @5 T) — Homus(T,Py®pT) — Homu(T, X ®pT) — 0

Again, Lemma V.1.6 says that § p,, § p; are isomorphisms. Hence, so is §x. m]

Assuming that T is projective is certainly a strong assumption, but if one reads
carefully the proof of the proposition, one sees that what is really needed is that T
satisfies the following condition: for any A-module M such that there is an exact
sequence Ty —> Tp —> M — 0 with Ty, Ty in add T, the induced sequence

Homu (T, T1) — Homu (T, Ty) —> Homu (T, M) — 0O

in mod B is also exact. This remark will be used in the coming developments.

Example V.1.8. Let A be given by the quiver

le

‘If/"\o’.4
R

bound by af = y§.Lete =e; +ex+e4. Then T = P1 @ P, @ P4 while B = eAe
is the hereditary algebra given by the quiver

1 2
° °

'S
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where the point i corresponds to the indecomposable projective A-module P;,
for i € {1,2,4}. Then, presT contains exactly as indecomposable objects the
indecomposable A-modules whose minimal projective presentation involves only
the projectives Py, P, and P4. Looking at the Auslander—Reiten quiver of A:

/\/\/\

—»23%

\/\/\/

one sees immediately that

4
presT = {1,1,23 2,23,3}

Rearranging these modules, one gets a quiver isomorphic to the Auslander—Reiten
quiver of mod B

2/1\4
SN SN

Exercises for Section V.1

Exercise V.1.1. Let T be a projective A-module, and M an A-module in pres 7.
Prove that pd M < 1 implies pd Homy4 (T, M) < 1.

Exercise V.1.2. Let T be a progenerator of mod A and B = EndT. Prove that
mod A = mod B (this is the classical Morita theorem).

Exercise V.1.3. Let I be an injective A-module and B = End /. Prove that mod B
is equivalent to the full subcategory copres I of mod A consisting of all A-modules
M having an injective copresentation

00— M— Iy — I

with Iy, 11 in add 1.
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Exercise V.1.4. Let A be an algebra and 7 an A-module. Given an A-module
M, a morphism fj : Tyy —> M with Ty in add T is called a right add T-
approximation if, whenever fy : To —> M is a morphism with Ty in add 7T,
there exists g : Tp —> Ty such that fo = fug.

(a) Prove that f)s is a right add T-approximation if and only if the functorial

morphism Homa (—, fy) : Homu(—, TM)’addT —> Homy (=, M)|addr 1

an epimorphism.

(b) Let {f1,..., fa} be a generating set of the End T-module Hom4 (7', M) and
f=1fi...fs1: T4 — M. Prove that f is a right add T-approximation.

(c) With the notation of (b), prove that f is an epimorphism if and only if M is
generated by T'.

(d) Prove that, for every module M, there always exists a right addT-
approximation, which is also right minimal.

(e) Let fyy : Ty — M, f;, : Ty, —> M be right add T -approximations that are
right minimal. Prove that there exists an isomorphism g : T;, —> T such that
fu = fug.

Exercise V.1.5. Let A be an algebra and 7" an A-module. One defines the left
add T-approximation of an A-module M dually to right add 7T'-approximation.
State and prove the results corresponding to those of the previous exercise.

Exercise V.1.6. Let A be an algebra, € a full abelian subcategory of mod A and
T a generator of ¢, which is projective in €. Prove that Homs (7T, —): ¢ —
mod(End T) is an equivalence of categories.

Exercise V.1.7. Let A be an algebra, 7 an A-module and B = End T4. Prove that,
for every projective B-module P and every B-module X, the morphism g — g®T
induces an isomorphism Homp (X, P) ZE Homy (X ®p T, P Qp T).

Exercise V.1.8. Let A be an algebra, 7 an A-module and B = End T4. Prove that,
for every module M, the A-module Homy (7, M) ® g T is generated by T4. Deduce
that the morphism &), : Homy (T, M) ® g T —> M is surjective if and only if M
is generated by T'.

Exercise V.1.9. Let A be an algebra, T an A-module and B = End Ty4. Prove
that the morphism x — (f +— f(x)) from M to Hompor (Homy (M, T), T) is
injective if and only if M is cogenerated by T'.

Exercise V.1.10. For each of the bound quiver algebras A below and each of the
idempotents e indicated, compute e Ae and show explicitly the equivalence between
pres(eA) and mod(eAe).

afy =0;
@19l 5.2
e=e1+ ey +eyq.
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aff =yo,0ea =0,fey =0

/ \ e=e; +ex+e
\ / o
/\
\/

B ‘\ af =yéu =pv ;
e =e1] + e+ e3+ e

V.2 Tilting theory

V.2.1 Tilting modules

Tilting theory is at present one of the most active areas of research in the represen-
tation theory of algebras, with applications in several other parts of mathematics.
Our purpose here is not to give an overview, but rather a short introduction. The
main idea of tilting theory is to projectivise a module that is “close enough” to
a progenerator of the module category, and then to compare the module category
of the original algebra with that of the endomorphism algebra of the projectivised
module.

Definition V.2.1. Let A be an algebra, an A-module T is called a partial tilting
module if it satisfies the following conditions:

(@) pdT < 1;and
(b) Ext\ (T, T)=0.

In addition, it is a tilting module if it also satisfies the third condition:

(c) There is a short exact sequence of the form
00— Ay —T)—T) — 0

with Tp, 71 inadd T'.

Thus, every projective module is a partial tilting module and every progenerator
is a tilting module. All three conditions above express in some way that tilting
modules are close to progenerators. In addition:

(a) Because of Proposition III.1.11, the first condition is equivalent to saying that
Homy (DA, tT) = 0, that is, no injective maps nontrivially to t7. Because of
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(b)

(©)

Theorem III.2.4, the second condition in the presence of the first is equivalent
to saying that Homy (7', tT) = 0, see Exercise I11.2.3(a).

To verify the third condition, it suffices to construct, for each indecomposable
projective A-module P,, a short exact sequence 0 — P, —> T)? —
Txl — 0, with Txo, Txl in add T'. Indeed, the direct sum of such sequences
yields the required sequence for A4.

Every tilting module T is faithful, that is, its annihilator Ann7 = {a €
A: Ta = 0} vanishes. Indeed, because of condition (c) of the definition, there
exists a monomorphism j: A —> Tp with Ty in add 7. Let a € Ann T, then

j(a) = j(a € Toa = 0. Because j is injective, we infer that a = 0.

We give an example of a tilting module.

Example V.2.2. Let A be given by the quiver

1

2e

/N

.
s

bound by ¢ = y§ and ae = 0. Then, I"(mod A) is

3

NN SN
SN S

/12\34/2\2

NN

1
We claim that

5
T=1® ' ®3 o4@34
2

is a tilting module. The short exact sequences
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34
2

0—2— 132@‘2‘ — =0

?

0—2— 132 —>? — 0 and 0—>2—>§ —4—0

and the projectivity of

5
Pp=1 and P;s = 34
2

yield that pd7 = 1. To prove that Ext}L\(T, T) = DHomu(T,tT) = 0, we
need to show that, for any indecomposable summands T;, T; of T, we have
Homy (T;, tT;) = 0. Because the existence of a nonzero morphism 7; —> T
implies the existence of a path from 7; to 7} in I'(mod A), we see easily, for

instance, that
HomA<?,T(?>> =H0mA<? ,g) =0 and

HomA(?,T(4)> :HomA<?,%> =0.

The other cases are done in the same manner. The third condition follows from the
fact that the projectives Py and Ps are in add T, and from the short exact sequences

34

12 H?@“Hov

0—2—

0— 3 3% 4 .0 and 0—3 34—>? — 0.

12 12 2 12

We justify now the name of partial tilting module by proving that every partial
tilting module can be completed to (that is, is a direct summand of) a tilting module.
We need a homological lemma.

Lemma V.2.3. Let T, M be A-modules. Then, there exists a short exact sequence
O— M —FE—Ty—0

with Ty in add T, such that the connecting morphism §: Homu (T, Tp) —>
Extk (T, M) is surjective.
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Proof. If Extk(T, M) = 0, there is nothing to prove. Otherwise, let {£1, ..., &;} be
a basis of the k-vector space Exti‘(T, M), where each &; is represented by a short
exact sequence

0— M-I B 57 0.

Letc = (1,1,...,1): MY —s M be the codiagonal morphism. There exists a
commutative diagram with exact rows:

8i

0 i E, 0
0 md L o, 28 0
0 E T4 0

where @ f;, @g; are the morphisms induced by passing to the direct sums, u;, v;, w;
are the respective inclusion morphisms into the i’ coordinate space and E is the
amalgamated sum of the morphisms ¢ and @ f;. Because cu; = 1y, for every i, we
deduce another commutative diagram with exact rows

0 M E, T 0
‘ hv,l Jwi
0 M-l g% pd 0

Let & be the element of EXtL(Td , M) represented by the lower sequence. The
previous diagram says that §; = Ext/{\(wi, M) (&) for every i, that is, & lies in the
image of the connecting morphism §. Because the &; generate Exti‘ (T, M), we infer
that § is surjective. O

We state and prove the announced result, known as Bongartz’ lemma.

Proposition V.2.4. Let T be a partial tilting A-module. Then, there exists a module
E such that T & E is a tilting module.

Proof. Because of Lemma V.2.3 above, there exists a short exact sequence
(%) 0—A—FE—Ty—0

with Tp in add T such that the connecting morphism Homx (7', 7p) —> Ext}4 (T, A
is surjective. Applying Hom4 (7', —) to () yields an exact cohomology sequence
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... —> Homu(T, Ty) —> Ext4(T, A) — Ext\ (T, E) — Ext\(T, Tp) =0

where the last equality follows from the definition of a partial tilting module.
Surjectivity of the connecting morphism yields Exti‘(T, E)=0.

Applying successively the functors Homu(—, 7) and Homu(—, E) to the
sequence (), we get the exact sequences

0 = Ext}(Ty, T) —> Ext},(E, T) — Ext\ (A, T) = 0 and
0 = Ext\ (T, E) — Ext\(E, E) — Ext} (A, E) = 0.

Therefore, Ext, (E, T) = 0 = Ext\(E, E), so that Ext\ (T @ E,T @ E) = 0.
Because pd T < 1, the sequence (x) yields pd E < 1 and so pd(T & E) < 1. The
third condition of the definition of a tilting module is satisfied because of the exact
sequence (). |

V.2.2 A torsion pair in mod A

Because we want to projectivise tilting modules, it is useful, as in Subsection V.1.1
to consider the full subcategory pres T of mod A consisting of all A-modules M
such that there exists an exact sequence

Th—Ty— M —0

with Tp, T7 in add T. Clearly, in this case, M is generated by T, that is, there exist
m > 0 and an epimorphism 7™ — M. The surprising fact is that the converse also
holds true. This will be proven in the proposition following the next two lemmata,
the first of which should be compared with Exercise V.1.4.

Lemma V.2.5. Let T, M be A-modules, {f1, ..., fa} a k-basis of Homy (T, M)
and f = (fi,..., f2): T* — M. Then:

(a) For every morphism g: To —> M, with Ty in add T, there exists h: Ty —> T¢
such that g = fh.

(b) The morphism Homa (T, f): Homyu (T, Td) —> Homy (T, M) is surjective.

(c) The morphism f is surjective if and only if M is generated by T.

Proof.
(a) It suffices to prove the statement when 7o = 7. In this case, g is a linear
combination of the f;, that is, there exist Ay,..., Ay € Kk such that g =

Al
> A fi.Butthen g = fh with h =
Ad
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(b) This follows from (a).

(c) Clearly, if f is surjective, then M is generated by 7. Conversely, assume M to
be generated by T'. There exist 7p in add T and an epimorphism g: Tp — M.
Because of (a), g factors through f. But g is surjective. Hence, so is f.

O

We define the notion of trace of a subcategory 6 of mod A on a module M. This
is the submodule of M given by

teM = Z{Imf | f: X — M for some object X in ©}.

Thus, t¢ M is generated by the objects of € and, because of its definition, it is the
largest submodule of M to be generated by the objects of . If, in particular, ¥ =
add T for some module 7', then we write tg M = t7 M. Thus, if T is a module, then
tT M is the largest submodule of M generated by T'.

Lemma V.2.6. Let T be a tilting A-module. Then, an A-module M is generated by
T if and only if Ext' (T, M) = 0.

Proof. Assume that M is generated by 7. There exist 7Ty in add7 and an
epimorphism 75 — M. Because pd7 < 1, this epimorphism induces an
epimorphism Extl\(T, To) — Ext}A(T, M). Because ExtL(T, To) = 0, we get
ExtL(T, M) = 0. Conversely, let M be such that ExtL(T, M) = 0. Because we
have already proven that modules generated by T have no extension with T, we
have ExtL(T, ttrM) = 0. Also, because of the definition of the trace, we have
Homa (T, t7M) = Homu (T, M). Therefore, applying Homy4 (7', —) to the short
exact sequence

0O—ttM —M— — —0
trM

yields Homy (T, M /t7 M) = 0. On the other hand, pd T < 1 implies the existence
of an epimorphism Extk(T, M) — Ext}4(T, M/t M). Because Extk(T, M) =0
by hypothesis, we get Ext}4 (T, M/tr M) = 0. Finally, applying Homa (—, M/t M)
to the short exact sequence

00— Ay —Ty—T1 — 0

with Ty, 77 in add T, whose existence is asserted in the definition of tilting module,
we get an exact sequence
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0 = Homy (Ty, M/t M) — Homyu (A, M/t M) — Eth(Tl, M/trM) = 0.
Thus, M/t7 M = Homy (A, M/tr M) = 0 and so, M = t7 M is generated by 7.
O

We next prove that the equivalent properties of Lemma V.2.6 characterise the
subcategory pres T'.

Proposition V.2.7. Let T be a tilting A-module. Then, pres T coincides with the
full subcategory of mod A consisting of all A-modules generated by T.

