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Preface

This textbook is designed to introduce the reader to the Representation Theory of
Algebras as painlessly as possible. It concentrates on the Auslander–Reiten theory,
the radical of a module category and related topics. The only prerequisites are some
module theory and homological algebra such as are usually taught in a beginner’s
graduate course, and can be acquired in most of the textbooks in the field.

Representation theory in its broad sense is that part of mathematics that aims at
representing abstract mathematical objects as concretely as possible. In this book,
we are interested in the Representation Theory of Algebras, by which we mean finite
dimensional algebras over a field. Since the works of E. Noether in the 1930s, this is
understood as characterising the algebra by means of its module category. That is, it
aims at understanding not only the modules, but also the morphisms between them.
One is looking for invariants allowing to classify them, but also for algorithms in
order to compute them. One may thus view representation theory as an advanced
form of linear algebra, in which modern tools such as homological algebra are
available.

Since the late 1960s, the theory started growing fast owing to the introduction
of almost split sequences by Maurice Auslander and Idun Reiten, and of quivers
and their representations by Pierre Gabriel and his school. As the years passed, it
became increasingly difficult for beginners to make their way into the field because
of the need to master several different results and techniques.

Our book was born out of an unexpected encounter. In 2007, the second author
gave a course on the radical of a module category in a Workshop on Representation
Theory of Algebras, which took place in Montevideo (Uruguay). In 2013, the first
author gave a course on the Auslander–Reiten theory in a CIMPA Research School
on the Algebraic and Geometric Aspects of Representation Theory, in Curitiba
(Brazil). It was quickly apparent that these courses were complementary and, when
put together, would form the socle of a good introductory course in representation
theory.

We started writing this book, setting ourselves the following constraints: we
wanted to be able to cover the contents completely in a one-semester course, and
we also wanted to make it as easy as possible for the student, by avoiding the use of
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several different techniques or points of view. We have favoured the point of view
saying that to understand a module category, one should concentrate on morphisms,
and more precisely, morphisms lying in the radical of the module category. Because
of these constraints, it was not possible to be encyclopaedic in this work. Perhaps
the most obvious omissions are representations of quivers, Gabriel’s theorem and
covering techniques. We apologise to the reader, pointing out that other books deal
with these topics. We do, however, believe that the present volume provides the
reader with a solid basis in representation theory, allowing him or her to pursue
readings in other directions.

We now briefly describe the contents of the book. Throughout, the word
“algebra” stands for a finite dimensional algebra over a commutative field, and
the word “module” for a finitely generated right module. The book consists of six
chapters. Chapter I is of an introductory nature, it is divided into two sections. In
the first section we recall, mostly without proofs, the results of module theory that
will be useful in the sequel. Therefore, it can be left out, provided that the reader
has the relevant knowledge. The second section, in which all proofs are given, deals
with the quiver of a finite dimensional algebra, and classes of examples such as
hereditary algebras or Nakayama algebras. In Chapter II, we start by introducing
and giving several characterisations of the radical of a module category, which lead
us to the definitions of irreducible morphisms and almost split sequences. We prove
their existence and then study their relation with the factorisation of a morphism
lying in the radical. Chapter III is devoted to construction techniques for almost
split sequences and hence irreducible morphisms. With this knowledge, we are able
to define and show how to construct the Auslander–Reiten quiver of an algebra
(Chapter IV) or at least some of its components. Chapter IV also contains a short
discussion on how deep a morphism lies inside the radical of the module category
and a description of the module category of the Kronecker algebra. In Chapter V,
we discuss the relation between the representation theory of an algebra and that of
the endomorphism algebra of a well-chosen module. Auslander’s projectivisation
technique is presented, as well as a short introduction to tilting theory. The last
Chapter VI concentrates on representation-finite algebras. Several characterisations
of this class are given, and we end the book with a proof of the so-called Four Terms
in the Middle theorem. Throughout the book, several examples are solved in detail.
We have included a set of exercises at the end of each section.

At the end of the volume, we have also included a short bibliography divided
into three parts: the first part consists of standard textbooks on noncommutative
algebra and homological algebra, to which the reader is referred for the results we
use from these areas. The second part is a short list of textbooks on (parts of) the
representation theory of algebras, and finally the last part is a list of some of the
original papers containing the results that are presented here. This bibliography is
not complete and we apologise in advance in case some important papers do not
appear in it.

The material contained in this textbook is complementary. We believe that it can
be covered in a one-semester course. In the case of a shorter course, we believe that
the following sections and subsections can be given less emphasis in a first reading:
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Chapter II, Subsection II.1.3.
Chapter III, Section III.4.
Chapter IV, Subsection IV.2.3, Sections IV.3 and IV.4.
Chapter V, Section V.2.
Chapter VI, Sections VI.2 and VI.4.

This book has developed from the two courses mentioned above and also from
several lectures given to graduate students at the universities of Sherbrooke and São
Paulo over a period of several years. It is a pleasure to acknowledge our debt to
these students. Their questions, criticisms and suggestions have given us invaluable
feedback. We thank in particular Marcia Aguiar, Edson Álvares, Mélissa Barbe-
Marcoux, Véronique Bazier-Matte, Guillaume Douville, Marcelo Lanzilotta, Jean-
Philippe Morin, Charles Paquette and Sonia Trepode.

We also warmly thank Marion Henry for her precious help in getting our
manuscript into shape.

The authors gratefully acknowledge financial support from CNPq and FAPESP,
Brazil, and from NSERC, Canada.

Ibrahim Assem Sherbrooke, QC, Canada
Flávio U. Coelho São Paulo, São Paulo, Brazil
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Chapter I
Modules, algebras and quivers

In this book, we assume that the reader has some familiarity with the classical theory
of algebras and modules, category theory and homological algebra, such as can be
gained from most textbooks in these areas. The first section of this chapter is devoted
to recalling, mostly without proofs, some of the fundamental definitions and results
from module theory needed later in the book. On the other hand, throughout this
book, we shall continuously need to illustrate our results with examples. Therefore,
in the second section, we give a concise introduction to the notion of quiver of an
algebra, and explain how it can be used to compute examples. We also introduce two
classes of algebras that are extensively used later on; namely, Nakayama algebras
and hereditary algebras. In this second section, in contrast to the first, complete
proofs are given.

I.1 Modules over finite dimensional algebras

I.1.1 Algebras and modules

Because our objects of study are the categories of modules over algebras, it is natural
to start by saying what we mean by algebra. Throughout this book, the letter k
denotes a commutative field, and the word “ring” stands for an associative ring with
an identity.

A k-algebra A is a ring together with a k-vector space structure, in such a way
that these structures are compatible, that is, if a, b ∈ A and λ ∈ k, then

a(λb) = λ(ab) = (λa)b.

© Springer Nature Switzerland AG 2020
I. Assem, F. U. Coelho, Basic Representation Theory of Algebras, Graduate Texts
in Mathematics 283, https://doi.org/10.1007/978-3-030-35118-2_1
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2 I Modules, algebras and quivers

The algebra A is said to be finite dimensional if its dimension as a k-vector
space is finite. Throughout this book, unless otherwise specified, the word algebra
always means a finite dimensional k-algebra.

Let A,B be algebras. A map ϕ : A −→ B is a morphism of algebras if

(a) ϕ is a morphism of rings; and
(b) ϕ is a k-linear map.

This allows a category to be defined whose objects are the k-algebras and whose
morphisms are the algebra morphisms.

Example I.1.1. It is easy to verify that the set

⎛
⎜⎜⎝

k 0 0 0
k k 0 0
k 0 k 0
k k k k

⎞
⎟⎟⎠ =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

α11 0 0 0
α21 α22 0 0
α31 0 α33 0
α41 α42 α43 α44

⎞
⎟⎟⎠ : αij ∈ k for all i, j

⎫⎪⎪⎬
⎪⎪⎭

endowed with the usual addition and multiplication of matrices is a k-algebra. This
algebra is nine-dimensional.

Example I.1.2. Let V be a finite dimensional k-vector space and Endk V the set of
endomorphisms of V , that is, k-linear maps from V to V . Then, Endk V , endowed
with the usual addition and composition of linear maps, is a k-algebra. Its dimension
is (dimkV )2.

Example I.1.3. Let A be an algebra. We define the opposite algebra Aop to have as
elements those of A, but with the product of a, b ∈ A defined as follows: a ×op b =
ba (where ba denotes the product of b, a in A).

Classically, representing an algebra means to understand its operations by means
of matrix operations, and thus to study its structure using properties of matrices.
Formally, given an algebra A, a (k-linear) representation of A is a pair (V , ϕ),
where V is a finite dimensional k-vector space and ϕ : A −→ Endk V is a morphism
of algebras. Now, it is easy to see that the data of a representation (V , ϕ) is
equivalent to endowing V with an A-module structure, see Exercise I.1.3.

Definition I.1.4. Let A be a k-algebra. A (right) A-module M is a k-vector space
M together with a scalar multiplication M × A −→ M , denoted as (x, a) �→ xa

(for x ∈ M , a ∈ A) such that, for every x, y ∈ M , a, b ∈ A and λ ∈ k, we have:

(a) (x + y)a = xa + ya;
(b) x(a + b) = xa + xb;
(c) x(ab) = (xa)b;
(d) (λx)a = λ(xa) = x(λa);
(e) x1 = x, where 1 denotes the identity of A.

The notation MA indicates that M has an A-module structure (scalar multi-
plication) on the right. One defines left A-modules similarly. Equivalently, left
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A-modules are right modules over the opposite algebra Aop of A. Unless otherwise
specified, we only deal with right modules.

Given modules M and N , a map f : M −→ N is called A-linear, or a morphism
of A-modules, if the map is k-linear and f (xa) = f (x)a for all x ∈ M , a ∈ A.
This defines a category whose objects are the A-modules, and whose morphisms are
the A-linear maps.

We denote by HomA(M,N) the k-vector space consisting of all A-linear maps
from M to N . If M = N , then we write End M or EndA M for this space, which in
this case is an algebra, called the endomorphism algebra of M .

An A-module M is called finitely generated if there exist d ≥ 0 and an
epimorphism Ad

A −→ M . This implies that the images of the vectors of the
canonical basis of Ad are generators of M .

Lemma I.1.5. An A-module is finitely generated if and only if its underlying k-
vector space is finite dimensional.