Proof. Because every T-presented A-module is obviously generated by 7, it
suffices to prove the reverse implication. Let M be generated by T and f: T¢ —
M be as in Lemma V.2.5. Then, f is surjective and we have a short exact sequence

0—L-L1i Ly —o
where L = Ker f. Applying Homy4 (T, —), we get an exact sequence

H T,
0 —> Hom(T, L) —> Hom (T, T "™ 0" Hom (1. M)

— Bxty (T, L) — 0

because Ext}{(T, T) = 0. Because of Lemma V.2.5, Hom4 (T, f) is surjective.
Therefore, Exti‘(T, L) = 0. Because of Lemma V.2.6, L is generated by 7' and
thus, there exist m > 0 and an epimorphism p: 7" — L. We deduce the required
presentation

™ 2ord om0,

O
As seen in the proof, the fact that M lies in pres T can be expressed equivalently
by stating that there exists a short exact sequence

0O—L—>Tp— M —0

with Ty in add T and L generated by 7. We shall use this fact repeatedly in the
sequel.

The main consequence of the proposition is the existence of a torsion pair in
mod A. Torsion pairs in mod A say roughly how the morphisms go in this category.

Definition V.2.8. A torsion pair (7,.%) in mod A is a pair of k-linear full
subcategories such that:

(@) Homyq (M, N) =0forall M in 7 and N in .%.
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(b) 7 and .% are maximal for (a), that is:

(1) Homy (M, —)| # = 0 implies that M lies in .7.
(i) Homy(—, N)|# = 0 implies that N lies in .%.

The class .7 is the torsion class, and the modules in it are torsion modules, whereas
the class .Z is the torsion-free class, and the modules in that class are torsion-free
modules.

Clearly, if (.7, %) is a torsion pair, then 7 N .% = 0. We list a few properties
of torsion pairs.

Lemma V.2.9.

(a) Let T be a k-linear full subcategory of mod A. There exists a subcategory F
such that (7, F) is a torsion pair if and only if 7 is closed under quotients
and extensions.

(b) Let .Z be a K-linear full subcategory of mod A. There exists a subcategory T
such that (, F) is a torsion pair if and only if F is closed under submodules
and extensions.

(¢) Let (7, .F) be a torsion pair in mod A. For each A-module M, there exists a
unique short exact sequence 0 — L —> M —> N — 0 such that L lies in
T and N lies in 7.

Proof.

(a) Let0 — L — M — N — 0 be a short exact sequence in mod A. Then
there exists a left exact sequence of functors

0 — Homu(N, —)|.7 — Homs (M, —)| 7z — Homyu(L, —)| 7.

Then L, N in .7 imply M in 7, and M in .7 implies N in 7. That is, .7 is
closed under quotients and extensions.

Conversely, assume that .7 satisfies this condition and consider the trace
taM.

We claim that t (M /t7 M) = 0. Indeed, there exists a submodule L of M
containing ¢t M such that t#(M/toM) = L/t M. Because both L/t M
and t# M lie in .7, the short exact sequence

0—tsM —L— —— —0
tagM

gives L in 7, because .7 is closed under extensions. Hence, L C 5 M and so

tg(M/t7M) = 0, as required.
Let now .Z be the k-linear full subcategory of mod A defined by:

F={M:tyM =0).
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(b)
(©)

M.

In particular, for each A-module M, we have M/t M € %. We claim that
(Z,.%F) is a torsion pair. Let f: M — N be a nonzero morphism with
M in .7 and N in %. The induced epimorphism toM = M — Im f is
also nonzero. Hence, t# N # 0, a contradiction. Therefore, Hom (M, N) =
0. Assume Homy (M, —)|# = 0. In particular, Homa (M, M/t M) = O,
which implies M/t#M = 0 and thus M = t5M lies in 7. Similarly,
Homy (—, N)|# = 0 implies that N lies in .%.

is dual to (a).

We claim that the required sequence is

0—toM — M — —— — 0
tgM
as constructed in (a). Because t oM lies in .7 and M/t M lies in .%, we just
have to prove uniqueness. Let 0 — L — M —> N — 0 be a short exact
sequence with L in .7 and N in .%. Because 7 M is the largest submodule of
M to lie in 7, we have L C r M. We get a commutative diagram with exact
TOWS

0 L M N 0
0 toM M WLM 0

where f is deduced by passing to cokernels. The snake lemma gives that f is
surjective with kernel > M /L. Because the kernel is a submodule of N, which
lies in %, then M /L also lies in .%. On the other hand, 1M lies in .7;
therefore, M /L lies in 7. Because .7 N.# = 0, we get t>M /L = 0, that
is, L =ty M. Consequently, N = M/t M.

O

The short exact sequence of (c) is called the canonical sequence for the module
An easy consequence of the existence of the canonical sequence is that every

simple A-module lies either in .7 or in .%. We are now able to prove the wanted
corollary of Proposition V.2.7.

Corollary V.2.10. Let T be a tilting A-module. Then, 7 (T) = pres T is a torsion
class and the corresponding torsion-free class is

F(T) ={N: Homu(T, N) = 0}.

Proof. Because pres T coincides with the class of modules generated by T, it is
closed under quotients. We now prove that it is closed under extensions. Applying
Hom4 (T, —) to a short exact sequence 0 — L — M —> N — 0 yields an
exact sequence
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Ext!y (T, L) —> Ext}(T, M) —> Ext} (T, N).

If L,N lie in presT, then ExtllA(T, L) = 0 and ExtllA(T, N) = 0 and so
Exti‘(T, M) = 0. Therefore, 7 (T) = pres T is a torsion class.

Let M be torsion-free. Because T is torsion, we have Homu (7, M) = 0.
Therefore, M lies in .% (T). Conversely, let M lie in .% (T'). For every L in % (T),
there exist Ty in add T and an epimorphism 7o —> L. Therefore, Homy (L, M) = 0
and so M is torsion-free. m|

It follows from Lemma V.2.6 and Corollary V.2.10 that all injective A-modules
lie in J(T) because they annihilate the functor Ext}“(T, —). Also, if P is a
projective module lying in .7 (T), then it must belong to add 7. Indeed, every
epimorphism from add7 to P must split. In particular, every indecomposable
projective—injective A-module is a direct summand of every tilting A-module.

Corollary V.2.11. With the above notation, Homa (T, —)| 7 (r) is an exact functor.
Proof. Let0 — L —> M — N —> 0 be a short exact sequence in .7 (T).
Because Exti‘(T, L) = 0, we deduce an exact sequence

0 — Homyu (T, L) — Homyu (T, M) — Homu (T, N) — 0. i

We have proved in Lemma V.1.6 that the morphism &j;: Homy (T, M) ®p
T — M givenby f ® t —> f(¢) is an isomorphism whenever M lies in add T'.
We now prove that, if T is tilting, then &3, is an isomorphism for every M in pres T'.

Corollary V.2.12. An A-module M lies in 7 (T) if and only if the morphism gy :
Homa(T, M) @ T —> M given by f @t +> f(t) is an isomorphism.

Proof. Assume that )y is an isomorphism, then M = Homu (T, M) ®p T lies in
T (T) because of Lemma V.1.5. Conversely, let M belong to .7 (T). The proof of
this implication is similar to that of Proposition V.1.7. There exists an exact sequence

TWn—Ty— M —0
with Tp, T} in add T'. Applying Corollary V.2.11, we have an exact sequence
Homy (T, T1) — Homy (T, Ty) —> Homu (T, M) — 0.
Applying — ®p T yields a commutative diagram with exact rows
Hom (T, T1) 3 T —= Homu (T, To) @3 T —= Homu(T, M) QT — 0

€Ty €Ty EM

T To M

Because of Lemma V.1.6, e7, and e7;, are isomorphisms. Hence, so is ey. a
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Example V.2.13. It is easy to compute in the Auslander—Reiten quiver of an algebra
the subcategories .7 (T) and .% (T). For instance, in Example V.2.2,

5 :
\ 3 / 341 5
/12\/3/1/4/ 5

Z (T) is illustrated by the hatched area and .% (T) by the dotted area.

One particular class of tilting modules is the class of so-called APR-tilting
modules where the letters A, P and R stand for Auslander, Platzeck and Reiten.

Lemma V.2.14. Let Sy be a simple projective noninjective module. Then:

@ T,=t71S, & (@y;ﬁx Py) is a tilting module.
(b) F#(Ty) = add S, while 7 (T,) = add(ind A \ {S,}).

Proof.

(a) Because of Lemma II1.2.10, there exists an almost split sequence 0 —> Sy —>
P — 17§, — 0 with P projective. This proves the first and third
conditions of the definition of a tilting module. In addition,

Extk(Tx, T,) Z= DHomu (Ty, tTy) = DHomu (T, Sy) =0

because the simple projective module S, is not a summand of 7.
(b) Let M be indecomposable. Then, M lies in .7 (T ) if and only if Ext}&(Tx, M) =

0, that is, Homy (M, Sy) = 0 or equivalentlyy, M % S,. Similarly,
Homy (Ty, Sx) = 0 implies that Sy lies in .% (T ). Therefore, .% (Ty) = add S.
O

Because of (b), every indecomposable A-module belongs either to 7 (Ty) or
to % (Ty). If a torsion pair (7, .%#) in mod A is such that every indecomposable
module lies either in .7 or in .%, then the pair (7 .%) is said to be split. Thus, an
APR-tilting module T4 induces a split torsion pair (7 (Ty), F (Ty)) in mod A.
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V.2.3 The main theorems

We now prove the two main results of tilting theory, called the reciprocity theorem
and the tilting theorem. We keep the notations above, that is, let A be an algebra, T
a tilting A-module and B = End T4. We first show that the functor Homy4 (T, —) :
mod A —> mod B preserves both the morphism spaces and the first extension
spaces between torsion modules.

Lemma V.2.15. Let M, N be A-modules lying in 7 (T), then

(a) Homy (M, N) = Hompg(Homu (T, M), Hom4 (T, N)).
(b) Extl, (M, N) = Exth(Homu (T, M), Hom4(T, N)).

Proof.

(a) Because M lies in .7 (T), there is an exact sequence
T, — Ty —> M —0
with T, Ty in add T'. Because of Corollary V.2.11, it induces an exact sequence
Homy (T, T)) —> Homy (T, Ty) —> Homyu (T, M) — 0.

Applying Homp(—, Hom4 (7, N)) yields a commutative diagram with exact
rows

0— Homp(Homy (T, M),Hom (T, N)) — Hompg(Hom (T, Tp),Hom4 (T, N)) — Homp(Hom (T, T}),Hom4 (T, N))

Hom 4(M,N) ——————————————— Hom4(Ty,N) ——————————— Hom(T},N)

where the lower exact sequence comes from the application of Homy (—, N)
to the given T -presentation of M, and the vertical isomorphisms come from
Corollary V.1.4(a). The statement follows.

d d
(b) Let T BN To =% M —> 0be exact with To, T1 inadd T'. Because L = Imd;
is generated by 7', an obvious induction yields a resolution

d d d
iS5 5T M—0

with all 7; in add T'. Because of Corollary V.2.11, we deduce an exact sequence

... —> Homyu (T, Tp) —> Homu (T, T1) —> Homu (T, Ty)
—> Homu (T, M) — 0

which is a projective resolution of Hom4 (7', M) in mod B.
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Let di = jp be the canonical factorisation of d; through its image L. The short
exact sequence

J do
0—L—>Ty—M—0
induces an exact sequence

H i\ N
0 — Homug (M, N) — Homyu (Tp, N) Oni(]) )HomA(L,N)

—s Exty (M, N) — Ext\ (T, N) =0

where Exti‘(To, N) = 0 follows from the fact that N lies in .7 (T). Therefore,
Extl (M, N) = Coker Hom(j, N).
On the other hand, the exact sequence

d p
h—T —L—0
induces an exact sequence

.
0 —> Homu(L, N) —> Homu(T1, N) "% Hom, (T, N)

so that Homy4 (L, N) = Ker Homy4 (da, N).
By definition, Ext}; (Homy (T, M), Hom4 (T, N)) is the first cohomology group
of the complex on the upper row of the following commutative diagram

0— Homp(Hom 4 (T, Ty),Hom 4 (T, N)) — Hompg(Hom4 (T, T}1),Hom4 (T, N)) — Homp(Hom4 (T, T>),Hom4(T,N))

~ ~

IR

Hom(d1,N) Homa(d2,N)

Homy (To,N) Homy (T1,N) Homy (T3,N)

where the vertical isomorphisms follow from (a). Thus,

KerHomy(d2, N) .. Homgu(L, N)
ImHomyu(di, N) = ImHomyu(d;, N)’
Now, Homy (d1, N) = Homyu (p, N) Homyg (j, N). The injectivity of Homy (p, N)
implies Im Homy4 (d1, N) = Im Homy (j, N). Then we get

Homyu (L, N)
ImHomyu (j, N)
= CokerHomy (j, N)

Exth (Homy (T, M)), Homy (T, N)) =

Exth (Homu (T, M), Homy (T, N)) =

= Extl (M, N).
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Before continuing, we need a pair of homological lemmata. The first one asserts
that duality interchanges homology and cohomology.

n n+1
Lemma V.2.16. LerC*: ... — C"! AN cr AN C"t!' —s ... be a complex.
Then, for every n > 0, we have a functorial isomorphism H,,(DC*®) = DH"(C*).

Proof. We have, for every n > 0, a short exact sequence
0 — Imd" —> Kerd"T! — H"(C*) — 0
hence, an exact sequence
0 — DH"(C*) — D(Kerd"*') — D(Imd") — 0.

Now,

DC"
D(Kerd"*!) = CokerDd"*! = T—wTE] and
DC"

D(Imd") EImDd" & —
Ker Dd"
thus, comparing the previous sequence with the sequence

Ker Dd" DC" DC"
—> —> — —
Im Dgn+!1 Im Dgn+! Ker Dd”

yields

Ker Dd"

DH'(C*) & ——
) Im Ddn+!1

=~ H,(DC®).

O

We deduce functorial isomorphisms whose existence was asserted in Subsec-
tion IV.1.5.

Proposition V.2.17. Let L, M be A-modules. We have functorial isomorphisms

(a) L ®4 DM = DHomyu (L, M), and
(b) Tor;:‘ (L,DM) = DExt, (L, M), for everyn > 0.

Proof.