Proof . Suppose that M is a finitely generated A-module. Then there exist d ≥ 0
and an epimorphism Ad

A −→ M . Because dimkA < ∞, we have dimkAd < ∞ and
thus dimkM < ∞. The converse is obvious. ��

We denote by mod A the category whose objects are the finitely generated right
A-modules, and whose morphisms are the A-linear maps. Whenever we want to
consider finitely generated left A-modules, we consider them to be right modules
over Aop and denote their category by mod Aop.

Example I.1.6. Let A be as in Example I.1.1 above and consider the set of row
vectors

M = (k 0 k 0) = {(λ 0 μ 0) : λ,μ ∈ k}.

It is easily verified that, for every x ∈ M and a ∈ A, the usual matrix product xa

is an element of M . Therefore, M is an A-module, clearly finitely generated, and
dimkM = 2.

I.1.2 The radical and indecomposability

Let A be an algebra and M an A-module. A submodule L of M is maximal if
L 	= M and, if L′ is a proper submodule of M containing L, then L′ = L. We
define the radical of M , denoted by rad M , to be the intersection of all maximal
submodules of M . In particular, rad A is the radical of the module AA. It can be
proved that rad A is a two-sided ideal of A that can be characterised as being the set

{a ∈ A : 1 − ax is right invertible, for each x ∈ A}

and also the set
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{a ∈ A : 1 − xa is left invertible, for each x ∈ A}.

In addition, for every finitely generated A-module M , we have rad M = M · rad A.
Because we are considering finite dimensional algebras, we have the following

result.

Theorem I.1.7. Let A be an algebra. Then, its radical is the unique two-sided ideal
I of A satisfying the following conditions:

(a) I is nil (that is, each element of I is nilpotent); and
(b) A/I is a semisimple algebra. ��
Example I.1.8. Let A be the algebra of Example I.1.1 and M the module of
Example I.1.6. Consider the set

I =

⎛
⎜⎜⎝

0 0 0 0
k 0 0 0
k 0 0 0
k k k 0

⎞
⎟⎟⎠ ⊆ A

It is easily verified that I is a two-sided ideal of A. Clearly, I is nil. Because A/I ∼=
k4 is semisimple, we get I = rad A. Also,

rad M = M · rad A = (k 0 0 0).

We have the following useful lemma.

Lemma I.1.9. Let M,N be modules and f : M −→ N an epimorphism. Then.
f (rad M) = rad N .

Proof . Indeed, we have

f (rad M) = f (M · rad A) = f (M) · rad A = N · rad A = rad N.

��
Of particular interest is the following class of algebras.

Definition I.1.10. An algebra is called local if it has a unique maximal ideal.

Theorem I.1.11. The following are equivalent for an algebra A:

(a) A is local;
(b) rad A is a maximal two-sided ideal;
(c) The set of all noninvertible elements of A forms a two-sided ideal;
(d) For each a ∈ A, we have that a or 1 − a is invertible. ��

If A is local, then the ideal consisting of all noninvertible elements is exactly the
radical. Thus, every element of a local algebra is either nilpotent or invertible.
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Local algebras yield a criterion allowing us to determine whether or not a given
finitely generated module M is indecomposable.

Definition I.1.12. A module M is indecomposable if it is nonzero and M = M ′ ⊕
M ′′ implies M ′ = 0 or M ′′ = 0.

Proposition I.1.13. A finitely generated module M is indecomposable if and only
if its endomorphism algebra End M is local. ��

The interest in this proposition comes mainly from the following theorem,
sometimes called Unique Decomposition Theorem and attributed to Remak, Krull,
Schmidt and Azumaya.

Theorem I.1.14. Let M be a finitely generated module. Then:

(a) There exists a direct sum decomposition M = ⊕m
i=1Mi with all the Mi

indecomposable.
(b) This decomposition is unique up to isomorphism: if M = ⊕m

i=1Mi = ⊕n
j=1Nj

with the Mi,Nj indecomposable, then m = n and there is a permutation σ of
{1, . . . , m} such that Mi

∼= Nσ(i) for all i. ��
Let f : M −→ N be an A-linear map. Decomposing M = ⊕m

i=1Mi and
N = ⊕n

j=1Nj with the Mi,Nj indecomposable and letting qi : Mi −→ M

and pj : N −→ Nj be the injection and the projection associated with these
decompositions respectively, we can write f in matrix form as

f = (pjf qi)1≤i≤m,1≤j≤n

with each pjf qi : Mi −→ Nj a morphism between indecomposable modules.
For an algebra A, denote by ind A a full subcategory of mod A having

as objects a complete set of representatives of the isoclasses (= isomorphism classes)
of indecomposable A-modules. Clearly, the subcategory ind A is unique up to
equivalence. The above reasoning shows that the category mod A is completely
determined by the knowledge of ind A.

Throughout this book, we never distinguish between isomorphic objects; thus,
when we speak about “all” modules, we mean all isoclasses of modules.

I.1.3 Idempotents, projectives and injectives

Let A be an algebra. An A-module P is called projective if the covariant functor
HomA(P,−) : mod A −→ mod k is (right) exact, that is, if for every epimorphism
f : M −→ N , the induced map HomA(P, f ) : HomA(P,M) −→ HomA(P,N)

is surjective. It follows easily from this definition that, if f : M −→ P is an
epimorphism with P projective, then there exists a morphism g : P −→ M such
that fg = 1P . We then say that f is a retraction and g is a section. A morphism is
said to split if it is a section or a retraction.
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A finitely generated A-module P is projective if and only if it is a direct summand
of a finitely generated free A-module. An element e ∈ A is said to be idempotent if
e2 = e. Idempotents play an important rôle in understanding algebras and modules.
For instance, let us decompose AA into indecomposable summands

AA = P1 ⊕ . . . ⊕ Pn.

In particular, each of the Pi is an indecomposable projective A-module. Then there
exists a set of idempotents {e1, . . . , en} such that the ei are orthogonal, that is,
eiej = 0 for i 	= j , primitive, that is, ei = e′

i + e′′
i with e′

i , e
′′
i orthogonal implies

e′
i = 0 or e′′

i = 0, complete, that is, 1 = e1 + e2 + . . . + en, and such that Pi = eiA

for each i. Conversely, with every set {e1, . . . en} of complete primitive orthogonal
idempotents is associated a decomposition of AA into indecomposable summands.

Example I.1.15. Let A be as in Example I.1.1. Denoting by eij the matrix having
a coefficient 1 in position (i, j) and 0 in all other positions, it is easy to see that
{e11, e22, e33, e44} forms a complete set of primitive orthogonal idempotents of A.
Thus, the indecomposable projective modules are the eiiA, for i ∈ {1, 2, 3, 4}. For
instance, the module M of Example I.1.6 can be written as M = e33A and, in
particular, is indecomposable projective.

The algebra A is called basic if, in the above decomposition, Pi 	∼= Pj for i 	= j .
In this case, the Pi form a complete set of representatives of the isoclasses of
indecomposable projective A-modules. We can restrict our study to that of basic
algebras. Indeed, let A be arbitrary, and P the direct sum of a complete set of
representatives of the isoclasses of the indecomposable projective A-modules. Set
B = End PA. Then, B is basic and it follows from the classical Morita theorem
that the categories mod A and mod B are equivalent. We may thus assume, from the
start, that A = B, that is, that A is basic.

Another reduction is possible. A k-algebra A is called connected if A is nonzero
and A = A1 ×A2 implies A1 = 0 or A2 = 0, that is, A is indecomposable as a ring.
Connectedness is characterised by means of idempotents. An idempotent e ∈ A

is called central if it belongs to the centre of A, that is, it commutes with every
element of A.

For the proof of the next proposition, we refer to Exercise I.1.2.

Proposition I.1.16. A k-algebra is connected if and only if its only central idempo-
tents are 0 and 1. ��

The following proposition shows that we may, without loss of generality, restrict
ourselves to the study of connected algebras.

Proposition I.1.17. Suppose that A = A1 × A2. Then the category mod A is
equivalent to the product category mod A1 × mod A2. ��

One of the most important properties of finite dimensional algebras is the
existence of a duality functor D = Homk(−, k) : mod A −→ mod Aop. Let
M be an A-module, then the underlying k-vector space of DM = Homk(M, k) is
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the dual space of M and its left A-module structure is defined as follows: if a ∈ A

and f ∈ DM , then af ∈ DM is the linear form defined by

(af )(x) = f (xa)

for x ∈ M . Similarly, D defines a functor from mod Aop to mod A, and it is easily
seen that, because we deal with finite dimensional modules, the composition D2 =
D ◦ D is functorially isomorphic to the identity functor.

Under the duality D, projective modules correspond to so-called injective mod-
ules. An A-module I is called injective if the contravariant functor HomA(−, I ) is
(right) exact, that is, if, for every monomorphism f : M −→ N , the induced map
HomA(f, I ) : HomA(N, I) −→ HomA(M, I) is surjective. Thus, an A-module I

is injective if and only if its dual DI is a projective Aop-module. If f : I −→ M is
a monomorphism with I injective, then g : M −→ I exists such that gf = 1I , so
that f is a section (and g a retraction).

Let P be an indecomposable projective A-module. Then a primitive idempotent
e ∈ A exists such that P = eA. We associate with the idempotent e the A-module
I = D(Ae) (dual of the corresponding indecomposable projective left A-module).
Then, I is an indecomposable injective right A-module and every indecomposable
injective module is of this form. The modules P and I are related by the fact that
the simple module top P = P/ rad P of P is isomorphic to the simple socle soc I

of I . Then, if {e1A, . . . , enA} is a complete set of representatives of the isoclasses
of indecomposable projective A-modules, we get that {D(Ae1), . . . , D(Aen)} is a
complete set of representatives of the isoclasses of the indecomposable injective A-
modules. Setting Si = eiA/ rad(eiA) ∼= soc(DAei), we get that {S1, . . . , Sn} is a
complete set of representatives of the isoclasses of simple A-modules.

Further, the indecomposable projective module Pi is a projective cover of Si . A
projective module P is called a projective cover of a module M if there exists an
epimorphism f : P −→ M such that, if f ′ : P ′ −→ M is an epimorphism with P ′
projective, then there exists an epimorphism g : P ′ −→ P such that f ′ = fg. The
epimorphism p is called a projective cover morphism.