(a) Follows from the adjunction formula. Indeed,

D(L ® 4 DM) = Homg (L ® 4 DM, k)
= Homy (L, Homg (DM, Kk))
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>~ Homu (L, D*M)
= Homy (L, M).

(b) Let P, be a projective resolution of L in mod A. Applying (a) above to each
P; yields a functorial isomorphism P; ® 4 DM = DHomg(P;, M). Thus, we
have an isomorphism of complexes P, ® 4 DM = D Homy (P,, M). Hence, for
every n > 0,

Tor? (L, DM) = H, (P, ®4 DM)
= H,(DHomy (P,, M))
= DH" Homyu (P,, M)
= DExt" (L, M)

where the third isomorphism follows from Lemma V.2.16 above.

We next prove the reciprocity theorem.

Theorem V.2.18 (Reciprocity theorem). Ler A be an algebra, T a tilting A-
module and B = End T4. Then, gT is a tilting left B-module and we have an
isomorphism A = (Endg T)°P given by a — (¢t — ta).

Proof. Applying Homg(—,p T4) to a short exact sequence
00— Ay — Ty —T1 — 0

with 7o, Ty in add T, and using that Homa (A, g T4) =p T whereas Ext! (T, T) =
0, we get an exact sequence

0 —> Homu (T, T4) —> Homa(To,g Ta) —p T —> 0O
sothatpdp T < 1.
Next, D(pT) = D(pT ®4 A) = Homy (T4, DA) where we have applied
Proposition V.2.17(a). Then, Lemma V.2.15(b) yields
ExtL (DT, DT) = ExtL (Hom4 (T, DA), Homu (T, DA)) = Extl (DA, DA) = 0
because DA lies in .7 (T'). Therefore Ext}g,,p(T, T)=0.
Finally, applying the functor Homu(—,5 T4) to a projective resolution 0 —>

Py — Py — T — 0Oin mod A, we get an exact sequence

0 —>p B —> Homy(Py, T) —> Homu (P, T) — O
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because Extk(T, T) = 0. Now, Hom4 (Py, T), Homy (P1, T) both belong to add 7.
This completes the proof that p7 is a tilting module.

For each a € A, the map p, : t > ta is an endomorphism of gT. Also, n: a —
pq 1 an algebra morphism from A to (Endp T)°P. If a € Kern, then Ta = 0 and
hence a = 0, because T is faithful. Then, 7 is injective. On the other hand, the
isomorphism D7 = Hom4(7,DA) and Lemma V.2.15(a) yield isomorphisms of
vector spaces

A =ZEndDA = EndHomy (T, DA) = EndDT = EndT.

Therefore, n is an isomorphism of algebras. O

Corollary V.2.19. Let 2 (T4), % (Ty) be the k-linear full subcategories defined by
Z(Ty) ={Xp: XQT =0}and ¥ (Tx) = {Yp: Torf(Y, T) = 0} respectively.
Then, (Z (Ty), % (Tx)) is a torsion pair in mod B.

Proof. Because pT is tilting, it induces in mod B°P a torsion pair (7 (gT),
F(gT)) with TBT) = {gU: Ext}gvp(T, Uy = 0} and F(T) =
{pV: Hompop(T,V) = 0}. Therefore, (D.%(3T),DZ (5T)) is a torsion pair
in mod B. Now, X lies in D.% (gT) if and only if DX lies in .#(gT), that is,
Hompor (T, DX) = 0, and this is equivalent to X ® g T = 0, or in other words X
lies in Z°(T4), because of Proposition V.2.17(a).

Similarly, Y lies in D7 (3T) if and only if DY lies in 7 (5T), that is, if
and only if Tor?(Y, T) = DExtL(Y,DT) = DExtk,, (T,DY) = 0, because of
Proposition V.2.17(b). |

Corollary V.2.20. IfY lies in % (T), then Sy is an isomorphism.

Proof. Let Py N Py 2y 5 Obea projective presentation of Y. Setting
Zy = Kerpg, Z1 = Ker p1, we get short exact sequences

0—Z%2y—>Py—Y—>0 and 0 — Z; — P — Zy — Q.
Because Torf (Y, T) = 0, we deduce exact sequences
0— ZyQ®pT — PhyQpT —Y QT — 0
and
Zi1QpT — PI®QpT — Zo®@p T — 0
from which we get an exact sequence

P T — Ph®gT — YR T — 0.
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Because of Lemma V.1.5, this sequence lies in .7 (T) and therefore, because of
Corollary V.2.11, the lower row in the commutative diagram below is exact

P P, Y 0
o P o Py Sy

HOIIlA(’T7 P ®p T) — HOHlA(T, Py®p T) — HOInA(T,Y®B T) — 0

Because of Lemma V.1.6, §p,, § p, are isomorphisms. Therefore, so is dy. m]

We now prove our second main result, known as the tilting theorem or the
Brenner—Butler theorem.

Theorem V.2.21 (Tilting theorem). Let A be an algebra, T a tilting A-module
and B = End T4. Then,

(a) The functors Homa(T, —) and — ®p T induce quasi-inverse equivalences
between 7 (T) and % (T).

(b) The functors Extl‘(T, —) and Torf(—, T) induce quasi-inverse equivalences
between F (T) and Z (T).

Proof.

(a) If M lies in 7 (T), there is an exact sequence 0 — L — Tp — M —> 0
with Ty inadd T and L in & (T). Because of Corollary V.2.11, we have a short
exact sequence

0 — Homy (T, L) — Homyu (T, To) — Homu (T, M) — 0O

Applying — ®p T and using Corollary V.2.12, we get a commutative diagram
with exact rows

0— TorF(HomA(T, M), T) — Homu(T,L)@p T — Homa(T,To)®@p T — Homu (T, M)Qp T — 0

=lep = |er, = |ew

0 L Ty M 0

where the vertical arrows are isomorphisms and we also use the projectivity
of Homyu (T, Ty) in mod B. Therefore, Torf(HomA(T, M), T) = 0 and so
Homu (T, M) lies in %/ (T'). Thus, the functor Homu (T, —): 7 (T) — % (T)
is well-defined. Because of Lemma V.1.5, the functor — ®p T: #(T) —
7 (T) is also well-defined. Finally, Corollary V.2.12 and Corollary V.2.20 above
state that, if M lies in .7 (T), then Homu (T, M) Qg T = M and, if Y lies in
% (T),then Y = Homu(T,Y ®p T).
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(b) Let N belong to .% (T). There exists an exact sequence
0—N—I—N —0

with [ injective. Then, I lies in 7 (T'). Because 7 (T) is closed under quotients,
also N’ lies in 7 (T). Applying Homy4 (T, —) yields an exact sequence

0 — Homu(T, I) — Homu (T, N') —> Exty(T, N) — 0.

Because Homy (T, N') lies in % (T), we have Torf(HomA(T, N, T)=0.We
deduce a commutative diagram with exact rows

0 — Tor? (Extl, (T, N),T) — Hom(T,1) @5 T — Hom(T,N")®p T— Exty(T,N)®pT — 0

o~

€1 = | ens

0 N 1 N’ 0

where the vertical isomorphisms are those of Corollary V.2.12.

Therefore, Extk(T, N) ®p T = 0, thatis, Ext}q(T, N) liesin Z'(T). Also
Tor? (Extl (T, N), T) = N.

Similarly, let X belong to :Z°(T'). There exists an exact sequence

0—wX —P—>X—0

with P projective. Then, P lies in %' (T'). Because % (T') is closed under taking
submodules, X" is in %/ (T) as well. Applying — ®p T yields an exact sequence

0 — Tor® (X, T) — X' ®pT — PRpT — 0.

Because X’ ®p T lies in 7 (T), we have Exti‘(T, X' ®p T) = 0. We get a
commutative diagram with exact rows

0 X' P X 0

Sy = 5p| =

0 — Hom4(T, Tor? (X, T)) —Homa (T, X'®p T)— Homa(T, PQp T) — Ext} (T, Tor? (X,T) —0

where the vertical isomorphisms are those of Corollary V.2.20. We deduce that
Hom (T, TorB (X, T)) = 0 so that Tor? (X, T) belongs to .Z(T4). Also X =
Extl (T, TorB (X, T)).

0
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Example V.2.22. In Example V.2.2, a quick calculation shows that B is given by the
quiver

3

. %/2.4
N

.5

bound by a6 = 0, y§ = 0. While drawing this quiver, we should remember that
endomorphisms of a module compose in the reverse way to arrows in a quiver, and
thus the arrows are drawn in the opposite direction to morphisms. Then, I" (mod B)
is given by

_

where % (T) is illustrated by the hatched area, whereas 2 (T) is illustrated by the
dotted area. It is easy to compute the image of every indecomposable A-module
under the tilting functors Homy (7', —) and Extl‘(T, —). For instance, we have

Hom,(T, 3) = 5 while Ext}(7,2) = DHoma(2, 7T) = 3}

V.2.4 Consequences of the main results

As usual, we denote by A an algebra, T a tilting A-module and B = End T4. We
start by comparing the global dimensions of A and B.

Lemma V.2.23. Assume M lies in 7 (T), then pd Homa (T, M) < pd M.
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Proof. By induction ond = pd M. If d = 0, then M4 is projective and so, because
it lies in 7 (T), it must belong to add T so that Hom4 (T, M) is a projective B-
module.

Assume d > 1. Because M lies in .7 (T), there exists an exact sequence
00— L — Tp — M — 0, with Ty in add T and L in 7 (T). Because of
Corollary V.2.11, we have a short exact sequence

(%) 0 —> Homy (T, L) —> Homyu (T, Typ) —> Homu (T, M) — 0.

Also, applying Hom4 (—, N) where N is an arbitrary module yields an epimorphism
Extff‘(To, N) — Extff‘(L, N), because d = pd M.

Assume first d = 1. Because L is in .7 (T), there is an exact sequence 0 —>
N — T} — L — O with Ty in add T and N lying in .7 (T). In particular,
ExtL(L, N) = 0; consequently, this sequence splits and L is a summand of T,
hence lies in add T'. The sequence (x) then gives pd Homu4 (T, M) < 1.

If d > 1 and N is arbitrary, then pdTp < 1 gives Extff‘(L, N) = 0 so that
pd L < d — 1. Because of the induction hypothesis, pd Hom4 (7, L) < d — 1 and
sopdHoma (T, M) <14+ (d—1)=d. m|

Theorem V.2.24. With the above notations, | gl. dim. A — gl. dim. B| < 1.

Proof. Let Z be an arbitrary B-module. There exists a short exact sequence 0 —>
Y — P — Z — 0, with P projective. Because P lies in #(T), so does Y.
Because of Lemma V.2.23, we have pd Y < gl.dim. Aandsopd Z < I+pdY < 1+
gl.dim. A. Therefore, gl. dim. B < 1 4 gl. dim. A. The reciprocity theorem V.2.18
implies that gl. dim. A < 1 + gl. dim. B. O

The next theorem says that the numbers of isoclasses of indecomposable
projective A-modules and of indecomposable projective B-modules are equal.
Equivalently, the quivers of A and B have the same number of points.

Theorem V.2.25. The map f: Ko(A) —> Ko(B) given by
M +> dim Hom (T, M) — dim Ext', (T, M)

is an isomorphism of abelian groups.

Proof. Because pd T < 1, a short exact sequence0 — L — M — N — 0
in mod A induces a long exact cohomology sequence in mod B

0 — Homyu (T, L) —> Homyu (T, M) —> Homy (T, N)

— Ext\ (T, L) — Ext'(T, M) — Ext} (T, N) — 0.

Taking dimensions shows that f: Ko(A) — Ko(B) defined as in the statement is
a morphism of groups.

Let S be a simple B-module. Either S lies in #'(T), or in 2 (T) (see the
remark after Lemma V.2.9). In the former case, S = Homu (7T, S ® g T) whereas
Ext\(T,S ®p T) = 0, and in the latter, S = Ext} (T, Tor? (S, 7)) whereas
Homy (T, Torf(S, T)) = 0. In either case, dim S lies in the image of f. Thus,
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the canonical basis of Ko(B) = Z" lies in Im f. Hence, f is surjective. Therefore,
tkKo(A) > tkKo(B). The reciprocity theorem V.2.18 implies that tk Ko(B) >

rk Ko(A). We get tk Ko(A) = rk Ko (B); thus, f is an isomorphism. |

The following corollary, due to Bongartz, simplifies considerably the task of
verifying whether a given module T is tilting or not.

Corollary V.2.26. Let T = @/ Timi where the T; are indecomposable and T; %
T; fori # j. Then, T is a tilting module if and only if it is a partial tilting module
and m = rk Ky(A).

Proof. Necessity follows directly from Theorem V.2.25; thus, we prove sufficiency.
Because T is a partial tilting module, there exists E such that 7 @ E is tilting, see
Proposition V.2.4. But then the theorem implies that the number of isoclasses of
indecomposable summands of 7 @ E equals rk Ko(A). Because of the hypothesis,
rkKo(A) equals the number of isoclasses of indecomposable summands of 7.
Hence, E belongs to add T and T is tilting. O

Thus, a partial tilting A-module is tilting if and only if the number of isoclasses
of indecomposable summands of 7" equals the number of isoclasses of simple A-
modules, that is, the number of points in the quiver of A.

In the language used at the end of Subsection V.2.3, the next proposition
states that, if A is hereditary and T is a tilting A-module, then the torsion pair
(Z(T), % (T)) in mod B is split.

Proposition V.2.27. If A is hereditary, then every indecomposable B-module either
liesin &' (T) orin % (T).

Proof. We claim first that Ext}_,g(Y, X)=0forall Y in % (T) and all X in Z°(T).
Indeed, because of the tilting theorem, there exist M in 7 (T) and N in .F(T)
such that ¥ = Homu (T, M) and X = Ext!,(T, N). Applying Hom4 (7, —) to an
injective coresolution 0 — N — Iy — I} —> 0 yields a short exact sequence

0 —> Homyu (T, Iy) —> Hom(T, I;) — Extl (T, N) — 0.

Because M lies in 7 (T), we have pd Homu (T, M) < 1, see Lemma V.2.23;
therefore, there is an epimorphism

Exth (Homa(T, M), Homu(T, I})) —>
Exth (Hom4(T, M), Extl (T, N)) = Ext, (Y, X).

Lemma V.2.15 gives
Exty (Homa(T, M), Homu (T, 1)) = Ext}y (M, I}) = 0.

Therefore, Ext};(Y, X) = 0, as required.
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Let now Z be an arbitrary indecomposable B-module. We have just proved that
its canonical sequence in the torsion pair (2 (T), % (T)) splits. The indecompos-
ability of Z implies that Z lies either in 2" (T') or in % (T). O

Exercises for Section V.2

Exercise V.2.1. Prove that the following conditions are equivalent for a module
My

(a) M is faithful,

(b) A, is cogenerated by M,

(c) DA, is generated by M,

(d) Every left add M-approximation A4, —> T¢ is injective, see Exercise V.1.5.

Exercise V.2.2. Prove that a partial tilting module T is tilting if and only if, for
every indecomposable projective A-module Py, there exists a short exact sequence
0— P, —T0 — T! — 0with 7%, T inadd T..

Exercise V.2.3. Let T be an A-module such that pd T < 1. Prove that T is a partial
tilting module if and only if Extk(T, M) = 0 for every module M generated by T'.

Exercise V.2.4. Let ¥ be a full subcategory of mod A, k-linear and closed under
extensions. An object M in ¥ is called Ext-projective in % if Extk(M, g =0
and Ext-injective in ¢ if Ext)y (—, M)|¢ = 0.

(a) Let (7, %) be a torsion pair. Prove that M in .7 is Ext-projective in .7 if and
only if T lies in .%, and that M in .% is Ext-injective in .% if and only if
7'M liesin 7.

(b) Let T be a tilting module. Prove that M is Ext-projective in .7 (T) if and only
if M lies in add T, and that M is Ext-injective in .7 (T') if and only if M is an
injective A-module.

Exercise V.2.5. Prove that a partial tilting module T is tilting if and only if, for
every E such that T @ E is partial tilting, we have E in add 7.

Exercise V.2.6. Let T be an A-module.

(a) If T is a faithful module and such that Homy4 (T, tT) = 0, then T is a partial
tilting module.

(b) Prove that T is tilting if and only if Hom4 (7, tT) = 0 and there is an exact
sequence 0 — Ay —> Ty —> T1 —> O with Ty, Ty inadd 7.

Exercise V.2.7. Let T be a tilting moduleand0 — L — M — N — O an
exact sequence with L in .7 (T). Prove that Extl\(T, M) = ExtL(T, N).

Exercise V.2.8. For each of the following bound quiver algebras, verify that the
given module T is tilting, compute the bound quivers of B = End T and the torsion
pairs (7(T), #(T)) and (Z(T), Z(T)).
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4 ap =0
(a) yl
1_L2_a73 T:P1®P4®772P1®S4
affy =0
) 1 o, p 32 4 Py ,
T=P &t “PLOP;d P,
1&
po B =5, ak =0, yu =0
(0)2/ \6 =0y ak =0k =
‘5\ ‘/}, T=POP®oP &t 'Rt 2P®r 2P,
5
3‘%
4 i a6
@ ‘g\ / ad =0, 6u=0, fy =de
/ T=1t"'"Ps@®Ss®P; ®P; ®S3®(Ps/S2)
| <R
2
(e 5 3 1 4 6

T = PQ @T_1P5 @T_3P5 @T_lpﬁ @T_S.Pﬁ @T_ZP

[\V]

al =pu=yv
T=P ®7_1P2®T_1R§®7_2P4 @ Ps

W~

=
—
< = \>
[\
w
\‘“/
ot

afp =0
(2 y\y -1
T=1""PL®P®F;
] «~—— 3
14
5 2
a
/ \ af =0,y8=0,6e =0
() ! g 1
‘A % T=17T"PLOP,®P;s®&P, &P
3——14
o

Exercise V.2.9. Let A be as in Example V.2.2. Find a tilting module 7 such
that B = End T is hereditary and compute the torsion pairs (7 (T), % (T)) and
(2(T), & (T)).
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Exercise V.2.10. Let A be given by the quiver

a

1%2%4%5
'8\3,4

bound by @é = 0 and By = de. Prove that T = 243 @ 3 is a partial tilting module.
Find an A-module E such that 7" = T & E is tilting and compute the torsion pair
(7(T"), Z(T")).

Exercise V.2.11. Let T be a tilting module and, for a module M, denote by t7 M
the trace of T in M. Prove that Hom (T, M) = Homyu (T, t7 M) and Extb(T, M) =
Extk(T, M/t M). Deduce that, if B = End Ty, then t7 M = Homyu (T, M) p T
and M/tr M = Tor® (Extl (T, M), T).

Exercise V.2.12. Let T be a tilting module and N in .% (T) such that id N = 1.
Prove that Exth (Y, Ext, (T, N)) = 0 forall Y in Z/(T).

Exercise V.2.13. Prove that the following conditions are equivalent for a torsion
pair (.7, %) inmod A:

(a) (7,.7) is split,

(b) For every A-module, the canonical sequence splits,
(c) Forevery M in .7, we have ™ Min 7,

(d) Forevery N in .%, we have TN in .%.

Exercise V.2.14. If T4 is a tilting module, show that the functor Exti‘ (T, —) | ZT)

is exact.

Exercise V.2.15. Let T4 be a partial tilting module and .7 (T), .% (T) the k-linear
full subcategories of mod A defined by .7 (T) = {M | M is generated by T'} and
F(T) ={M | Homu (T, M) = 0}.

(a) Prove that (Z(T), % (T)) is a torsion pair.
(b) Let ¢ € A be an idempotent and T = eA. Prove that .% (T) is equivalent to
mod (A/AeA).

Exercise V.2.16. Let T4 be a tilting module and N such that Homa (7, N) = 0.
Prove that pd Exti‘(T, N) <1+ max{l, pd N}.



Chapter VI )
Representation-finite algebras oy

For a long time, researchers in the representation theory of algebras concentrated on
finding criteria allowing us to verify whether a given algebra is representation-finite
or not, and, if this was the case, of computing all its (isoclasses of) indecomposable
modules. Indeed, it was believed that this class of algebras would be relatively
easy to classify and that their indecomposable modules have a relatively simple
structure. This approach was largely successful. Actually, one of the first important
results of modern-day representation theory was Gabriel’s theorem, which says that
a hereditary algebra over an algebraically closed field is representation-finite if and
only if it is the path algebra of a quiver whose underlying graph is one of the well-
known Dynkin diagrams A, D or E. Nowadays, there exists a reasonable global
theory of representation-finite algebras. At present, we do not have a similar theory
for studying representation-infinite algebras, but the ideas and techniques developed
for representation-finite algebras still show their usefulness when applied to the
understanding of new classes. The aim of this chapter is to prove some of the most
important known results on representation-finite algebras highlighting the methods
that led to their proofs.

We start by showing how the representation-finiteness of an algebra is reflected
by the finiteness properties of the radical of its module category, then study the
Auslander algebra of a representation-finite algebra, and end the chapter proving the
so-called Four Terms in the Middle theorem, which gives a bound on the number of
indecomposable middle terms of almost split sequences over a representation-finite
algebra.

© Springer Nature Switzerland AG 2020 271
1. Assem, F. U. Coelho, Basic Representation Theory of Algebras, Graduate Texts
in Mathematics 283, https://doi.org/10.1007/978-3-030-35118-2_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35118-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-35118-2_6

272 VI Representation-finite algebras

VI.1 The Auslander—Reiten quiver and the radical

VI.1.1 The Harada-Sai lemma

A first attempt to characterise representation-finiteness can be made using the
Auslander—Reiten quiver. Indeed, an algebra is representation-finite if and only if its
Auslander-Reiten quiver is finite. As we have seen in Corollary I1.4.8, the finiteness
of nonzero paths in Auslander—Reiten quivers (which is certainly implied by the
finiteness of the quiver itself) is closely related to the vanishing of some power of
the radical of the module category, and thus to the vanishing of the infinite radical.
This led to the question whether an algebra would be representation-finite provided
some (large enough) power of the radical would equal zero. Our objective in this
subsection is to prove this statement. We start with a useful result, which will be
applied to radical computations inside the module category.

Lemma VI.1.1 (Harada-Sai lemma). Let m > 0 and

M, AMQA%I Mom

be a radical path where each M; has composition length at most equal to m. Then,

Sm—r... fofi =0.

Proof. We prove by induction on »n that, if

)

| Sfan i
M, i)Mg—) —— Mo

is a radical path, with all M; satisfying [(M;) < m, then [(Im(for_1 ... f2f1)) <
m — n. This immediately implies the statement upon setting m = n.

Let n = 1. Because f| € rads (M1, M>), it is not an isomorphism. Therefore
I(Im f1) < m — 1 which proves the statement in this case.

Assume that the statement holds true for a given n and consider a radical path

f Jan—y Jfon f2n+l_1
Ml —> M2 —_—> ... > Mzn —> M2n+1 —_—> ... —> M2n+1

with [(M;) < m for all i. To simplify notation, we set f = fo_1... f2f1,
g = forand h = four1_y... fong2 fonyq. The induction hypothesis implies that
I(Im f) <m —nand [(Imh) < m — n. If at least one of the inequalities is strict,
then /(Imhgf) < m —n — 1 and we have finished. We may thus restrict to the case
where [(Imh) = [(Im f) = m — n.

We assume that [(Imhgf) > m — n — 1 and reach a contradiction. Because
I(Imhgf) < IImh) < m — n, the only possibility is that /Imhgf) = m — n.
Howeyver, it is well-known, see Exercise VI.1.1 that

Im f

Imhgf = ———.
mhsf Im f NKerhg
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Therefore, [Imhgf) = I[(Im f) implies that Im f NKer hg = 0. On the other hand,
Imhgf CImhg CImh andI(Imhgf) =I(Imh) =m —n imply /[Imhg) =m —
n = [(Im f) as well. Therefore, [ (Ker hg) = (M) —Il(Imhg) = [(Mp») —I(Im f)
and so Mp» = Kerhg @ Im f. However, M>» is indecomposable and f is nonzero
(because the length of its image is m — n). Therefore, Ker ig = 0. This shows that
hg is a monomorphism. Hence, so is g.

Similarly, one can show that My ) = Kerh @ Imgf. Because Mony is
indecomposable and gf # 0, we get Moy 1 = Im(gf). Therefore, gf is an
epimorphism and hence so is g.

We have shown that g is an isomorphism, contrary to the hypothesis that it
belongs to the radical. This is the required contradiction. O

Exercise VI.1.2 below gives an example in which the bound in the Harada—Sai
lemma is sharp.

VI.1.2 The infinite radical and representation-finiteness

We now prove that an algebra is representation-finite if and only if the infinite
radical of its module category (or, equivalently, a power large enough of the radical)
vanishes. One implication is easy.

Lemma VI.1.2. Let A be a representation-finite algebra and m a bound on the
length of indecomposable A-modules. Then, radi T=0m particular, rady = 0.

Proof. This follows immediately from the Harada—Sai lemma VI.1.1. O

The Harada—Said lemma may be rephrased as follows: given a representation-
finite algebra A, there exists (at least) an n > 0 such that rad”, = 0, which clearly
implies that rad® = 0. We shall see in the sequel that if, conversely, rad§® = 0, then
A is representation-finite, but before that, we look at an easy consequence.

Corollary VI.1.3. Let A be a representation-finite algebra, M, N indecomposable
A-modules and f € rads(M, N) a nonzero morphism. Then:

(a) f is a sum of compositions of irreducible morphisms.
(b) There exists a path M ~~ N of irreducible morphisms.

Proof . This follows from Lemma VI.1.2, Corollary I1.4.6 and Corollary I1.4.8. O

In particular, if A is representation-finite, and M, N are indecomposable
modules such that there is no path M ~» N of irreducible morphisms, then
Homy (M, N)=0.

We now set out to prove the converse of Lemma VI.1.2. We need one further
result. For an A-module M and every m > 1, we denote by rad’X (M, —) and
rad’/g’(—, M) the obvious subfunctors of Homy(—, M) and Homy4 (M, —) respec-
tively, defined as we did for rad4 (—, M) and rad4 (M, —) in Subsection II.1.3.
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Lemma VL.1.4. Let A be an algebra such that rad}’ = 0, and M an indecompos-
able A-module. Then:

(a) There exists my > 0 such that rad’y" (M, —) = 0.
(b) There exists ny > 0 such that rad’}” (—, M) = 0.

Proof. We only prove (a), because the proof of (b) is dual.

Let DA be the minimal injective cogenerator of mod A. Because of Lemma I1.4.1,
there exists a least m > 0 such that rad’} (M, DA) = rad%o(M, DA) = 0. We claim
that, for every indecomposable A-module N, we have rad’y (M, N) = 0. Because
DA is the minimal injective cogenerator, there exist 1 > 0 and a monomorphism
j: N — (DAY If f € rad}(M,N), then jf € rad)(M, (DA)"). However,
rad’y (M, DA) = 0. Hence, jf = 0. But j is a monomorphism. Thus, f = 0. m|

Theorem VI.1.5. A finite dimensional algebra A is representation-finite if and only
ifrady® = 0.

Proof. Because of Lemma VI.1.2, if A is representation-finite, then rad%O = 0.
Conversely, if rad%o = 0, then, because of Lemma VI.1.4, for each indecomposable
projective A-module P, there exists a least m p > 0 such that raerP (P,—) =0.Let
m be the maximum of all m p, as P runs through the isoclasses of indecomposable
projective A-modules. Let M be an indecomposable A-module. There exists an
indecomposable projective A-module Py such that Homy (Py, M) # 0. However,
rad’:{ (Py, M) = 0. Therefore, because of Corollary I1.4.8, there exists a path Py ~~
M of irreducible morphisms of length at most m — 1 with nonzero composition.
We observe that given a module L and a positive integer /, there are only finitely
many indecomposable modules that have a path of irreducible morphisms from
L, with length at most [: this is because the Auslander—Reiten quiver is locally
finite, see Definition IV.1.17. Thus, because there are only finitely many isoclasses
of indecomposable projective A-modules, we infer that A is representation-finite.