Dually, the indecomposable injective module Ii is an injective envelope of Si ,
that is, this module verifies the dual property. See Exercise II.2.1 for characterisa-
tions of projective covers and injective envelopes.

This correspondence between projectives and injectives is in fact functorial. We
define the Nakayama functor to be the functor

νA = − ⊗A DA : mod A −→ mod A.

Clearly, this functor is right exact. Note that νA
∼= D HomA(−, A).

Lemma I.1.18. The Nakayama functor induces an equivalence between the full
subcategories of mod A consisting of the indecomposable projective and the
indecomposable injective modules.
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Proof . Consider the functor ν−1
A = HomA(DA,−) : modA −→ mod A, and let

e ∈ A be a primitive idempotent of A. It suffices to prove that, if P = eA and
I = D(Ae), we have νAP ∼= I and ν−1

A I ∼= P . But this follows from the functorial
isomorphisms

νAP = eA ⊗A DA ∼= e(DA) ∼= D(Ae) = I and

ν−1
A I = HomA(DA, D(Ae)) ∼= HomAop (Ae,A) ∼= eA = P.

��
The following lemma is extremely useful.

Lemma I.1.19. Let e ∈ A be a primitive idempotent, P = eA and I = D(Ae). For
every A-module M , we have isomorphisms of k-vector spaces

Me ∼= HomA(P,M) ∼= D HomA(M, I).

Proof . This follows from the functorial isomorphisms

D HomA(M, I) = D HomA(M, D(Ae)) ∼= D HomAop (Ae, DM)

∼= D(eDM) ∼= (D2M)e ∼= Me

∼= HomA(eA,M) = HomA(P,M). ��

I.1.4 The Grothendieck group and composition series

Let A be an algebra and F the free abelian group having as a basis the set of
isoclasses M̃ of all finitely generated A-modules. Further, let F ′ be the subgroup
of F generated by all expressions of the form L̃ + Ñ − M̃ , whenever there exists a
short exact sequence

0 −→ L −→ M −→ N −→ 0

in mod A. The Grothendieck group K0(A) of A is the quotient group F/F ′.
We denote by [M] the image of M̃ in K0(A).
Let {S1, . . . , Sn} be a complete set of representatives of the isoclasses of simple

A-modules. In this subsection, we prove that K0(A) is free abelian with basis
{[S1], . . . , [Sn]}, and thus is isomorphic to Z

n.
A composition series of length l for an A-module M is a sequence of

submodules

0 = M0 ⊂ M1 ⊂ . . . ⊂ Ml = M
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such that, for each i, the quotient Mi+1/Mi , called a composition factor, is simple.
Because M is finite dimensional, such a series always exists, the lengths of all such
series are equal, and their common value is called the composition length or briefly
the length of M , denoted as l(M). Also, the number μi(M) of composition factors
of M that are isomorphic to some Si only depends on M and Si , and not on the
particular composition series under consideration. This follows from the classical
Jordan–Hölder theorem.

Because finitely generated modules have finite length, we have the following
lemma, which generalises a well-known property of finite dimensional vector
spaces.

Lemma I.1.20. Let M be a (finitely generated) A-module and f ∈ End M . If f is
injective or surjective, then f is bijective. ��

We next define a map dim : F −→ Z
n by setting, for each module M ,

dim[M] = (μ1(M), . . . , μn(M)).

The vector dim[M], which we write simply as dim M , is called the dimension
vector of the module M .

Lemma I.1.21. The map dim : F −→ Z
n induces a morphism of groups

dim : K0(A) −→ Z
n.

Proof . It suffices to show that, if 0 −→ L −→ M −→ N −→ 0 is a short exact
sequence in mod A, then dim M = dim L + dim N , which is equivalent to proving
that μi(M) = μi(L) + μi(N) for each i.

We may assume that L ⊆ M and N = M/L. Let 0 = L0 ⊂ L1 ⊂ . . . ⊂ Ls = L

and 0 = M0/L ⊂ M1/L ⊂ . . . ⊂ Mt/L = M/L be composition series for each of
L and N respectively. Then,

0 = L0 ⊂ L1 ⊂ . . . ⊂ Ls = L = M0 ⊂ M1 ⊂ . . . ⊂ Mt = M

is a composition series for M . The statement follows. ��
Theorem I.1.22. The group K0(A) is free abelian with basis {[S1], . . . , [Sn]} and
the morphism dim : K0(A) −→ Z

n is an isomorphism of groups.

Proof . Let M be an A-module. It follows from the existence of composition series
and the definition of K0(A) that

[M] =
n∑

i=1

μi(M)[Si].

Therefore, {[S1], . . . , [Sn]} is a generating set for the group K0(A). Because of
Lemma I.1.21, the map dim : K0(A) −→ Z

n is a morphism of groups. Now, the
images of the elements of the generating set {[S1], . . . , [Sn]} are the vectors of the
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canonical basis of Z n. Therefore, this generating set is linearly independent, that is,
it is a basis of K0(A). ��

There is an important particular case. If A is basic, then the endomorphism
algebra End S of every simple module S is an overfield of k. If k is algebraically
closed, then End S = k and dimkS = 1. In particular, for every A-module M , we
have l(M) = dimkM .

Corollary I.1.23. Let A be a basic algebra over an algebraically closed field k.
Then, for every i with 1 ≤ i ≤ m and every A-module M , we have μi(M) =
dimk HomA(Pi,M), where Pi is the indecomposable projective A-module such that
Pi/ rad Pi

∼= Si .

Proof . For each i, the composition of dim : K0(A) −→ Z
n with the ith projection

morphism Z
n −→ Z is a morphism of groups mapping [M] ∈ K0(A) on μi(M) ∈

Z. In addition,

μi(Sj ) =
{

0 i 	= j

1 i = j.

On the other hand, if 0 −→ L −→ M −→ N −→ 0 is a short exact sequence,
exactness of the functor HomA(Pi,−) yields a short exact sequence

0 −→ HomA(Pi, L) −→ HomA(Pi,M) −→ HomA(Pi,N) −→ 0

so that dimk HomA(Pi,−) : K0(A) −→ Z is also a morphism of groups. Because
each simple module is one-dimensional (see above), we have

dimk HomA(Pi, Sj ) =
{

0 i 	= j

1 i = j.

The morphisms μi and dimk HomA(Pi,−) thus coincide on a basis of the free
abelian group K0(A). Therefore, they are equal. ��
Example I.1.24. Let A be as in Example I.1.1. Because {e11, e22, e33, e44} is a
complete set of primitive orthogonal idempotents, we have four isoclasses of simple
modules, so that K0(A) ∼= Z

4. Also, let M = e33A be the indecomposable
projective module of Example I.1.6. Its simple top is S3 = e33A/ rad(e33A).
Now, rad(e33A) is one-dimensional and thus simple, and it is easily seen that
right multiplication by the matrix e13 yields an isomorphism S1 −→ rad(e33A).
Therefore, the (unique) composition series for M is 0 ⊂ S1 ⊂ M , and dim M =
(1, 0, 1, 0). In particular, we have l(M) = dimk M = 2.
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Exercises for Section I.1

Exercise I.1.1. Let A be a k-algebra. Prove that the map ϕ : k −→ A given by
λ �→ 1 · λ (for λ ∈ k) is an injective morphism of rings whose image is contained in
the centre of A.

Exercise I.1.2. Let A be a finite dimensional k-algebra and e ∈ A a central
idempotent. Prove the following statements:

(a) eA has a natural algebra structure, with identity e, and
(b) We have an algebra isomorphism A ∼= eA × (1 − e)A.

Deduce Proposition I.1.16: an algebra is connected if and only if 0 and 1 are its only
central idempotents.

Exercise I.1.3. Let A be a finite dimensional k-algebra and (V , ϕ), (W,ψ) be
representations of A. A morphism from (V , ϕ) to (W,ψ) is a k-linear map f :
V −→ W such that f ϕ(a) = ψ(a)f for every a ∈ A. The composition of
morphisms is the ordinary composition of k-linear maps. Prove that the resulting
category of representations is equivalent to the category Mod A of all A-modules
(not necessarily finitely generated).

Exercise I.1.4. Let A be a finite dimensional k-algebra and 0 −→ L −→ M −→
N −→ 0 be an exact sequence of A-modules. Prove that M is finitely generated if
and only if L and N are finitely generated.

Exercise I.1.5. Let M1,M2,M3 be submodules of an A-module M . Prove that, if
M1 ⊆ M2, then M2 ∩(M1 +M3) = M1 +(M2 ∩M3). This is the so-called modular
law.

Exercise I.1.6 (Nakayama’s lemma). Let M be a finitely generated A-module,
and N a submodule of M . Prove that N ⊆ rad M if and only if, for every submodule
L of M such that N + L = M , we have L = M .

Exercise I.1.7. Let A = k[t]/ 〈tn〉, where n ≥ 1, k[t] is the polynomial algebra
in one indeterminate t and 〈tn〉 is the ideal of k[t] generated by the nth power tn.
Compute the radical of A and show that A is local.

Exercise I.1.8. Let e ∈ A be an idempotent. Prove that e is primitive if and only if
the algebra eAe is local.

Exercise I.1.9. Let e ∈ A be an idempotent. Prove that rad(eA) = e · rad A.

Exercise I.1.10. Let e1, e2 ∈ A be primitive idempotents such that P1 = e1A

is not isomorphic to P2 = e2A. Prove that HomA(P1, P2) 	= 0 if and only if
e2(rad A)e1 	= 0.
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Exercise I.1.11. Prove that an algebra A is local if and only if its radical is equal to
the set {x ∈ A : xA 	= A}.
Exercise I.1.12. Let 1 = e1 + · · · + em = f1 + · · · + fn be decompositions of the
identity 1 of A into primitive orthogonal idempotents. Prove that m = n and that
there exists a ∈ A invertible such that, up to permutation, we have, fi = a−1eia,
for every i.

Exercise I.1.13. Let A be an algebra, and I an ideal of A. Prove that rad(A/I) =
(rad A + I )/I .

Exercise I.1.14. Let A be an algebra.

(a) Let I, J be ideals of A. Prove that

IJ = {
∑

xiyi |xi ∈ I, yi ∈ J }

is an ideal of A contained in I ∩ J . Prove that, in general, IJ 	= I ∩ J .
(b) For n ≥ 1, we define radn+1 A to be the radical of the module radn A. Prove

that radn+1 A = radn A · rad A. Deduce that each radn A is a nilpotent ideal of
A.

(c) Let A = ⊕t
i=1 Pi be a decomposition of A into indecomposable projective A-

modules. Prove that, for each n ≥ 1, we have a decomposition of A/ radn A into
indecomposable projective A-modules : A/ radn A = ⊕t

i=1 (Pi/ radn Pi).

Exercise I.1.15. Let A be the lower triangular matrix algebra

A =
( k 0 0 0

0 k 0 0
0 0 k 0
k k k k

)
=
{(

α11 0 0 0
0 α22 0 0
0 0 α33 0

α41 α42 α43 α44

)
: αij ∈ k for all i, j

}

with the usual matrix operations. Compute rad A and give a complete set of
representatives of the isoclasses of indecomposable projective and indecomposable
injective modules. Compute the dimension vector of each of these modules.

Exercise I.1.16. Let A be the lower triangular matrix algebra

A =
( k 0 0 0

k k 0 0
k k k 0
k k k k

)
=
{(

α11 0 0 0
α21 α22 0 0
α31 α32 α33 0
α41 α42 α43 α44

)
: αij ∈ k for all i, j

}

and eij denote the matrix having coefficient 1 in position (i, j), and 0 elsewhere.
Prove that

eii

(
rad A

rad2 A

)
ejj =

{
k if (i, j) ∈ {(4, 3), (3, 2), (2, 1)}
0 otherwise.
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I.2 Quivers and algebras

I.2.1 Path algebras and their quotients

Quivers provide an unlimited source of examples of all levels of difficulty. A quiver
is a graphical object in which one can encode much of the structural information of
an algebra. Viewing an algebra as a quiver (with some relations) not only allows us
to visualise the properties of the algebra itself but also gives concrete descriptions
of its modules. It is, for instance, particularly easy to describe the simple, projective
and injective modules. In this section, we review those properties of quivers that are
needed in the sequel. In contrast to Section I.1, all relevant proofs are given.

Definition I.2.1. A quiver Q = (Q0,Q1, s, t) is a quadruple consisting of two
sets: Q0, whose elements are called points, and Q1, whose elements are called
arrows, as well as two maps s, t : Q1 −→ Q0, which associate with each arrow
α ∈ Q1 the points s(α), t (α) ∈ Q0, called its source and its target respectively.

An arrow α of source x and target y is denoted by x
α−→ y or α : x −→ y.

The quiver itself is denoted briefly as Q = (Q0,Q1) or simply Q. A quiver Q =
(Q0,Q1) is called finite if both Q0 and Q1 are finite sets.

A subquiver Q′ = (Q′
0,Q

′
1, s

′, t ′) of Q = (Q0,Q1, s, t) is a quiver such that
Q′

0 ⊆ Q0, Q′
1 ⊆ Q1 and the restrictions of s and t are s′ and t ′ respectively,

that is, s|Q′
1

= s′, t |Q′
1

= t ′ (in other words, if α : x −→ y belongs to Q′
1, then

s′(α) = s(α) and t ′(α) = t (α)). The subquiver Q′ is called full if Q′
1 = {α ∈

Q1 : s(α), t (α) ∈ Q′
0}. Thus, a full subquiver is completely determined by its set of

points.
Let Q = (Q0,Q1, s, t) be a quiver. A path α1α2 . . . αl of source x, target y

and length l in Q is a sequence of l arrows such that s(α1) = x, t (αl) = y and
t (αi) = s(αi+1) for all i such that 1 ≤ i < l. Such a path is represented as:

x = x1
α1−→ x2

α2−→ x3 −→ . . .
αl−→ xl+1 = y.

We agree to associate with each point x ∈ Q0 a path εx of length zero, from x to
x, and call it the stationary or trivial path at x. A quiver Q is called acyclic if there
is no path in Q of length at least one from one of its points to itself (called cycle).
Cycles of length exactly one are called loops.

With every arrow α ∈ Q1, we associate a formal inverse α−1, with source t (α)

and target s(α). A walk in Q of length l ≥ 0 is a sequence

α
ν1
1 α

ν2
2 . . . α

νl

l

where for each i, we have αi ∈ Q1 and νi ∈ {+1,−1} and for each i < l, we
have {s(αi), t (αi)} ∩ {s(αi+1), t (αi+1)} 	= ∅. A quiver Q is connected if for every
x, y ∈ Q0, there exists a walk α

ν1
1 α

ν2
2 . . . α

νl

l such that x = s(α
ν1
1 ) and y = t (α

νl

l ).
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One sometimes calls underlying graph of a quiver the structure obtained from it
by forgetting the orientation of the arrows (even if such a structure is generally not,
strictly speaking, a graph). In this terminology, a quiver is connected if and only if
its underlying graph is connected too.

Example I.2.2. Here is an example of a quiver

α
1 3β

2

δ γ

λ 5η4
μ

One can see that this quiver contains a path βγ δα3βμ from 1 to 4 of length 8.
The quiver also contains cycles of arbitrary length from 1 to 1, such as the αi for all
i ≥ 1.

The usual composition of paths in a quiver can be used to define an algebraic
structure.

Definition I.2.3. Let Q be a quiver. The path algebra kQ of Q is defined as
follows. The underlying k-vector space kQ has as a basis the set of all paths in
Q, including the stationary ones. The product of the basis elements α1 . . . αl and
β1 . . . βm is defined by:

(α1 . . . αl)(β1 . . . βm) =
{

α1 . . . αlβ1 . . . βm if t (αl) = s(β1)

0 otherwise.

The product is then extended by distributivity to the whole of kQ.

This defines an associative algebra, in which each stationary path εx , with x ∈
Q0, is an idempotent and thus, if Q0 is finite, then

∑
x∈Q0

εx is the identity. However,

kQ can be infinite dimensional, as shown in the example below.

Example I.2.4. Let A be the path algebra of the quiver

α x

Then A admits as a basis the unique stationary path εx (which is therefore the
identity of A) and all the cycles αi through x, with i ≥ 1. Its elements are thus linear
combinations of the αi with coefficients in k and multiplication is induced from the
rule αiαj = αi+j . Therefore, A is isomorphic to the algebra of polynomials in one
indeterminate k[t].

This example shows that the existence of an oriented cycle in a quiver implies that
the path algebra is infinite dimensional. Because, in this book, we are only interested
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in finite dimensional algebras, we deduce that, starting from the path algebra of a
quiver, we need to “kill” all cycles or, more generally, paths that are long enough. We
need a notation. In a path algebra kQ, let kQ+ be the ideal generated by the arrows.
Then, kQ+ contains all paths of positive length. For m ≥ 2, kQ+m = (kQ+)m

denotes the mth power of kQ+, that is, the ideal generated by the paths of length m.
It contains all paths of length greater than, or equal to m.

Definition I.2.5. Let Q be a finite quiver. An ideal I of kQ is called admissible if
there exists m ≥ 2 such that

kQ+m ⊆ I ⊆ kQ+2.

In this case, the pair (Q, I) is called a bound quiver and the algebra A = kQ/I a
bound quiver algebra.

The adjective “bound” refers to the verb “to bind”.
The finiteness of Q above ensures that kQ has an identity

∑
x∈Q0

εx . The condition

saying that I ⊆ kQ+2 says that I only contains linear combinations of paths of
length at least two. Finally, saying that there exists m ≥ 2 such that kQ+m ⊆ I

amounts to saying that every path of length larger than or equal to m (that is, every
path long enough) is contained in I .

Example I.2.6. Let Q be the quiver

β
1 2α

The ideal < β3, αβ > generated by β3 and αβ is admissible: indeed, one sees
easily that kQ+3 ⊆ I ⊆ kQ+2. On the other hand, neither of the ideals < β > nor
< αβ > is admissible: indeed, < β >	⊆ kQ+2, whereas βm /∈< αβ > for every
m ≥ 2.

The conditions defining admissibility ensure that the quotient of a path algebra
by an admissible ideal is finite dimensional. Actually, we have the following result.

Proposition I.2.7. Let Q be a finite connected quiver and I an admissible ideal of
kQ. Then A = kQ/I is a basic and connected finite dimensional algebra having
{ex = εx + I : x ∈ Q0} as a complete set of primitive orthogonal idempotents. In
addition, rad A = kQ+/I .

Proof . Because Q is finite, the path algebra kQ is an associative algebra having
as identity 1 = ∑

x∈Q0
εx . Therefore, A is also associative with identity 1 =∑

x∈Q0
ex , where ex = εx + I . We claim that A is finite dimensional.

By hypothesis, there exists m ≥ 2 such that kQ+m ⊆ I . Hence, there exists a
surjective morphism of algebras kQ/kQ+m −→ kQ/I = A. Now, kQ/kQ+m is



16 I Modules, algebras and quivers

spanned as a vector space by (the residual classes of) all paths in the finite quiver Q

of length strictly less than m. It is thus finite dimensional. Hence, so is A.
We now prove that {ex : x ∈ Q0} forms a complete set of primitive orthogonal

idempotents. Clearly, in kQ, {εx : x ∈ Q0} forms a set of orthogonal idempotents.
Therefore, in A, {ex : x ∈ Q0} also forms a set of orthogonal idempotents. Because
1 = ∑

x∈Q0
ex , it only remains to show that the ex are primitive. Now, an idempotent

e ∈ exAex can be written in the form e = λεx +w+I where λ ∈ k, and w is a linear
combination of cycles through x. Then, e2 = e yields (λ2−λ)εx +(2λ−1)w+w2 ∈
I . Because I ⊆ kQ+2, we must have λ2 − λ = 0 and therefore λ = 0 or λ = 1.
Assume first that λ = 0, then e = w + I idempotent gives wi − w ∈ I for all i.
However, there exists m ≥ 2 such that kQ+m ⊆ I and so wm ∈ I . Then, wm−w ∈ I

implies w ∈ I and so e = 0 + I is the zero of exAex . Similarly, if λ = 1, we get
that e = ex .