0

VI1.1.3 Auslander’s theorem

We have already stated and used in several examples Auslander’s theorem, which
asserts that if the Auslander—Reiten quiver /" (mod A) of an algebra A admits a finite
connected component I”, then I"(mod A) = I" and hence A is representation-finite.
To prove it, we start by interpreting in terms of the Auslander—Reiten quiver some
results of Chapter II.

Because irreducible morphisms correspond to arrows in the Auslander—Reiten
quiver, there is a path of irreducible morphisms between indecomposables from M
to N if and only if there is a path in /" (mod A) from the point M to the point N. In
particular, if this is the case, then M and N belong to the same connected component
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of I"(mod A). We may then restate Corollary I1.4.8 and Proposition I1.4.9 as follows:
let M, N be indecomposable A-modules and assume that rad4 (M, N) # 0. Then,
we have two cases to consider.

If rad (M, N) = 0, then there exists a path M ~» N in I"(mod A). In addition,
there exists ¢+ > 1 such that rad’A (M, N)\ rad’AH(M , N) # 0. In this case, there
exists a path M ~~ N in I"(mod A) of length ¢.

If rad%o(M, N) # 0, then, for every i > 0, one can find a path of length i
in I'(mod A) from M to some M’ with nonzero composition, and a morphism in
rad°(M’, N) whose composition with the previous path is still nonzero. Dually,
there exists a path of length i in I"'(mod A) from some N’ to N with nonzero
composition and a morphism in rad° (M, N') whose composition with the previous
path is still nonzero.

We need one additional lemma.

Lemma VI.1.6. Let I' be a connected component of I'(mod A), all of whose
modules have length bounded by m, and M, N indecomposable A-modules such
that Homa (M, N) # 0. Then, M lies in I" if and only if N does too, and, if this is
the case, then there exists a path of irreducible morphisms M ~> N.

Proof. We may clearly assume M Z N and thus rad4 (M, N) # 0. Assume that M
lies in I". To prove that N also lies in I, it suffices to prove that there exists a path
of irreducible morphisms

M=My— M| — ... — M =N

of length / < 2™ — 1. Assume that this is not the case. Because of Corollary 11.4.8
and Proposition I1.4.9, there exists a path of irreducible morphisms

M=My— M| — ... —> Mom_y

with nonzero composition, and this contradicts the Harada—Sai lemma VI.1.1.
Therefore, N belongs to I".
Dually, if N lies in I”, then so does M. O

We now prove Auslander’s theorem.

Theorem VIL.1.7. Let A be a finite dimensional algebra such that I (mod A) has
a connected component I' whose modules have bounded composition length. Then,
I'(mod A) = I" and A is representation-finite.

Proof. Let M be an indecomposable module lying in I" and P an indecomposable
projective A-module P such that Homy (P, M) # 0. Because of Lemma VI.1.6,
P lies in I'. Now, let P’ be an arbitrary indecomposable projective A-module.
Because the algebra A is connected, there exists a sequence of indecomposable
projective A-modules P = Py, Py, ..., P, = P’ such that, for each i, we have
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Homa (P;, Pi+1) # 0 or Homy (P;41, P;) # 0. Because of Lemma VI.1.6 and an
easy induction, P’ lies in I". Thus, all indecomposable projective A-modules lie
in I'. Now, let N be an arbitrary indecomposable A-module. Then, there exists an
indecomposable projective A-module P’ such that Homa (P’, N) # 0. But P’ in I”
implies that N also lies in I". This proves that I"(mod A) = I".

It remains to show that I” is finite. For every indecomposable module N, there
exists an indecomposable projective module P’ such that Homa(P’, N) # O.
Therefore, as observed in the proof of Lemma VI.1.6, there exists a path P’ ~~ N
of irreducible morphisms of length smaller than 2" — 1, where m is a bound on
the length of modules in I". Because there are only finitely many isoclasses of
indecomposable projectives, and I"(mod A) is locally finite, we deduce that I" is
finite. Therefore, A is representation-finite. O

As a first and obvious corollary, we get the following statement, which was the
statement used effectively in the examples of Chapter I'V.

Corollary VI.1.8. If I'(mod A) admits a finite connected component I, then
I'(mod A) = I'. In particular, A is representation-finite. O

The next corollary is of great historical importance, as it answered positively a
conjecture that motivated several of the developments of modern-day representation
theory. This conjecture is known as the first Brauer-Thrall conjecture (now a
theorem).

Corollary VI.1.9. An algebra A is either representation-finite or there exist inde-
composable A-modules that have arbitrarily large length.

Proof . Indeed, if the indecomposable A-modules have bounded length, then Aus-
lander’s theorem implies that A is representation-finite. O

Exercises for Section VI.1
Exercise VI.1.1. Let f: L — M, g: M —> N be morphisms of modules. Prove
that

Im f

I =—
mef Imf N Kerg

Exercise VI.1.2. Let A be given by the quiver
dOROL

bound by a?> = 0, 2 = 0, «f = 0, B = 0, and S denote the unique simple
A-module. Construct morphisms
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~ A . ~ n ~ A ~
AAL?Aﬁ(DA)A&s&AA&?A&(DA)A

such that fg f5 f4 f3 f2 f1 # 0 (thus, the Harada—Sai bound is sharp in this example).

Exercise VI.1.3. Prove that the following conditions are equivalent for an algebra
A:

(a) A is representation-finite.

(b) for every indecomposable module M, there exists my > O such that
rad’XM M, -)=0.

(c) for every indecomposable module N, there exists ny > 0 such that
rad’}" (—, N) = 0.

(d) for every indecomposable projective module P, there exists mp > 0 such that
rad’XP(P, —)=0.

(e) for every indecomposable injective module I, there exists n; > 0 such that
rad}/ (—, 1) = 0.

Exercise VI.1.4. Let F: mod A — modk be a functor. Its support Supp F is the
full subcategory of ind A consisting of the objects M such that F (M) # 0. Prove
that the following conditions are equivalent for an algebra A.

(a) A is representation-finite.

(b) For every M in ind A, Supp Hom4 (M, —) is finite.

(c) Forevery N inind A, Supp Homy4 (—, N) is finite.

(d) For every indecomposable projective P, Supp Homy (P, —) is finite.
(e) For every indecomposable injective I, Supp Hom4 (—, I) is finite.

Exercise VI.1.5.

(a) Let A be an algebra such that all indecomposable projectives belong to
one component I" of I'(mod A). Prove that A is representation-finite and
I'(mod A) = I' if and only if the modules in I" have bounded length.

(b) Give an example of a representation-infinite algebra, all of whose indecompos-
able projective modules lie in the same component I” of I"(mod A) and prove
that, in this example, the modules in I" have unbounded length.

Exercise VI.1.6. Let A be a finite dimensional algebra. Prove that the following
conditions are equivalent:

(a) A is representation-finite,

(b) I'(mod A) admits one connected component, all of whose indecomposable
modules are of bounded length,

(c) I'(mod A) admits one finite connected component,

(d) rady =0,

(e) There exists m > 0 such that rad”} = 0.
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V1.2 Representation-finiteness using depths

VI.2.1 A characterisation using depths

We give another characterisation of representation-finiteness for an algebra A in
terms of the radical of its module category.

In this section, for each simple module S, we fix a projective cover ps: Ps —> S
and an injective envelope is: S —> I5s.

Theorem VL.2.1. The following statements are equivalent for an algebra A:

(a) A is representation-finite.

(b) The depth of every nonzero morphism is finite.

(c) The depth of ps is finite for every simple module S.
(d) The depth of is is finite for every simple module S.

Proof. Because (d) is dual to (c), it suffices to prove the equivalence of the first
three conditions.

(a) implies (b). Assume that A is representation-finite. We have seen in
Lemma VI.1.2 that there exists m > 0 such that rad’f"1 = 0. Then, the definition of
depth implies that every morphism has a depth of at most m — 1.

(b) implies (c). This is trivial.

(c) implies (a). Suppose that the depth of pg is finite for every simple module
S. Denote by d the maximal depth of the ps when S runs through all isoclasses of
simple A-modules.

Let M be an indecomposable A-module, and I" the component of the Auslander—
Reiten quiver of A containing M. Let S be any simple summand of the top of M.
Then, there exists a surjective morphism g: M — S. Because g is surjective
and Pg is indecomposable projective, the lifting property of projectives yields
f: Ps —> M such that gf = ps. Then, dp(f) < dp(ps) < d. Because of
Corollary I1.4.8, there exists a path of irreducible morphisms Ps ~» M of length
at most d. Now, I" is locally finite and contains at most finitely many isoclasses of
indecomposable projective modules. Therefore, I” is finite. Because of Auslander’s
theorem VI.1.7, A is representation-finite and the result is proven. m]

VI.2.2 The nilpotency index

In this subsection, we let A be a representation-finite algebra. Because of
Lemma VI.1.2, there exists m > 0 such that rad’;{ = 0. The least such m is
called the nilpotency index of the radical of the module category. We show
how one can compute this index in terms of the depths of the morphisms of the
form fs = igps: Ps —> Ig, from each indecomposable projective Ps to the
corresponding injective /s and having as an image the simple module S. We need a
couple of lemmata.
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Lemma V1.2.2. Let S be a simple A-module. If a morphism f: Ps —> Ig is
nonzero, then there exist g € End(Ps) and h € End(Is) such that hfg = fs.

Proof. Because of the Harada—Sai lemma VI.1.1, there exists a maximal integer
r > 0 for which one can find a radical path

hy hy
IS = [So — ISl _—> ... > [Sr—l — [Sr

where the S; are simple modules and 4, ... h1 f # 0. Writingh = h, ... hyifr >0
and h = 1ifr =0, ityields if # 0.
Now consider the short exact sequence

s, Is.
0—>Sri>lsri>%—>0
r

where ¢ is the cokernel of ig, .

We claim that ghf is zero. Indeed, if this is not the case, then there exists a simple
module S’ and a morphism p: Is, /S, —> Ig such that p(qghf) # 0. However,
pq € rad(Is,, Is) because g is radical. This contradicts the maximality of r and
establishes our claim.

As a consequence, A f factors through i, , which is the kernel of g. That is, there
exists u: Ps —> S, such that hf = is u. Because hf # 0, we have u # 0;
therefore, u is an epimorphism and S = S,. Because Homy (Ps, S) is generated
by ps as right End Ps-module, there exists g € End(Ps) such that hfg = isug =
isps = fs, as required. |

Lemma V1.2.3. Let S be a simple A-module. If f: M —> Ig is a nonzero
morphism, then there exists a morphism g: Ps —> M such that fg # 0.

Proof. Let j: K —> M be the kernel of f. We have an induced sequence
00— K —/> Mm% X — 0.

Because fj = 0, there exists g': M/K — Ig such that f = g’q. Then,
f # 0 implies Homy (M /K, Is) # 0. In particular, M/K has the simple S as a
composition factor and thus there exist submodules L, N of M with K C N C L C
M and L/N = S. Recalling that Pg is projective, we get a commutative diagram
with an exact row




280 VI Representation-finite algebras

where w, u, h are inclusion maps and v is the cokernel of u. Suppose fhp = 0.
Because j is the kernel of f, there exists k: Ps —> K such that ip = jk = huwk.
Because / is a monomorphism, we get p = uwk. Therefore, ps = vp = vuwk = 0,
a contradiction. Thus, f(hp) # 0, and the result is proven. O

Theorem VL.2.4. Let A be a representation-finite algebra and m the maximal depth
of the fs with S ranging over all isoclasses of simple modules. Then, the nilpotency
index of rady is m + 1.

Proof. Because of the definition of m, we have rad’}} # 0. Then let

M=My L5 vy — I M, =N

be a radical path of length m + 1 in ind A. We must prove that f = f,,,+1... f1 is
zero. Assume that this is not the case; then, L = Im( f) contains a simple module S
as a composition factor.

We first claim that there exist morphisms g: Ps — M and h: N — Ig such
that hfg = fs. Let f = gp be the canonical factorisation of f through its image L.
Because S is a composition factor of L, there exists a nonzero morphism u: L —>
Is. Because I is injective and ¢ a monomorphism, there exists v: N —> Ig such
that # = vq. Because u # 0 and p is an epimorphism, we get

vf =vgp =up #0.

M—"

N

w L v
u

P_g%[_g

Applying Lemma VI1.2.3 above yields a morphism w: Ps —> M such that vfw #
0. Because of Lemma VI.2.2, there exist morphisms g’, 4’ such that A’ (vfw)g' =
fs. Setting h = h'v and g = wg’, we get hfg = fs. This establishes our claim.
But then 2fg = fg implies that dp(fs) > dp(f) > m + 1, and this contradicts
the definition of m. The proof is now complete. O

The number m in the theorem above can be seen as the length of a maximal
path of irreducible morphisms with nonzero composition from an indecomposable
projective module to the corresponding indecomposable injective, passing through
the corresponding simple. The nilpotency index that we have just computed is
usually smaller than the Harada—Sai bound, as the following example shows.
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Example VI.2.5. Let A be given by the quiver

bound by Sa = 0. As already seen, its Auslander—Reiten quiver is

/\/\
\/\/

SN N
© ‘I’ ©

where one has to identify the two copies of the simple S,. The maximal length of
an indecomposable module is equal to 4; thus, the bound given by the Harada—Sai
lemmais2*—1 = 15.In particular, radi‘5 = 0. However, the lengths of the maximal
paths from Py to I, passing through S, with nonzero composition are 3, 6 and 3 for
x = 1,2 and 3 respectively. Therefore, 7 is the nilpotency index of A (and so,
rade =0).

Exercises for Section V1.2

Exercise VI.2.1. Let A be given by the quiver

bound by ¢ = 0, /32 =0,B8y =0,ay =0 (that is, rad? A = 0).

(a) Compute the Auslander—Reiten quiver of A.
(b) For each isoclass of simple module S, compute the depths of i, ps, fs.
(c) Deduce the nilpotency index of rady4.
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Exercise VI.2.2. Let A be given by the quiver

aClL2

bound by ¢ = 0 and a? =0, see Example I1V.3.2. For each of S7 and >, compute
the depth of the corresponding morphisms is;, ps; and fs, fori = 1, 2, and deduce
the nilpotency index of the radical of mod A.