We next prove that A is connected. If this is not the case, then, because of
Proposition I.1.16, A contains a central idempotent c 	= 0, 1. We have

c = 1 · c · 1 =
⎛
⎝∑

x∈Q0

ex

⎞
⎠ · c ·

⎛
⎝∑

y∈Q0

ey

⎞
⎠ =

∑
x,y∈Q0

excey =
∑
x∈Q0

exc,

using that the ex are orthogonal idempotents and that c is central. Because ex is
primitive and exc is an idempotent in exAex , we have either exc = ex or exc = 0.
Let Q′

0 = {x ∈ Q0 : exc = 0} and Q′′
0 = {x ∈ Q0 : exc = ex}. Because c 	= 0, 1,

both Q′
0 and Q′′

0 are nonempty, and Q0 = Q′
0 ∪ Q′′

0 and Q′
0 ∩ Q′′

0 = ∅. Because
Q is connected, there exist x ∈ Q′

0 and y ∈ Q′′
0, which are neighbours in Q. We

may even assume without loss of generality that there exists an arrow α : x −→ y.
But then exAey = exAeyc = excAey = 0, whereas 0 	= α + I = εxαεy + I =
ex(α + I )ey ∈ exAey , a contradiction. Thus, A is connected.

To compute the radical of A, we first observe that kQ+m ⊆ I , with m as above,
implies that (kQ+/I)m = 0 in A, that is, the ideal kQ+/I of A is nilpotent (hence
nil). In addition,

A

(kQ+/I)
= (kQ/I)

(kQ+/I)
∼= kQ

kQ+ ∼= k|Q0|

is a product of copies of k. Therefore, A is basic with radical equal to kQ+/I . ��
For instance, if Q is a finite acyclic quiver, then the lengths of paths in Q are

bounded; hence, every ideal I ⊆ kQ+2 is admissible. In particular, the zero ideal
is admissible and so the path algebra kQ itself is a basic and connected finite
dimensional algebra with radical kQ+.

Admissible ideals are most commonly defined by means of their generators. A
relation in a quiver Q is a linear combination of paths of length at least two, all
these paths having the same source and the same target. Thus, a relation from x to
y in Q is an element of kQ of the form
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ρ =
k∑

i=1

λiwi

where the λi are nonzero scalars, and the wi paths of length at least two from x

to y, say. Thus, every relation is an element of kQ+2. If k = 1, then ρ is called a
zero-relation. If it is of the form ρ = w1 − w2 (where w1, w2 are paths with same
end points), then it is a commutativity relation.

Proposition I.2.8. Let Q be a finite connected quiver and I an admissible ideal
of kQ. Then there exists a finite set of relations in kQ+2, which generates I as an
ideal.

Proof . We first show that I is finitely generated as an ideal of kQ. Let m ≥ 2 be
such that kQ+m ⊆ I . We have a short exact sequence of kQ-modules

0 −→ kQ+m −→ I −→ I

kQ+m
−→ 0.

Now, kQ+m is generated, as an ideal, by the paths of length exactly m (thus, it
contains all paths of length greater than or equal to m). Because Q is a finite
quiver, kQ+m is thus finitely generated. On the other hand, I/kQ+m is contained
in the finite dimensional vector space kQ/kQ+m; hence, it is finitely generated.
Therefore, I itself is finitely generated.

Let {σ1, . . . , σt } be a finite set of generators for I . The σi are generally not
relations. Consider the set

{εxσiεy : 1 ≤ i ≤ t, x, y ∈ Q0}.

It is finite, because Q is finite, and its nonzero elements are relations that generate
I as an ideal because, for each i, we have σi = ∑

x,y∈Q0
εxσiεy . ��

If A = kQ/I is a bound quiver algebra, where I is generated by the finite set
{ρ1, . . . , ρt } of relations, then we say that A is given by the quiver Q bound by the
relations ρ1 = 0, . . . , ρt = 0.

I.2.2 Quiver of a finite dimensional algebra

We have seen in Subsection I.2.1 that, given a quiver Q and an admissible ideal I ,
one can consider the bound quiver algebra A = kQ/I . Conversely, starting with a
basic and connected algebra A satisfying an extra condition, one can find a quiver
QA and an admissible ideal I of kQA such that A ∼= kQA/I . To see the necessity of
an extra condition on A, we recall that, because A is basic, A/ rad A is a product of
fields, generally noncommutative. However, as seen in the proof of Proposition I.2.7,
if A is a bound quiver algebra, then A/ rad A must be a product of copies of k.
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We therefore define an algebra A to be elementary if A/ rad A is isomorphic to a
product of copies of k. For example, if A is a basic algebra over an algebraically
closed field k, then it is automatically elementary: indeed, in this case, A/ rad A ∼=∏n

i=1 ki , where the ki are (skew) fields that are finite dimensional extensions of k,
and k, being algebraically closed, yields that ki = k for each i.

Definition I.2.9. Let A be an elementary algebra, and {e1, . . . , en} a complete set
of primitive orthogonal idempotents. The ordinary quiver or simply quiver QA of
A is defined as follows:

(a) The points {1, . . . , n} of QA are in bijection with the idempotents {e1, . . . , en}.
(b) If x, y ∈ (QA)0, then the arrows from x to y are in bijection with the vectors in

a basis of the k-vector space

ex

(
rad A

rad2A

)
ey.

In particular, QA is a finite quiver, because A is finite dimensional. We have to
show that QA is well-defined. Because, for x, y ∈ (QA)0, the number of arrows

from x to y depends on the k-dimension of ex

(
rad A

rad2 A

)
ey and not on the chosen

basis, we only have to prove that this vector space does not depend on the choice of
the idempotents.

Lemma I.2.10. The quiver QA does not depend on the choice of a particular
complete set of primitive orthogonal idempotents for A.

Proof . Let {e1, . . . , en} and {f1, . . . , fm} be complete sets of primitive orthogonal
idempotents for A. Because

AA = ⊕n
i=1(eiA) = ⊕m

j=1(fjA)

and the ei, fj are primitive, we get from Theorem I.1.14 that m = n and, up to a
permutation, eiA ∼= fiA for every i. Now, for every i, j , we have isomorphisms of
k-vector spaces:

ei

(
rad A

rad2 A

)
ej

∼=
(

ei (rad A)

ei (rad2 A)

)
ej

∼=
(

rad(eiA)

rad2(eiA)

)
ej

∼= HomA

(
ejA,

rad(eiA)

rad2(eiA)

)
.

Then, eiA ∼= fiA and ejA ∼= fjA yield an isomorphism of k-vector spaces

ei

(
rad A

rad2 A

)
ej

∼= fi

(
rad A

rad2 A

)
fj ,

as required. ��
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We next have to show that the definition of QA is coherent with that of the
corresponding bound quiver algebra.

Lemma I.2.11. Let A = kQ/I be a bound quiver algebra, then QA = Q.

Proof . Because of Proposition I.2.7, we have that {ex : x ∈ Q0} is a complete set
of primitive orthogonal idempotents of A and also rad A = kQ+/I , which implies

rad A

rad2 A
= (kQ+/I)

(kQ+2/I)
∼= kQ+

kQ+2
.

The statement follows from the fact that, if x, y ∈ Q0, then the vector space
ex

(
kQ+/kQ+2

)
ey has as a basis all paths of length exactly one (that is, all arrows)

from x to y. ��
We now wish to prove that every elementary finite dimensional algebra is a bound

quiver algebra. For this purpose, we start by lifting the arrows to radical elements.
Indeed, let x, y be points in QA, and {α1, . . . , αm} all the arrows from x to y. Then,
there exists a set {aα1 , . . . , aαm} of elements of ex(rad A)ey whose residual classes
{aα1 + rad2 A, . . . , aαm + rad2 A} form a basis of the space ex

(
rad A/ rad2 A

)
ey .

Lemma I.2.12. With this notation, the vector space ex(rad A)ey is generated by all
products of the form aα1 . . . aαl

, where α1 . . . αl is a path from x to y.

Proof . As a k-vector space, we have

ex(rad A)ey = ex

(
rad A

rad2 A

)
ey ⊕ ex(rad2 A)ey.

Therefore, to every a ∈ ex(rad A)ey corresponds a linear combination
∑

α : x→y

aαλα ,

with λα ∈ k such that a −
∑

α : x→y

aαλα belongs to ex(rad2 A)ey . But now,

ex(rad2 A)ey =
∑

z∈(QA)0

(ex(rad A)ez) · (ez(rad A)ey).

Repeating the above reasoning, we get linear combinations
∑

β : x→z

aβλβ and

∑
γ : z→y

aγ λγ such that

a−
∑

α : x→y

aαλα −
⎛
⎝ ∑

β : x→z

aβλβ

⎞
⎠
⎛
⎝ ∑

γ : z→y

aγ λγ

⎞
⎠ = a−

∑
α : x→y

aαλα −
∑

βγ : x→y→z

aβaγ (λβλγ )
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belongs to ex(rad3 A)ey . Applying induction and using that rad A is nilpotent, we
can write a as a linear combination of products of the required form. ��

We now prove the main theorem of this subsection.

Theorem I.2.13. Let A be an elementary finite dimensional k-algebra. Then, there
exists a surjective algebra morphism ϕ : kQA −→ A with admissible kernel I . In
particular, A ∼= kQA/I is a bound quiver algebra.

Proof . Let aα be as above and define a morphism of algebras ϕ : kQA −→ A as
follows. First, set

ϕ(εx) = ex for each x ∈ (QA)0, and
ϕ(α) = aα for each α ∈ (QA)1.

This defines ϕ on points and arrows only. To define it on an arbitrary basis vector of
kQA, that is, a path, we extend this definition by setting

ϕ(α1 . . . αl) = ϕ(α1) . . . ϕ(αl) = aα1 . . . aαl

for each path α1 . . . αl in QA. Then, ϕ extends to a k-linear map kQA −→ A, which
preserves the product of basis vectors, and hence, of every vectors. In addition,

ϕ(1) = ϕ

⎛
⎝ ∑

x∈(QA)0

εx

⎞
⎠ =

∑
x∈(QA)0

ϕ(εx) =
∑

x∈(QA)0

ex = 1

so it preserves the identity as well. Therefore, ϕ is a morphism of algebras.
Because A is elementary, the elements ex generate A/ rad A and, because of

Lemma I.2.12, the products of the elements aα generate radA as a k-vector space.
Therefore, the set {ex, aα : x ∈ (QA)0, α ∈ (QA)1} generates A as a k-algebra.
Because these elements lie in the image of ϕ, we conclude that ϕ is surjective.

We now prove that I = Ker ϕ is admissible. Because of the construction of ϕ,
we have ϕ(kQ+

A) ⊆ radA. By induction, we get ϕ(kQ+i
A ) ⊆ radiA for every i ≥ 1.

Because radA is nilpotent, there exists m ≥ 2 such that ϕ(kQ+m
A ) = 0, that is,

kQ+m
A ⊆ I . It remains to show that I ⊆ kQ+2

A . Let a ∈ I . Then there exist linear
combinations

∑
x∈(QA)0

εxλx and
∑

α∈(QA)1
αμα, with λx, μα ∈ k for all x, α such

that

a −
(∑

x

εxλx +
∑
α

αμα

)
∈ kQ+2

A .

Applying ϕ and using that ϕ(a) = 0, we get

∑
x

exλx +
∑
α

aαμα ∈ ϕ(kQ+2
A ) ⊆ rad2 A.
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Because the ex are orthogonal idempotents, we infer that λx = 0 for all x and
therefore

∑
α aαμα ∈ rad2 A, which can be written as

∑
α(aα + rad2 A)μα = 0.

But the elements of the set {aα + rad2 A}α form, by definition, a basis of the vector
space rad A/ rad2 A. In particular, they are linearly independent and so μα = 0 for
all α. This shows that a ∈ kQ+2

A . ��
In particular, every basic algebra over an algebraically closed field is a bound

quiver algebra. We end this subsection with an example.

Example I.2.14. Consider the algebra in Example I.1.1

A =

⎛
⎜⎜⎝

k 0 0 0
k k 0 0
k 0 k 0
k k k k

⎞
⎟⎟⎠ .

Denote as before by eij the matrix having 1 in position (i, j) and 0 everywhere
else. A natural complete set of primitive orthogonal idempotents for A is the set
{e11, e22, e33, e44}. We have proved in Example I.1.8 that

rad A =

⎛
⎜⎜⎝

0 0 0 0
k 0 0 0
k 0 0 0
k k k 0

⎞
⎟⎟⎠

so that A/ rad A ∼= k4. Therefore, A is elementary. In addition,

rad2 A =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
k 0 0 0

⎞
⎟⎟⎠ .

A straightforward calculation gives that each of

e44

(
rad A

rad2 A

)
e33, e44

(
rad A

rad2 A

)
e22, e33

(
rad A

rad2 A

)
e11, e22

(
rad A

rad2 A

)
e11

is one-dimensional, whereas the rest of the

eii

(
rad A

rad2 A

)
ejj

are zero. This gives the quiver QA of A
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αβ

γδ

2

1

3

4

We consider the algebra morphism ϕ : kQA −→ A defined by ϕ(εi) = eii for
each i ∈ {1, 2, 3, 4}, ϕ(α) = e42, ϕ(β) = e21, ϕ(γ ) = e31, ϕ(δ) = e43. Then, ϕ is
surjective because its image contains a basis of A. We have

ϕ(αβ) = ϕ(α)ϕ(β) = e42e21 = e41 = e43e31 = ϕ(γ )ϕ(δ) = ϕ(γ δ).

Therefore, αβ − γ δ ∈ Ker ϕ. On the other hand, this kernel is one-dimensional
because a quick calculation gives dimkkQA = 10, whereas dimkA = 9. Thus, if
I is the ideal generated by the element αβ − γ δ, we have indeed A ∼= kQA/I . As
mentioned at the end of Subsection I.2.1, we say that A is given by the quiver above
bound by the relation αβ = γ δ.

I.2.3 Projective, injective and simple modules

We recall from Subsection I.1.3 that, if A is a finite dimensional algebra, and
{e1, . . . , en} is a complete set of primitive orthogonal idempotents, then {P1 =
e1A, . . . , Pn = enA}, {I1 = D(Ae1), . . . , In = D(Aen)} and {S1 = top P1 ∼=
soc I1, . . . , Sn = top Pn

∼= soc In} are a complete list of representatives of
the isoclasses of the indecomposable projective, injective and simple modules
respectively. We now show how to construct these modules using bound quivers.

For this purpose, we first need a complete set of primitive orthogonal idempo-
tents. Let A ∼= kQ/I be a bound quiver algebra. Because of Proposition I.2.7, the
set {ex = εx + I : x ∈ Q0} is a complete set of primitive orthogonal idempotents in
A. We deduce our first lemma:

Lemma I.2.15. For each x ∈ Q0, the indecomposable projective A-module Px =
exA is generated, as a k-vector space, by the classes modulo I of all paths in Q

starting at x.

Proof . Indeed, we have

Px = exA = ex

(
kQ

I

)
∼= εx(kQ)

εxI
.

The statement follows immediately. ��
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In particular, for every y ∈ Q0, the vector space Pxey = exAey =
εx(kQ)εy/εxIεy is generated by the classes modulo I of all the paths in Q from x

to y. This implies that HomA(Py, Px) ∼= Pxey is nonzero if and only if there is a
path from x to y not lying in I .

Corollary I.2.16. For each x ∈ Q0, the simple A-module Sx = top Px is a one-
dimensional vector space generated by ex .

Proof . Over an elementary algebra, every indecomposable projective module has a
one-dimensional top equal to k. Therefore, every simple module is one-dimensional.
On the other hand, we have Sxex = HomA(Px, Sx) 	= 0 and spanned by ex . ��

A first consequence of the previous results is that a projective module Px is
simple if and only if x ∈ Q0 is a sink in Q. For every point x, the radical rad Px is
easy to compute:

rad Px = Px rad A = ex rad A = ex

(
kQ+

I

)
∼= εxkQ+

εxI

which means that rad Px is generated by the classes modulo I of all paths starting
at x of length at least one.

Another consequence is as follows. An arrow α : x −→ y in Q corresponds to
a nonzero element of exAey

∼= HomA(eyA, exA), and thus to a nonzero morphism
fα : Py −→ Px . Hence, paths in Q induce sequences of nonzero morphisms
between indecomposable projectives.

The next result describes the injective modules in terms of paths in the quiver.

Lemma I.2.17. For each x ∈ Q0, the indecomposable injective A-module D(Aex)

is isomorphic, as a k-vector space, to the dual of the space generated by all classes
modulo I of the paths in Q ending in x.

Proof . This is similar to Lemma I.2.15 and is thus omitted. ��
Also, an injective module Ix is simple if and only if x ∈ Q0 is a source.
In our examples, we represent these modules in a visually suggestive way, which

respects the shape of the quiver and, for a module M , yields immediately its radical
filtration

M ⊇ rad M ⊇ rad2 M ⊇ . . . ⊇ radt M = 0.

The least integer t such that radt M = 0 is called the Loewy length of
M and denoted as ll(M). Thus, if M and N are modules, then ll(M ⊕ N) =
max{ll(M), ll(N)}.
Example I.2.18. Let A be given by the quiver
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αβ

γδ

2

1

3

4

bound by αβ = γ δ.
We first compute the indecomposable projective modules. Because 1 is a sink,

we have P1 = S1 (which we sometimes abbreviate as P1 = 1). Now, P2, as a k-
vector space, has a basis {e2, β = β +I }. It is then two-dimensional. As seen above,
top P2 is spanned by e2 and rad P2 by β. Because P2 is a submodule of AA, its scalar
multiplication is induced from that of A; thus, it is defined by

e2e2 = e2

e2β = β

e2u = 0 for every basis vector u 	= e2, β in A,

βe1 = β

βv = 0 for every basis vector v 	= e1 in A.

Identifying idempotents to points, and classes of arrows to arrows, we may represent

P2 as
2

�b

1

or, briefly, P2 = 2
1 .

This notation clearly suggests that top P2 = 2 and rad P2 = 1. Similarly, P3 = 3
1

has top 3 and radical 1. The indecomposable projective module P4 is generated, as
a k-vector space, by the classes {e4, α, αβ, γ , γ δ}. However, αβ = αβ = γ δ =
γ δ, because I =< αβ − γ δ >. Thus, P4 is four-dimensional, having as a basis
{e4, α, γ , αβ}. Using the notation above, P4 may be represented as

4

1

2 3

a

b

g

d

or, briefly, P4 =
4
2 3.
1

The reader sees that, if M is a submodule of P4, then the representation of M

corresponds to a subdiagram of P4 in which all arrows enter (none leaves). Thus, all

isoclasses of submodules of P4 are P4, rad P4 = 2 3
1 , 2

1 , 3
1 and rad2 P4 = soc P4 =

1. The radical filtration of P4 is

4
2 3
1

⊇ 2 3
1 ⊇ 1.
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One composition series of P4 is given by

4
2 3
1

⊇ 2 3
1 ⊇ 3

1 ⊇ 1

and the other is obtained by replacing 3
1 by 2

1 . In particular, the Loewy length of
P4 is ll(P4) = 3, whereas its composition length is l(P4) = 4. In the same way,
a quotient of P4 corresponds to a subdiagram in which all arrows leave (and none

enters). For instance, P4/ soc P4 ∼= 4
2 3 . We may thus write AA = 1⊕ 2

1 ⊕ 3
1 ⊕ 4

2 3
1

.

Now for the indecomposable injective modules. Because 4 is a source, I4 = S4 =
4. On the other hand, I2 is the dual of the vector space with a basis {e2, α = α + I }
and its multiplication is also induced from that of A. We can therefore represent I2
as

4

�a

2

or, briefly, 4
2 .

Similarly, I3 = 4
3 . Finally, I1 is the dual of the vector space spanned by the

classes {e1, β, αβ, δ, γ δ}. Because αβ = γ δ, its basis is {e1, β, δ, αβ}. It can be
represented as

4

1

2 3

a

d

g

b

and, in particular, it is isomorphic to P4. It is then projective–injective and one has

(DA)A =
4

2 3
1

⊕ 4
2 ⊕ 4

3 ⊕4.

One sees that, for instance, P2 is isomorphic to a submodule of P4 and the cokernel
of the inclusion is just I3. Thus, we have a short exact sequence

0
2

1

4

1

32
4

3
0.
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in which the morphisms are represented diagrammatically. It is known that 2
1 is

a submodule of P4, and the map 2
1 −→ P4 is the only possible embedding.