VI.3 The Auslander algebra of a representation-finite
algebra

VI.3.1 The Auslander algebra

In this section, we assume that A is a representation-finite algebra. Then, as we shall
see, the Auslander—Reiten quiver I"(mod A) has a clear and interesting interpreta-
tion. Let My, ..., M,, denote a complete set of the (finitely many) isoclasses of
indecomposable A-modules, and set M = @_ | M;. Then, mod A = add M, which
is expressed by saying that M is an additive generator of the category mod A. The
algebra &/ = Endy M is called the Auslander algebra of A. The main result of
this subsection states that the ordinary quiver Q ., of <7 is precisely the Auslander—
Reiten quiver I"'(mod A) of A.

We start by looking at the evaluation functor &: Fun A — mod <7, defined by
F — F(M), considered in Subsection V.1.1, when we assume additionally that A
is representation-finite.

Lemma VL.3.1. If A is representation-finite, then Fun A = mod <7

Proof. In view of the projectivisation theorem V.1.2, it suffices to prove that
pres Z (M) coincides with Fun A. We recall that pres (M) consists of all F in
Fun A such that there exist My, M; in add M and an exact sequence

Homy(—, M;) — Homyu(—, My) — F — 0.

Let F be an object in Fun A. Because F (M) is a finite dimensional k-vector space,
and hence, as seen in Subsection V.1.1, is a finitely generated .o/-module, there
exists an exact sequence in mod .«

PL— Ph— F(M) — 0

with Py, Py projective «7-modules. Therefore, because of Corollary V.1.4, there
exist My, M in add M such that the previous sequence becomes

Homy (M, M) — Homa (M, My) — F(M) — 0.
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Because mod A = add M and the functors considered are k-functors, this yields an
exact sequence in Fun A

Homy(—, M{) — Homyu(—, My) — F — 0,

that is, F lies in pres (M), as required. m]
We prove the main result of this subsection.

Theorem V1L.3.2. If A is a representation-finite algebra, then the Auslander—Reiten
quiver of A is isomorphic to the ordinary quiver of the Auslander algebra o7 of A.

Proof. Because of Corollary V.1.4(b), the «/-modules P; = Homy (M, M;) with
M; an indecomposable A-module and 1 < i < m form a complete set of
representatives of the isoclasses of indecomposable projective .o7-modules. Thus,
the map P; —> M, induces a bijection between the sets of points (Q )¢ and
I'(mod A)g of the two quivers. To prove that there is a bijection between the
arrows, let M;, M; be indecomposable A-modules, and P; = Homa (M, M;),
P; = Homy (M, M;) the corresponding indecomposable projective .z7-modules.
Applying Lemma V.1.1, we get
rada(M;, M) = rad(Homyu (—, M;), Homy (—, M}))
= Hom(Homy (—, M;), rada(—, M;))

= Hom/ (P;, rad P;)
and, similarly

rad% (M;, M ;) = Hom(Homu (—, M;), rady (—, M)
= HomrQ{(P,',lrad2 Pj).

Let ¢;, e be the idempotents of &7 such that P; = ¢; </, P; = ¢;.</. Then, we have

radg (M;, M;)  Homyu(P;,rad P;) _ (radd)
= = €; e;
rady(M;, M;) ~ Homga(P;,rad’> P;)  \rad>&/ /)’

This proves the required statement. O

Although this theorem characterises the ordinary quiver of an Auslander algebra,
it does not give a complete system of relations on this quiver. There are, however,
obvious relations in the quiver of an Auslander algebra. Indeed, let N be an
indecomposable nonprojective A-module. There exists an almost split sequence

0—L-L e M-S N—0
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with the M; indecomposable and pairwise nonisomorphic (because A is
representation-finite and so Proposition IV.1.7 holds). Exactness of the sequence
yields gf = 0, which means that in the corresponding mesh

M,
L N
M,

we have Zle a;B;i = 0. This is clearly a relation in Q. . In several important
cases, such as those in which the Auslander—Reiten quiver of <7 is acyclic, relations
of this form constitute a complete set of relations on Q . But in general, this is not
true. The proof lies beyond the scope of this text, but we give an example.

Example VI.3.3. Let A be given by the quiver

1w 2 2 3
[ ]

with Ay = 0. Then I"'(mod A) is

Thus, the ordinary quiver of the Auslander algebra <7 is

1 ) 2 y 3 p 4 a 5
° ° ° °

As mentioned above, we have the relations ¢ = 0, y§ = 0 on Q/ induced
from the almost split sequences in mod A. We prove that these are all the possible
relations on Q.. Indeed, Q. is a tree; hence, the only possible relations are
zero-relations. Now, the only path of length at least two in Q ./, which is possibly
nonzero, is By . The path 8y corresponds to the composed morphism

%—>2—>;
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in mod A. The latter being nonzero, we have By # 0 and so the given relations
af =0, yé = 0 are the only ones on Q.

VI.3.2 Characterisation of the Auslander algebra

One may ask: is there a criterion allowing us to verify whether or not a given algebra
is the Auslander algebra of some representation-finite algebra? And, if this is the
case, can one explicitly compute this representation-finite algebra?

Our objective in this subsection is to answer these two questions. Surprisingly,
the criterion sought is of a purely homological nature. We start with two lemmata.

Lemma V1.3.4. Let A be an algebra, and I an indecomposable injective A-
module, then Homy(—, I) is an indecomposable projective—injective object in
Fun A.

Proof. Clearly, Homy (—, I) is indecomposable and projective. We just have to
prove its injectivity.

Let e € A be a primitive idempotent such that / = D(Ae). We have a canonical
isomorphism

Homy (—, D(Ae)) = DHomyg(eA, —),
see Lemma I.1.19. Let F be an object in Fun A. We have isomorphisms of functors

Hom(F, Hom4 (—, D(Ae)) = Hom(F, DHomya(eA, —))
= Hom(Homy (eA, —),DF)
= DF(eA)

where we applied the covariant version of Yoneda’s lemma. Applying the contravari-
ant version, we get

F(eA) = Hom(Homy (—, eA), F).
Therefore,
Hom(F, Homy (—, D(Ae)) = DHom(Homy (—, eA), F).

Because Hom(—, Hom4(—, D(Ae)) is of the form D Hom(G, —), where G =
Hom4 (—, eA) is a projective functor, then Homy4 (—, D(Ae)) is injective. ]

Let now .# denote a full subcategory of an abelian category 4 consisting of
injective objects. We define a new category m(.#) as follows. The objects of m(.¥)
are morphisms between objects of .#. A morphism from an object f: Jo —> Ji to
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an object f': Jj —> J| in . is a pair (uo, u1) of morphisms in ¢, with ug: Jo —>
Jour: J1 — Jj satisfying u; f = f’uo, that is, the square below commutes

Jo%h

N —

Finally, the composition of morphisms in m(.#) is induced from the composition
in%.

A morphism (ug, u1): f —> f' as above is called cancellable if there exists
s: Ji —> Jj such that ug = sf. Clearly, this implies f'ug = uif = f'sf.
Thus, if we set ¥ = mod A, cancellable morphisms are negligible in the sense
of Subsection III.1.2. The converse is clearly not true. We denote by A44(f, f/)
the set of cancellable morphisms from f to f’. One can prove directly that
the sets A4(f, f) constitute an ideal .4 in m(.¥), see Exercise VI.3.1 below.
However, this follows from the next lemma, which the reader should compare with
Theorems III.1.4 and III.1.5.

Lemma VL.3.5. With the above notation, the functor & : m(¥) — €, which
maps each object f of m(.%) to its kernel, induces a full and faithful functor
m(5)

o

H

— €.

Proof. We first prove that .# induces a faithful functor .7 : % —> € by
proving that .4 is the kernel of J#" (and so, an ideal of m(.%)).
Let (ug, u1) be in A5(f, f'). We have a commutative diagram with exact rows

0 H(f) Jo Ji
J/ , j/ L f/ \L
0 A (f') Jo Ji

We claim that # = 0. Indeed, because (uq, u1) is cancellable, there exists s: J| —>
Jg such that ug = sf. Then, j'u = uoj = sfj = 0 because fj = 0. Now, j’is a
monomorphism. Hence, u = 0, as required.

Conversely, let (ug,u1): f —> f’ be a morphism such that, in the diagram
above, we have u = 0. Then, upj = 0 and so uq factors through Im f. Letting
f = ip:Jo — Imjf — J; be the canonical factorisation of f, there
exists s’: Im f — J such that up = s’p. Because Jj is injective and i is a
monomorphism, there exists s: Ji —> J such that si = s’. Hence, sf = sip =
s"p = ug and so (ug, uy) is cancellable. This establishes our claim.

Fullness follows from the injectivity of Jj and J|. Indeed, if u: 2 (f) —
J(f') is given, then, because J) is injective, there exists u: Jo —> J such that
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uoj = j'u. Letting i, p be as before and f’ = i’p’ the canonical factorisation of
f', the morphisms u and ug imply the existence of u’: Im f —> Im f’ such that
u'p = p'ug. Then, injectivity of J| yields a morphism u;: J; — J] such that
i'u’ = uyi. Therefore,

ur f =wip=i'u'p=ipuo= flugy
and we have finished. m]

We now state and prove our homological characterisation of Auslander algebras.

Theorem V1.3.6. An algebra <7 is the Auslander algebra of some representation-
finite algebra if and only if the following conditions are satisfied:

(a) gl.dim. &/ <2;
(b) For every indecomposable projective <f -module P, there exists an exact
sequence

00— P — Jy— J

where Jy and Jy are projective—injective.

Proof. Necessity. Assume first that o/ is the Auslander algebra of some
representation-finite algebra A. Because of Lemma VI.3.1, we have a category
equivalence mod o/ = Fun A that restricts to an equivalence proj &/ = add M =
mod A given by Homy (—, Mp) +— My. Now, to prove that gl.dim. .o/ < 2, it
suffices to prove that the kernel of every morphism between projectives is projective.
Let g: P} —> Py be a morphism between projective .27 -modules. There exist A-
modules My, M| and a morphism f: M; —> My such that we have a commutative
square

Py Po

\L Homy (Mf) l

Homy (M,M,) —————— Homy (M, My)

so Ker g = KerHomy (M, f) = Homu (M, Ker f) because the Hom-functors are
left exact. Hence, Ker g is projective. This proves (a).

Let P be any projective .«/-module. Then there exists an A-module U such that
P = Homy (M, U). We have an injective copresentation

0—U—1Iy— I
in mod A. Because the Hom-functors are left exact, it induces an exact sequence
0 — Homy(—, U) — Homy (—, Iy) —> Homyu(—, 1)

in Fun A and then also in proj <. Because of Lemma VI.3.4, Homy (—, Ip) and
Hom 4 (—, I7) are projective—injective in Fun A. This establishes (b).
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Sufficiency. Conversely, assume that the algebra &7 satisfies both conditions (a)
and (b) and let .# denote the full subcategory of mod .27 consisting of all projective—
injective «7-modules. We claim that the kernel functor J#": m(.¥) — mod &/
induces an equivalence

— SI) =
%:%—)projﬂf.

Indeed, because of condition (a), the kernel of every morphism between objects
in .Z lies in proj </ so that % : m(¥) —> proj</ is a well-defined functor.
Lemma VI.3.5 states that there is an induced full and faithful functor

— 54
H %0) —> proj .

It remains to show that this functor is dense. Let P be any projective «/-module.
Because of (b), there exists an exact sequence

O—>P—>J0L>J1

where Jo, J; are projective—injective. Therefore, f lies in m(.#) and P = # (f).
This establishes our claim.

Let ind .# denote a complete set of representatives of the isoclasses of the
indecomposable objects in .#. Because .2 is a finite dimensional algebra, ind .
is a finite set. Let A be the endomorphism algebra of the direct sum of all X in
ind .#. We claim that m(.%) /.4 = mod A.

Because of Corollary V.1.4(c), we have an equivalence between & =
add(ind .¥) and inj A given by

My — DHomu (Mg, M).

Consider the kernel functor # : m(.%) /M —> mod A. It is full and faithful
because of Lemma VI.3.5, and also dense, because every A-module admits an
injective copresentation. This proves our last claim.

Composing the equivalences in our two claims, we get an equivalence proj &/ =
mod A. This implies that A is representation-finite, because there are only finitely
many isoclasses of indecomposable projective .<7-modules. In addition, <7, which
is the endomorphism algebra of a complete set of representatives of the isoclasses
of the indecomposable projective .o7-modules is isomorphic to the endomorphism
algebra of a complete set of representatives of the isoclasses of all indecomposable
A-modules. That is, .27 is the Auslander algebra of A. m]

The proof just given is constructive: namely, starting from an Auslander algebra
& , the proof shows how to recover A as the endomorphism algebra of a complete set
of representatives of the isoclasses of indecomposable projective—injective modules.
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Condition (b) in the theorem is sometimes expressed by saying that .o/ has
dominant dimension at least two. Because of condition (a) and the equivalence
Fun A = mod 7, for every indecomposable A-module N, the simple functor Sy
admits a projective resolution of length at most two

0 — Homy(—, L) — Homu(—, M) —> Homu(—, N) — Sy — 0.

We thus recover, for representation-finite algebras, the result of Theorem I1.3.10.
Recall from Proposition II.3.11 that, if L # 0, then N is nonprojective and the
sequence

0—L—>M-—N—70
is almost split in mod A.

Example VI.3.7. Consider the algebra < given by the quiver

1 5 2 4, 3 5 4 a 5
[ ] @ «— O

bound by e = 0,5 = 0. Its global dimension equals two: indeed, we have
projective resolutions of the simple modules

4
O—>%—>3 —>i—>5—>0
2

4
—3 —4—0

3
0—
2 2

O—>1—>%—>;—>3—>0

2

| —2—0

0—1—

whereas 1 is simple projective. Also, three indecomposable projectives, namely

are projective—injective, whereas there exist exact sequences for the others

4
0—>P1:1—>% —3
2

4
—3 —
2

3

0—)P3:2

5
4
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with both the second and the third terms projective—injective. Therefore, <7 is the
Auslander algebra of some representation-finite algebra A. To find the latter, we
take a complete set of representatives of isoclasses of indecomposable projective—
injective modules, that is,

2 1 5
{(P=h=1P=h=3P=4L=,}
2

and let A = End /(P> & Ps+ @ Ps5). We have morphisms

where each of f, g is nonzero, but gf = 0. Thus, <7 is the Auslander algebra of the
algebra A given by the quiver

bound by A = 0.