Factoring out by the image yields P4/
2
1

∼= 4
3 . The principles used here are that,

first, the image of a simple module is only zero or an isomorphic simple (this is
the well-known Schur’s lemma) and, if f : L −→ M is a morphism, then
Im f ∼= L/ Ker f .

Example I.2.19. Let A be given by the quiver

β
1 2α

bound by the relations αβ = 0 and β3 = 0. Then, the indecomposable projectives
are given by

P1 =

1

1

1

�

�

b

b

=
1
1
1

, P2 =
2

�a

1

= 2
1 .

Thus, AA = 1
1
1

⊕ 2
1 .

Similarly, the indecomposable injective A-modules are given by

I1 =

1

1 2

1

�

��

b

b a

=
1
1 2

1
and I2 = 2

so that (DA)A = 1
1 2

1
⊕ 2.

This method of representing indecomposable projective and injective modules
using their radical filtrations can be extended to other modules. In particular, radicals
of indecomposable projectives and quotients of indecomposable injectives by their
socles are easy to produce. For instance, in the above example,

radP1 = 1
1 , radP2 = 1,

I2

soc I2
= 0 and

I1

soc I1
= 1

1 2 = 1
1 ⊕2.

This notation has several advantages. For instance, one sees easily that there is
a nonzero morphism from P2 to I1, which is a monomorphism whose cokernel
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is rad P1. This way of visualising modules is generally not very precise and in
large examples quickly becomes unpractical. It will however suffice for the small
examples we deal with in this book.

There is one class of algebras for which this representation of modules always
works very well. These are the Nakayama algebras, which we now consider.

I.2.4 Nakayama algebras

An algebra A is called representation-finite if its module category admits only
finitely many isoclasses of indecomposable objects. It is called representation-
infinite if it is not representation-finite. Representation-finite algebras are a par-
ticularly nice class to study: indeed, one can classify their indecomposable modules
up to isomorphism and, as we shall see later, we know a lot about the morphisms
between them. The objective of this subsection is to describe an easy class of
representation-finite algebras, that of the so-called Nakayama algebras. Throughout,
let A be a finite dimensional k-algebra. We start with a definition.

Definition I.2.20. An A-module is called uniserial if it admits a unique composi-
tion series.

Clearly, every simple module is uniserial. There exist uniserial modules which

are not simple (for instance, in Example I.2.19 the modules P2 = 2
1 and rad P1 =

1
1 ). A uniserial module has a simple top and a simple socle so, in particular, it
is indecomposable. Also, if M is uniserial, then so is every submodule and every
quotient of M .

Lemma I.2.21. An A-module M is uniserial if and only if its radical filtration

M ⊇ rad M ⊇ rad2 M ⊇ . . . ⊇ radt M = 0

is a composition series.

Proof . Assume first that M is uniserial of composition length l. Then, it has a
unique maximal submodule, necessarily equal to rad M , whose composition length
is equal to l − 1. The result follows by induction.

Conversely, let M � M1 � . . . � Ml = 0 be a composition series for M . The
hypothesis says that M/ rad M is simple; thus, M has a unique maximal submodule.
Therefore, M1 = rad M . Inductively, Mi = radi M for all i and thus M has a unique
composition series. ��

Given a module M , we recall that its Loewy length ll(M) is the least integer t

such that radt M = 0. If M is now uniserial, then ll(M) equals the composition
length l(M) of M because of Lemma I.2.21 above.
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Lemma I.2.22. Every indecomposable projective A-module is uniserial if and only
if, for every indecomposable projective P , the module rad P/ rad2 P is simple or
zero.

Proof . Because necessity follows from Lemma I.2.21, we only need to prove
sufficiency. We claim that the hypothesis implies that, for every indecomposable
projective P , the radical filtration P ⊇ rad P ⊇ rad2 P ⊇ . . . is a composition
series. This implies the uniseriality of P .

We prove the claim. We know that P/ rad P is simple and that rad P/ rad2 P

is simple or zero. Assume inductively that radi−1 P/ radi P is simple. Let
p : P ′ −→ radi−1 P be a projective cover. Because radi−1 P has a simple
top, P ′ is indecomposable. Applying Lemma I.1.9, p induces epimorphisms
rad P ′ −→ radi P and rad2 P ′ −→ radi+1 P . Passing to cokernels, we get an
epimorphism rad P ′/ rad2 P ′ −→ radi P / radi+1 P . Because of the hypothesis,
rad P ′/ rad2 P ′ is simple or zero. Therefore, so is radi P / radi+1 P . This establishes
our claim. ��

We now define Nakayama algebras.

Definition I.2.23. An algebra A is called a Nakayama algebra if all indecompos-
able projective and all indecomposable injective A-modules are uniserial.

The definition implies immediately a characterisation of Nakayama algebras by
means of their quivers.

Theorem I.2.24. Let A be an elementary algebra. Then, A is a Nakayama algebra
if and only if its ordinary quiver QA is of one of the following two forms:

(a)
1 2 3 n 1− n

(b)

1

n 2

Proof . Because of Lemma I.2.22, every indecomposable projective A-module is
uniserial if and only if, for every x ∈ (QA)0, we have

dimk

(
rad Px

rad2 Px

)
= dimk

(
ex

(
rad A

rad2 A

))
≤ 1.

This occurs if and only if there exists at most one point y ∈ (QA)0 such that
ex(rad A/ rad2 A)ey 	= 0 and this vector space is one-dimensional, or, equivalently,
there exists at most one arrow starting with x.
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Dually, every indecomposable injective A-module is uniserial if and only if, for
every x, there is at most one arrow in QA ending with x. Thus, A is a Nakayama
algebra if and only if, for each x ∈ (QA)0, there is at most one arrow starting at x

and one arrow ending at x. This gives the quivers (a) and (b) in the statement. ��
In particular, if A = kQ/I is a Nakayama bound quiver algebra, then the ideal

I , on which the theorem imposes no restriction, can only be generated by zero-
relations.

We deduce the classification of indecomposable modules over a Nakayama
algebra.

Theorem I.2.25. Let A be a Nakayama algebra and M an indecomposable A-
module. Then there exist an indecomposable projective A-module P and a t ≥ 0
such that M ∼= P/ radt P . In particular, M is uniserial.

Proof . Let t = ll(M) be the Loewy length of M and set A′ = A/ radt A. Because
0 = radt M = M ·radt A, then M has a natural A′-module structure, and radt−1 M 	=
0 implies radt−1 A 	= 0; therefore, ll(A′) = t . We claim that A′ is Nakayama.
If A is elementary, this follows from Theorem I.2.24, but we give an independent
proof without this hypothesis. Let AA = ⊕n

i=1Pi be a decomposition of A into
indecomposable projective A-modules. Then,

A

radt A
=

n⊕
i=1

(
Pi

Pi radt A

)
=

n⊕
i=1

(
Pi

radt Pi

)
.

Each of the modules Pi/ radt Pi has a simple top and is thus indecomposable.
This shows that each indecomposable projective A′-module is isomorphic to some
Pi/ radt Pi . Now, Pi being uniserial, so is Pi/ radt Pi . This result and its dual imply
that A′ is Nakayama.

Let f = (f1 . . . fs) : ⊕s
j=1 P ′

j −→ M be a projective cover in mod A′, with all
the P ′

j indecomposable. Then,

t = ll(A′) ≥ max{ll(P ′
j )} ≥ ll(M) = t

shows that there exists some j such that ll(P ′
j ) = t .

If no fj : P ′
j −→ M with ll(P ′

j ) = t is injective, then we have ll(Im fj ) < t

for all j , and, because f = (f1 . . . fs) is an epimorphism, we get ll(M) < t ,
a contradiction. This proves that there exists j such that ll(P ′

j ) = t and also
fj : P ′

j −→ M is injective. We claim that, in this case, P ′
j is also an injective A′-

module. Indeed, let P ′
j −→ I be an injective envelope in mod A′. Because soc P ′

j is
simple, so is soc I ; therefore, I is indecomposable and hence uniserial. In addition,
we have

t = ll(P ′
j ) = l(P ′

j ) ≤ l(I ) = ll(I ) ≤ ll(A′) = t.
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Therefore, l(P ′
j ) = l(I ) and so P ′

j
∼= I , which establishes our claim. It implies that

the injective morphism fj : P ′
j −→ M is a section. Because M is indecomposable,

we have M ∼= P ′
j . Hence, there exists i such that M ∼= Pi/ radt Pi . ��

Because finite dimensional algebras admit only finitely many isoclasses of
indecomposable projective modules, each of which has finite (Loewy) length, we
infer from the previous theorem that a Nakayama algebra is representation-finite.

Example I.2.26. Let A be given by the quiver

1

2

3
α

γ β

bound by αβγ = 0 and γα = 0. Because of Theorem I.2.24, A is a Nakayama
algebra. Its indecomposable projective modules are, up to isomorphism,

P1 =
1
2
3

, P2 = 2
3 , and P3 =

3
1
2

.

We deduce from Theorem I.2.25 the complete list of isoclasses of nonprojective
indecomposable A-modules

P1

radP1
= 1

P2

radP2
= 2

P3

radP3
= 3

P1

rad2 P1
= 1

2
P3

rad2 P3
= 3

1 .

It is also easy to compute minimal projective resolutions of the simple modules
and hence the global dimension of A. For instance, the short exact sequence

0 2
3

1
2
3

1 0

shows that pd 1 = 1. Also, there is an exact sequence

3
3
1
2

3 0.
1
2
3

0
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Splicing infinitely many copies of this sequence shows that pd 3 = ∞. The short
exact sequence

0 −→ 3 −→ 2
3 −→ 2 −→ 0

shows that pd 2 = ∞ as well. Therefore, gl. dim. A = ∞.

I.2.5 Hereditary algebras

Hereditary algebras are among the most frequently studied algebras in representa-
tion theory. An algebra A is hereditary provided that its global dimension is at most
one, or, equivalently, every submodule of a projective module is projective. This is
equivalent to saying that every quotient of an injective module is injective.

We need the following lemma:

Lemma I.2.27. Let A be a hereditary algebra, then:

(a) A nonzero morphism between indecomposable projectives is a monomorphism.
(b) The quiver of A is acyclic.