V1.3.3 The representation dimension

As an application, we give a criterion of representation-finiteness using a homo-
logical invariant called representation dimension. This invariant was introduced
by Auslander who expected it to be a measure of how far an algebra would be
from being representation-finite. Let A be an algebra. An A-module 7T is called
a generator—cogenerator of mod A if it is at the same time a generator and
a cogenerator of the module category, that is, if for every A-module M, there
exist Tp, 77 in add T, an epimorphism 75 — M (so that T generates M)
and a monomorphism M — 77 (so that T cogenerates M). Because every
indecomposable projective module is a direct summand of any generator of mod A,
and dually, every indecomposable injective module is a direct summand of any
cogenerator, we infer that both A4 and (DA)4 are direct summands of any
generator—cogenerator.

Definition VI.3.8. Let A be a nonsemisimple algebra. The representation dimen-
sion of A, denoted as rep.dim. A, is the minimum of the global dimensions of
End T4, as T ranges over all generator—cogenerators of mod A.

The representation dimension is meant to measure the complexity of the mor-
phisms in mod A. Indeed, a nonzero morphism from M to N, say, preserves at least
one common simple composition factor S of both M and N. But then, there exists
a nonzero morphism from the projective cover of S to M, and another one from N
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to the injective envelope of S. These three morphisms have a nonzero composition,
which is a morphism from A4 to (DA)4. In this sense, all nonzero morphisms in
mod A are counted inside the endomorphism algebra of any generator—cogenerator.
Our objective is to prove that, for any nonsemisimple algebra A, we have
rep.dim. A > 2 and that the least value 2 occurs if and only if A is representation-
finite. Our first lemma can be thought of as a partial converse of Lemma VI.3.4.

Lemma V1.3.9. Let T be a generator—cogenerator of mod A and B = End T4. If
Homa (T, M) is injective in mod B, then M is injective in mod A.

Proof. Let L4 be a submodule of A4. Because T is a generator, there exists an

exact sequence T i> To Lo — 0 with Ty, T1 in add T. Composing p with
the inclusion j : L —> A yields an exact sequence

TlLTogA

with fo = jp. Because this exact sequence lies in add 7', applying Homx (7', —)
gives an exact sequence in mod B

H T, H T,
Homu (T, To) "% Homa (7. 7o) "™ 7 Hom, (T, 4)

using Corollary V.1.4. Because Hom4 (T, M) is injective, we get a commutative
diagram with exact rows

Homp(Homa (T, A), Hom (T, M)) — Hompg(Hom 4 (T, Tp), Hom4 (T, M)) — Homp (Hom 4 (T, T} ), Hom4 (T, M))

Homa (fo,M) Homa(f1,M)

Homa (A, M) Hom (To,M ) Homa (T}, M)

where we again used Corollary V.1.4. On the other hand, applying Homu (—, M)

to the exact sequence 7 i) Ty — L — 0 yields Homa(L, M) =
Ker Homy (f1, M).

Now, the morphism Homg4(j, M) : Homyu(A, M) —> Homu(L, M) is
surjective: let u € Homg (L, M). Then, pf; = 0 implies that

up € Homy (p, M)(u) € KerHomg (f1, M) = ImHomy (fo, M)

thus, there exists v : A —> M such that up = vfy = vjp. Because p is an
epimorphism, u = vj = Hom4 (j, M)(v); thatis, Homx (j, M) is indeed surjective.
But this surjectivity means exactly that the module M4 is injective. O

The second lemma says that, in the terminology used in Subsection VI.3.2,
endomorphism rings of generator—cogenerators have dominant dimension at least
two.
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Lemma V1.3.10. Let T be a generator—cogenerator of mod A and B = End Ty.
Then, there exists a minimal injective copresentation

00— Bg — Jo— /1

in mod B such that Jy, J1 are projective—injective and End Jy is Morita equivalent
to A.

Proof. Take a minimal injective copresentation of 7' in mod A
0—T— Iy — I,.

Because this sequence lies in add 7', applying Hom4 (7, —) to it gives an exact
sequence of B-modules

0 —> Homu (T, T) —> Homa(T, Iy) —> Homu (T, I})

using Corollary V.1.4. Now, because of Lemma 1.1.19, we have Homy (7, DA) =
DHomg (A, T). The module A being a direct summand of 7, the left B-module
Homy (A, T) is projective and therefore the right B-module D Homy (A, T) is
injective. This proves that the last exact sequence is an injective copresentation
of Bp. On the other hand, the fact that DA lies in add T implies that Jo =
Homy (T, Iy), J1 = Homyu(T, I}) are also projective and therefore projective—
injective. Finally, the resulting injective copresentation 0 — Bp —> Jo —> Ji
is minimal because the original injective copresentation of 7 is also minimal.

The embedding Bp —> Jp implies that every indecomposable projective—
injective B-module occurs as a direct summand of Jy and, because Jy itself is
projective—injective, then add Jy is the full subcategory of mod B consisting of all
the projective—injective B-modules. Because of Lemma VI1.3.5, such B-modules are
of the form Homy (7', I) with I an injective A-module. Therefore, End Jj is Morita
equivalent to Endp Hom4 (7T, DA) = Endy DA, and thus to A. O

Corollary V1.3.11. For every nonsemisimple algebra A, we have rep.dim. A > 2.

Proof. Let T be a generator—cogenerator of mod A and B = End T4. We assume
that gl.dim. B < 1 and we reach a contradiction. Indeed, in this case, a minimal
injective copresentation of B is a short exact sequence

0— Bg — Jo— J1 — 0.

Because of Lemma VI.3.10, J; is projective; thus, the sequence splits. Therefore,
Bp is a direct summand of Jp; hence, is injective, that is, B is a selfinjective
algebra. But the global dimension of a nonsemisimple selfinjective algebra is
infinite. Therefore, B is semisimple and we have Bp = Jy (because the above
copresentation is minimal). Because of Lemma VI1.3.10, A is Morita equivalent to
End Jo = End Bg = B. Therefore, A itself is semisimple, a contradiction. m]

We now state and prove the aforementioned criterion of representation-finiteness.

Theorem VI.3.12. Let A be a nonsemisimple algebra. Then, A is representation-
finite if and only if rep. dim. A = 2.
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Proof. Let A be representation-finite, 7 the direct sum of a complete set of
representatives of the isoclasses of indecomposable A-modules and B = End T4.
Because of Theorem VI.3.6, we have gl. dim. B < 2. Therefore, rep.dim. A < 2.
Corollary VI.3.11 gives rep. dim. A = 2.

Conversely, if rep. dim. A = 2, there exists a generator—cogenerator 7 of mod A
such that B = End T4 has global dimension 2. We claim that B satisfies the
conditions of Theorem VI.3.6. As condition (a) is granted by the hypothesis, we
prove (b).

Let P* be a projective B-module. Applying Theorem V.1.2, there exists 7* in
add T such that P* = Homyu (T, T*) = & Homy (—, T*), where & is the evaluation
functor of Subsection V.1.1. But now T* has a minimal injective copresentation

0—T"— I) — I

in mod A. Because T is a generator—cogenerator, Iy, I; are in add T'; thus, the
previous sequence lies completely in add 7. Applying Theorem V.1.2 again, an
exact sequence in Fun A

0 — Homu(—, T*) — Homa (—, Iy) —> Homau(—, I).

corresponds to the previous sequence. Because of Lemma VI1.3.4, Homyu (—, Ip)
and Homy (—, ;) are projective—injective. Setting Jo = & Homa(—, Ip), J1 =
& Homy (—, I1), we get an injective copresentation

0— P"— Jo— J;

in mod B with Jy, J1 projective—injective. This proves condition (b).

Applying Theorem VI.3.6, there exists a representation-finite algebra A’ such
that B is the Auslander algebra of A’. In addition, A’ is the endomorphism algebra of
the direct sum of a complete set of representatives of isoclasses of indecomposable
projective—injective B-modules. To complete the proof, we just need to show that
A’ is Morita equivalent to A.

Because of Lemma VI.3.5, every projective—injective B-module is of the form
Homy (T, I) with I an injective A-module. Therefore, A’ is Morita equivalent to
Endg Homu (T, DA) = End4 (DA) and thus to A. |

Computing the representation dimension of a given algebra is usually very
difficult. The main tool is the following result.

Theorem V1.3.13. Let A be a nonsemisimple algebra. Then rep.dim. A < d + 2 if
and only if there exists a generator—cogenerator T of mod A that has the property
that for any A-module M, there exists an exact sequence

0O0—T)— .. —Tpy— M —0
with the T; in add T, such that the induced sequence
0 — Homu (T, T;) — ... —> Homu (T, Ty) —> Homu (T, M) — 0

is also exact.
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Proof . Sufficiency. Let T be a generator—cogenerator satisfying the stated property
and B = End T'. We claim that gl. dim. B < d + 2.

Let X be a B-module. Because of Theorem V.1.2, there exist ' in Fun A and
T',T” inadd T such that X = &F = F(T) and we have an exact sequence

Homy(—, T") — Homy(—,T)) — F — 0

in Fun A. Because of Yoneda’s lemma, there exists a morphism f : 7”7 — T’
such that F = CokerHom4(—, f). Let M = Ker f. The hypothesis implies the
existence of an exact sequence

0O—T)—...—>Ty)— M —0
with the 7; in add T such that the induced sequence
0 — Homu(T, T;) — ... —> Homu (T, Ty) —> Homu(T, M) — 0

is exact in mod B. On the other hand, applying the evaluation functor & to the above
exact sequence in Fun A yields another exact sequence

0 —> Homyu (T, M) — Homu (T, T") — Homu(T,T) — F(T) = X — 0.
Splicing both sequences, we get an exact sequence

0 — Homu (T, Ty) —> ... —> Homu (T, Ty) —> Homu (T, T")

— Homu(7,T') — X — 0.

which is a projective resolution of X in mod B. Therefore, pd X < d + 2.
This establishes our claim that gl.dim. B < d 4 2 which, in turn, implies that
rep.dim. A <d + 2.

Necessity. Assume that rep. dim. A = s < d + 2. Then, there exists a generator—
cogenerator T of mod A such that B = End T4 satisfies gl. dim. B = 5. Let M be an
A-module. We wish to prove the existence of an exact sequence as in the statement.
Without loss of generality, we may assume that M does not lie in add 7. Then a
minimal injective coresolution

00— M — I —f> I
induces an exact sequence of functors

H -,
0 — Homy(—, M) — Homyu (—, Iy) M Homy(—,1})) — F — 0

where F = CokerHomy(—, f). Because T is a generator—cogenerator, I, [
belong to add T'. Evaluating this sequence of functors on 7', and using that F(7T)

is a B-module, we have

pdHomus (T, M) =pd F(T) —2 <s — 2.
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Let
0 — Homu (T, Ty_2) —> ... —> Homu (T, Ty) — Homuy (T, M) — 0

be a projective resolution with the 7; in add 7. Corresponding to it, there is an exact
sequence of functors from add T to mod B

0 — Homu(—, Ty_7) —> ... —> Homu(—, Ty) — Homu(—, M) — O.
Evaluating this sequence on A 4, which lies in add 7', we get an exact sequence
0—Typ—...—Tp— M —0

in mod A. This completes the proof. O

Example VI.3.14. Let A be a hereditary nonsemisimple algebraand 7 = A @ DA.
Let M be any module. Without loss of generality, we may assume that M is not
in add 7. But then M is noninjective and so Hom4 (DA, M) = 0, because of
Lemma IV.2.5(b). Therefore, Hom4 (T, M) = Homu (A, M) and every projective
resolution 0 — P} — Py — M — 0 induces an exact sequence
0 —> Homy (T, P;) — Homyu (T, Pg) —> Homu (T, M) —> O.
Theorem VI.3.13 gives rep.dim. A < 3. In addition, if A is representation-

infinite, then it follows from Theorem VI.3.12 that rep. dim. A > 3. Therefore, if
A is a representation-infinite hereditary algebra, then we have rep. dim. A = 3.

Exercises for Section V1.3

Exercise VI.3.1. Prove directly that .4 is an ideal in m(.%).
Exercise VI.3.2. Let A be the path algebra of the quiver

l«—2+«—3
(a) Prove that the Auslander algebra of A is given by the quiver
[ ]
€ 4
. A . / \ . a
vé\ . ‘4

bound by o =0, 86 + ye = 0,51 = 0.
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(b) Conversely, starting from the algebra given by the bound quiver of (a), prove that
it satisfies the conditions of Theorem VI1.3.6. Then verify that the endomorphism
algebra of the direct sum of a complete set of representatives of the isoclasses
of its indecomposable projective—injectives is precisely A.

Exercise VI.3.3. Let A be a representation-finite algebra, T the direct sum of a
complete set of representatives of the isoclasses of indecomposable A-modules and
&/ = End T the Auslander algebra. Given an indecomposable A-module M, let S
denote the top of Hom4 (7, M) in mod 7. Prove the following statements:

(a) S is simple projective in mod &7 if and only if M is simple projective in
mod A.

(b) pd S = 1if and only if M is projective but not simple.

(c) pd S =2 if and only if M is not projective.

(d) Assume that M is not projective and that

0 —> Homu (T, K) —> Homy (T, L) — Homu (T, M) — S — 0
is a minimal projective resolution of S. Prove that
0—K—L—M—70

is an almost split sequence in mod A.

Exercise VI.3.4. Prove that each of the following bound quiver algebras is the
Auslander algebra of some representation-finite algebra. Compute the latter.

1 4
A p a
(a) \3/ \6 aff = y5,p4 =0,5u=0
2,//4 '5\5,/y
—0,y6=0,
OFPEIR LI PP PV Pl Zfzoy
a
)1 —/]/— 2 afp =0
LA, LT
n \% / \ / ay =0,p0=0,
d1-"—2+"3 6 72 — 4t = 0.
RN N ’



VI.3 The Auslander algebra of a representation-finite algebra 297

Exercise VI.3.5. For each of the following hereditary algebras A, compute the
endomorphism algebra of A @ DA and prove directly that the global dimension
equals 3.

(a1 —/———— 2

1 4
\3/

(b)
/ \
2 5

Exercise VI.3.6. Let A be an algebra, T a generator of mod A and B = End T4.
Let M be an A-module.

(a) Prove that every projective presentation
Homu (T, T1) — Homu (T, Ty) —> Homu (T, M) — 0O

in mod B is induced by an exact sequence Ty — Ty — M — 0.

(b) Prove that there exists an epimorphism p : 7o —> M with Tp in add T such
that Homy (7', p) : Homa (7T, Tp) —> Homyu (7T, M) is a projective cover in
mod B.

Exercise VI.3.7. Let A be an algebra, T a generator—cogenerator of mod A and
B = End T4. Prove that the following are equivalent:

(a) gl.dim. B < 3,

(b) For every A-module M, there exists a short exact sequence

O—>T1—>Toi>M—>0

with Tp, 77 in addT and Homu (T, p): Homa (T, To) —> Homu (T, M) a
projective cover in mod B,
(c) For every A-module M, there exists a short exact sequence

O—>T1—>T0—p>M—>O

with Tp, T1 in add T and p : To —> M a right minimal add T -approximation
(see Exercise V.1.4).

In addition, prove that, if any of these conditions are satisfied, then rep. dim. A < 3.
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V1.4 The Four Terms in the Middle theorem

VI1.4.1 Preparatory lemmata

Let A be a finite dimensional algebraand 0 — L — M — N — 0 an almost
split sequence in mod A. The middle term of the sequence may be decomposed into
indecomposable direct summands as M = @!_, M;. It is known that the integer ¢ is
uniquely determined by M whereas the M; are unique up to isomorphism. However,
to decompose a module M into indecomposable direct summands is in general
a difficult problem. Therefore, a measure of the complexity of such an almost
split sequence is the invariant ¢, called the number of middle terms. A reasonable
question is then: how large may the integer ¢ be? It is always finite, because we deal
with finitely generated modules, but easy examples show that the integer + may be
arbitrarily large, see Exercise V1.4.2 below.

It turns out that, if the algebra A is representation-finite, then r < 4, and, if
t = 4, then exactly one of the indecomposable summands of the middle term is
projective—injective. This is called the Four Terms in the Middle theorem, or the
Bautista—Brenner theorem. Our objective in this section is to prove this theorem.
We mostly follow the neat proof given by Liu and Krause.

Throughout, we assume that A is a representation-finite algebra. In this case,
because of Proposition IV.1.7, the set M of all arrows leaving a point M in the
Auslander—Reiten quiver I"(mod A) can and will be identified to the set of direct
successors of M, no two of which are isomorphic. In particular, | M *| is the number
of direct successors of M. Similarly, the set M~ of all arrows entering M can and
will be identified with the set of all its direct predecessors, no two of which are
isomorphic, and |M ™| is the number of these direct predecessors. In this proof, we
use essentially the notion of sectional path, see Definition IV.1.21.

Lemma V1.4.1. Let M be an indecomposable A-module. Then, there exists s > 0
such that T M has a projective sectional predecessor.

Proof. There exists an indecomposable projective module P such that
Homy (P, M) # 0. Because A is representation-finite, Corollary VI.1.3 yields
apath P = My — My — ... — M, — M,, = M of irreducible
morphisms. Therefore, there exists i > 0 maximal with the property that L = t'M;
is projective for some ¢ > 0. Then, we clearly get a sectional path for some s > 7.
|

Lemma V14.2. Let M, — ... — M| —> My = M be a sectional path. If

D UL — 1My = L(M),

LeM~

then none of the M;, with 0 < i < m, is projective.

Proof. Assume that M is projective, then (M) > >, ;- [(L), contrary to the
hypothesis. Therefore, M itself is not projective. In addition,
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I(tM) = Z I(L) — (M) > [(M)).

LeM—

Because tM € M, this shows that M is not projective. The given path is sectional;
thus, TM # M, and we have

D ULy —1(My) = 1(x M) = 1[(M)).
LieMy

The same argument as before gives that M is not projective. We finish the proof by
induction. |

Corollary V1.4.3. Let M be nonprojective such thatl(tM) > I(L) forall L € M~.
Then, no sectional predecessor of M is projective.

Proof. Let X = M,, — ... — M| —> My = M be a sectional path. Because
of the hypothesis, we have [(t M) > [(M). Then,

Z I(L) =1(tM) + (M)

LeM~—
yields
> UL = I(My) = L(M) + [(xM) — [(M)) > [(M).
LeM~—
Because of Lemma VI1.4.2, X is not projective. O

Lemma V1.4.4. Let N1, Ny be distinct elements of M. If (M) > I(Ny) + [(N>),
then

(a) M, N1, N, are not projective; and
®) ITM) = Y, ey L(L) — [(TNy) — (T N2).

Proof. Fori € {l1,2}, we have [(N;) < I(N1) + [(N2) < [(M); hence, neither Ny
nor N, is projective. The two inequalities [ (N;) + [(zN;) = [(M) fori = 1,2 give
that

[(zN1) + (T N2) = 2I(M) — [(N1) — [(N2) = [(M)

where we used the inequality in the hypothesis. Therefore, M is not projective and
we have proven (a).
In addition, we have

(@M) = ) L) —IM)= ) I(L) —I(TN) —[(TN2)

LeM~— LeM—

where we used the inequality that we just proved. This proves (b). O
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Lemma V1.4.5. Assume that f: M —> @?ZINZ- is irreducible, with M and the
N; indecomposable. If no N; is projective, then f is a monomorphism and l(M) <
1(x~1M).

Proof. We assume that f is an epimorphism, or that [(M) > [(t~'M) with M
noninjective, and try to reach a contradiction.

We first claim that 2I(M) > Z?:l [(N;). This is clear if f is an epimorphism.
On the other hand, if M is noninjective and [ (M) > I(z=M), then 21(M) > [(M)+
I(z7'M) > Z?:l [(N}), as required.

This inequality implies that /(M) > [(N1) + [(N2) or [(M) > [(N3) + [(Ny).
We may, without loss of generality, assume the former. Because of Lemma VI1.4.4
above, M is not projective. We claim that, for any L € M~, we have [(tM) > I(L).

There are two cases to consider. If L # t N; for every i, then

4
I(tM) > I(L) + Zl(rN,-) — (M)
i=1

4
> (L) + ) _[I(M) — [(N))] — [(M)

i=1

4
=1I(L) +31(M) — Zz(zvi)

i=1
= I(L) + (M)
> I(L)

because 2/ (M) > Z?:l [(N;). On the other hand, if L = tN; for some i, say, for
i = 1, we have

4
I(tM) > Zl(rN,-) — (M)
i=1

4
> (L) + Y (M) = [(N)] = (M)

i=2

4
=1I(L) 4+ 21(M) — ZZ(M)

i=2
> I(L).

This establishes our claim. Because of Corollary V1.4.3, no sectional predecessor of
M is projective. In particular, no t N; is projective. Then we have
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I(xM) = ) I(TN;) — (M)

-

1

NE

= ) L(M) — I(Np)] — (M)
i=1
4
= 31(M) — ) I(N)
i=1
> I(M).

Because tN; is not projective for every i, and tM is noninjective with /(M) >
I(M) = [(t~"( M)), we may repeat this reasoning for T M, getting that no sectional
predecessor of T M is projective. Inductively, for every s > 0, ¥ M has no projective
sectional predecessor. This contradicts Lemma VI1.4.1. O

In the statement, the facts that f is an irreducible monomorphism and that M is
indecomposable imply that M cannot be injective; thus, T~ M exists.

We need to state the dual of Lemma VI.4.5: assume that g: @&}_, L; — M is
irreducible, with M and the L; indecomposable. If no L; is injective, then g is an
epimorphism and [(t M) > [(M). Now, a last lemma.

Lemma V1.4.6. Assume that M has an injective sectional successor and let
fiM — @®_|N; be left minimal almost split, with the N; indecomposable.
Then:

(@ r =4
(b) Ift = 4, then one of the N; is projective.

Proof. Let M = My — M} — ... —> M,, = I be a sectional path of shortest
length with I injective. First, if m = 0, then M itself is injective. Hence, f is an
epimorphism. If ¢ > 4, then, because of Lemma VI.4.5, f is a monomorphism, a
contradiction. Therefore, t < 4 in this case.

Assume, thus, that m > 1. Because of the dual of Lemma VI1.4.2, we have
YoNemt L(N) — I(My) < I(M). Let M* = {M; = Ni,...,N;}. Then we
have /(M) > Y ., I(N;). Assume ¢t > 4, then the composition f’ of the left
minimal almost split morphism f with the projection ®_ Ni — &_,N; is
irreducible, because of Corollary I1.2.25, and the last inequality implies that f” is
an epimorphism. But, because of Lemma VI.4.4, it is a monomorphism whenever
t > 4, a contradiction. Therefore, ¢ < 4 and we have proven (a).

Assume now ¢ = 4, and no N; projective. As before, we have (M) >
Y nem+ L(N) — [(My). In particular, for any two indices i, j € {2, 3,4}, (M) >
[(N;)+I1(Nj). Because of Lemma V1.4.4, M, N;, N; are not projective and we have

IxM) = > I(L) = I(tN;) = [(tN))
LeM—
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We claim that [(t M) > [(L) for every L € M~ . Indeed, taking i = 2 and j = 3,
we get [(tM) > [(tNy), [(tM) > [(tNg) and [(t M) > I(L) for L # ©N;. Next,
taking i = 3, j = 4, we get [(tM) > [(tNy). Finally, i = 2, j = 4 yields
I(tM) > I(rN3). This establishes our claim. Invoking Corollary VI.4.3, we get
that no sectional predecessor of M is projective. In particular, no tN; is projective
and clearly, no 7 N; is injective either. Applying Lemma VI.4.5 to the irreducible
morphism tM —> @?zeri, we get [(tM) < Iz~ M) = L(M). Applying
its dual to the irreducible morphism EB;‘:] TN; — M, we getl(tM) > (M), a
contradiction. Therefore, one of the N; is projective. This proves (b). O

Proposition VI.4.7. Let M be an indecomposable A-module. Then

(@ [M*| <4
(b) If IM™| = 4, then M is noninjective and M™ contains a projective.

Proof. Because of the dual of Lemma VI.4.1, there exists a least s > 0 such that
N = t7°M has an injective sectional successor. The minimality of s says that, for
every t such that 0 < ¢ < s, there is no sectional path M ~- I, with I injective.
In particular, the almost split sequence starting with T~/ M for every ¢ < 5 has no
injective middle term. Therefore, |M ™| < |[N7|.

Because of Lemma VI1.4.6, we have |[N1| < 4. Therefore, M| < 4. Assume
M| = 4. Because [M*| < |[NT|, we have |[NT| = 4 and actually, for every ¢ < s,
we have [(t7'M)T| = 4. Because of Lemma VI1.4.6, one of the elements of N1 is
projective and this can only happen if s = 0. Therefore, M contains a projective.

Because no projective has an injective as immediate predecessor in I"(mod A),
then M is noninjective. O

V1.4.2 The theorem

The Four Terms in the Middle theorem says that over a representation-finite algebra,
an almost split sequence has at most four middle terms and, if it has four, then
exactly one of these middle terms is projective—injective.

Theorem VI.4.8. Let A be a representation-finite algebra and
0—L—&_Mi— N—0

be an almost split sequence, with the M; indecomposable. Then, t < 4 and, ift = 4,
then one of the M; is projective—injective, but the others are neither projective nor
injective.

Proof. Because of Proposition VI.4.7, we have |L™| < 4. In addition, if |L*| = 4,
then one of the M; is projective. Dually, [N~| = 4 implies that one of the M
is injective. Because of Proposition II1.3.2, we have i = j and M; is projective—
injective, whereas all My with k # i are neither projective nor injective. The proof
is complete. O
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Besides the intrinsic interest of the theorem, the proof shows how to use
properties of the Auslander—Reiten quiver efficiently to obtain a new result. We
end with an example.

Example VI1.4.9. Let A be given by the quiver

2

B~ o
e

-— = 0 +————

\/

bound by all possible commutativity relations, that is, @181 = @282 = «a383. The
projective—injective indecomposable module Ps = I; is a direct summand of the
middle term of the following almost split sequence with four middle terms:

0—radPs — Ps® S$HDS3D Sy —
soc Ps

The algebra A is representation-finite and its Auslander—Reiten quiver is

5
234
1
2 34 9 5 5
/1\ /1\ ARN /34\ /’2\
. 3,234 24 234 _ 4, 5 5 .55 _ 5 .
\1/11\1/1\ 234 24 234 3/
4 23 4 5 5
1 1 23 4

Exercises for Section V1.4

Exercise VI.4.1. For each of the following bound quiver algebras, construct an
almost split sequence satisfying the conditions of the Four Terms in the Middle
theorem. Then, show that the algebras of (a) and (b) are representation-finite,
whereas that of (c) is representation-infinite.



304 VI Representation-finite algebras

2
% o
(@1 P2 3 * 6 a1f1 = azp2 = azfsys
N {V
4 Ps 5
2
(b) 1 3 b 42 7 ai1f1 = azfay2 = asPays
M 0/
5 .L 6
2 2 3
v N
(© 1 Ly b " 8 a1fir1 = asfay2 = asPsys
e v
6 —P 7

Exercise VI.4.2. Give an example of a bound quiver algebra that has an almost
split sequence with a projective—injective middle term and as many middle terms as
required.

Exercise VI.4.3. Let A be a representation-finite algebra that has an acyclic
Auslander—Reiten quiver I"(mod A) and M ~» N a sectional path in I" (mod A).

(a) Prove that dimy Homu (M, N) < 1 whereas Homys (N, M) = 0.
(b) Prove that Ext)y, (M, N) = 0 and Ext, (N, M) = 0.

Exercise VI.4.4. Construct an example of a representation-finite algebra and an
almost split sequence with three middle terms, two of which are nonisomorphic
projectives.
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