Proof .

(a) Let f : P −→ P ′ be nonzero, with P and P ′ indecomposable projectives. Its
image Im f is a submodule of P ′, and hence is projective. Consequently, the
canonical surjection P −→ Im f induced by f is a retraction. Because P is
indecomposable, we get P ∼= Im f .

(b) Assume that the quiver QA contains an oriented cycle. Then there exists
a sequence of nonzero morphisms between nonisomorphic indecomposable
projective A-modules

P0
f1−→ P1

f2−→ . . .
fn−→ Pn = P0

with n ≥ 1. Because each of the fi is injective, so is the composition
fn . . . f1 : P0 −→ P0. But then fn . . . f1 is an isomorphism. Hence, fn is
surjective and therefore an isomorphism between Pn and Pn−1. This is a
contradiction.

��
We are now able to describe hereditary algebras in terms of bound quivers.

Proposition I.2.28. A basic, elementary and connected algebra A is hereditary if
and only if A ∼= kQA with QA acyclic.

Proof . Let Sx be a simple A-module, and Px its projective cover. The short exact
sequence
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0 −→ rad Px −→ Px −→ Sx −→ 0

says that A is hereditary if and only if, for each x, the radical rad Px is projective.
Assume first that A = kQ and, for y, z ∈ Q0, let w(y, z) denote the number of

paths from y to z in Q. Because A is finite dimensional, implying that Q is finite
and acyclic, we have w(y, z) < ∞ for all y, z ∈ Q0. Given x ∈ Q0, let y1, . . . , yt

denote the distinct direct successors of x in Q and assume that, for each i, there are
ni arrows from x to yi . Then, top(rad Px) = ⊕t

i=1S
ni
yi

, so that we have a projective
cover morphism p : ⊕t

i=1 P
ni
yi

−→ rad Px . Let y 	= x be arbitrary in Q, then

dimk(rad Px)ey = dimk(Pxey) = dimk(exAey) = w(x, y)

= ∑t
i=1 niw(yi, y) = ∑t

i=1 nidimk(Pyi
ey)

= dimk(⊕t
i=1P

ni
yi

)ey.

Therefore, p is an isomorphism and rad Px is projective. Thus, A is hereditary.
Conversely, assume that A is hereditary, and write A ∼= kQ/I . Because of

Lemma I.2.11, we have Q = QA. We must prove that I = 0. Because of the
previous lemma, Q is acyclic, we may number its points so that, if there is an arrow
x −→ y then x > y. Assume that I 	= 0. Then there is a least x such that exIey 	= 0
for some y. In particular, x is not a sink; thus, rad Px 	= 0. Because A is hereditary,
rad Px is projective and in fact rad Px = ⊕t

i=1P
ni
yi

where, as before, y1, . . . , yt are
the direct successors of x in QA and ni the number of arrows from x to yi . The
minimality of x implies that eyi

Iey = 0; thus, dimk(Pyi
ey) = dimk(eyi

Aey) =
w(yi, y), where w(yi, y) denotes, as above, the number of paths from yi to y. But
then

dimk(rad Px)ey = ∑t
i=1 nidimk(Pyi

ey) = ∑t
i=1 niw(yi, y) = w(x, y)

> w(x, y) − dimk(exIey) = dimk(Pxey)

an absurdity. Therefore, I = 0 and our claim is established. ��

I.2.6 The Kronecker algebra

The Kronecker algebra is a standard example of a representation-infinite algebra
and one of the few where it is relatively easy to compute indecomposable modules
in detail. It serves to illustrate several of the concepts introduced in these notes, but
also opens up new avenues to the reader.

The Kronecker algebra is the 2 × 2 triangular matrix algebra

A =
(

k 0
k2 k

)
=
{(

a 0
(b, c) d

)
: a, b, c, d ∈ k

}
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with the ordinary matrix addition and multiplication, and the operations on the entry
below the main diagonal defined componentwise. Thus,

(
a1 0

(b1, c1) d1

)
+
(

a2 0
(b2, c2) d2

)
=
(

a1 + a2 0
(b1 + b2, c1 + c2) d1 + d2

)

(
a1 0

(b1, c1) d1

)
·
(

a2 0
(b2, c2) d2

)
=
(

a1a2 0
(b1a2 + d1b2, c1a2 + d1c2) d1d2

)
.

Actually, as we see now, the Kronecker algebra is the path algebra of its ordinary
quiver, the so-called Kronecker quiver K2:

α

β
1 2

Indeed, a natural complete set of primitive orthogonal idempotents of A is
provided by the matrix idempotents:

e1 =
(

1 0
0 0

)
, e2 =

(
0 0
0 1

)
.

Also, the radical of A is the two-sided ideal

(
0 0
k2 0

)
,

consisting of the off-diagonal elements: indeed, this ideal is clearly nilpotent
and the quotient of A by it is isomorphic to the semisimple algebra k × k.
Because rad2 A = 0, it follows easily from the definition of multiplication that
e2(rad A/ rad2 A)e1 ∼= k2, whereas all the other ei(rad A/ rad2 A)ej vanish. This
shows that QA is the quiver K2. We may look at the arrow α as corresponding to
the first component of the off-diagonal elements, and the arrow β as corresponding
to the second component. Finally, dimkA = dimkkK2 implies that A = kK2. In
particular, because of Proposition I.2.28, the Kronecker algebra is hereditary. In the
sequel, we give a detailed description of the module category over the Kronecker
algebra, In particular, we shall see that it is representation-infinite.

Exercises for Section I.2

Exercise I.2.1. Let Q be a finite connected quiver and I an admissible ideal of kQ.
Prove that kQ/I is local if and only if |Q0| = 1.
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Exercise I.2.2. For each of the following bound quiver algebras, give a basis of the
algebra, write a multiplication table for this basis, and then give a complete list of the
isoclasses of indecomposable projective and indecomposable injective modules.

(a)
γ β α

(b) 1 2 3 4
γ β α

αβγ

(c) 1 2 3 4
γ β α

αβ

(d) 1 2 3 4
γ β α

αβ = 0, βγ = 0

(e) 3

4

52

1 β

δ γ

α
αβ = 0
γδ = 0

(f) 3

4

52

1 β

δ γ

α

αβ = 0

(g) 1 2 3
γ α

β

(h) 1 2 3
γ α

β
αγ = 0

(i) 1 2
α

β β2 = 0

(j) 1 2γ
α

β

γ2 = 0, δ 2 = 0,
γα = αδ,βγ = δβδ

(k) αε = 0, αβ = γδ

1

2

3

4

β α

γδ

5

ε

Exercise I.2.3. For each of the algebras of Exercise I.2.2, compute the projective
resolutions of the simple modules and deduce the global dimension of the algebra.

Exercise I.2.4. Let A be an elementary algebra. Prove that A is connected if and
only if QA is a connected quiver.
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Exercise I.2.5. Let A = kQ/I be a bound quiver algebra and x, y ∈ Q0. Prove
that:

(a) Sy is a composition factor of Px if and only if there exists a path w from x to y

in Q such that w /∈ I .
(b) Sy is a composition factor of Ix if and only if there exists a path w from y to x

in Q such that w /∈ I .

Exercise I.2.6. Let A = kQ be a hereditary algebra and x ∈ Q0. Prove that:

(a) If x is a sink, then Px
∼= Sx and, if x is not a sink, then

rad Px =
⊕

α : x→y

Py.

(b) If x is a source, then Ix
∼= Sx and, if x is not a source, then

Ix

soc Ix

=
⊕

α : y→x

Iy.

Exercise I.2.7. Prove that an A-module M is uniserial if and only if l(M) = ll(M).

Exercise I.2.8. Let I be an ideal in a Nakayama algebra A. Prove that A/I is a
Nakayama algebra.

Exercise I.2.9. Let A be a Nakayama algebra and PA an indecomposable projective
module such that ll(P ) = ll(AA). Prove that P is also injective.

Exercise I.2.10. Let 0 −→ L −→ M −→ N −→ 0 be a short exact sequence.
Prove that max(ll(L), ll(N)) ≤ ll(M) ≤ ll(L) + ll(N).

Exercise I.2.11. An algebra A is called selfinjective provided that the A-module
AA is injective. Let A be an elementary Nakayama algebra. Prove that A is
selfinjective if and only if A is given by the quiver.

1

n 2

bound by radi A = 0 for some i ≥ 2.

Exercise I.2.12. For each of the following Nakayama algebras, give a complete list
of all indecomposable modules up to isomorphism.



36 I Modules, algebras and quivers

(a) 1 2 3 4 5 6
ε δ γ β α

αβ = βγδε = 0

(b) 1 2 3 4 5 6
ε δ γ β α

αβγδε = 0

(c) 3

2

1
αβ

γ
αβ = 0

(d) 3

2

1
αβ

γ
αβγ= 0

(e) 1 2
α

β
αβαβ= 0

(f) 1 2
α

β
αβα = 0

(g)

1 2

34

α

β

γ

δ αβ = βγ = 0

(h)

1 2

34

α

β

γ

δ αβγ = 0

Exercise I.2.13. Let A be given by the quiver

α

β
1 2

bound by αβ = 0, βα = 0. Write a minimal projective resolution of the simple
A-module S1. Use this resolution to prove that

ExtnA(S1, S1) =
{

k n even
0 n odd .

Exercise I.2.14. Let A be given by the quiver

1 2 3 4 5
δ γ β α
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bound by αβγ = 0, γ δ = 0.

(a) Compute the global dimension of A.
(b) Prove that Ext3A(5, 1) = k.

(c) Compute Ext1A

(
2 ⊕ 3

2 , 2 ⊕ 3
2

)
.

(d) Prove that id

(
3
2

)
> 1.

Exercise I.2.15. Prove that the Kronecker algebra is isomorphic to the algebra of
all triangular 3 × 3 matrices of the form

⎛
⎝

a 0 0
b c 0
d 0 c

⎞
⎠

with a, b, c, d ∈ k, with ordinary matrix operations.

Exercise I.2.16. Let P be an indecomposable projective module over a path
algebra A. Prove that End PA = k.

Exercise I.2.17. For each of the following lower triangular matrix algebras, con-
struct the ordinary quiver and deduce that the given algebra is hereditary.

(a) A =
⎛
⎝

k 0 0
0 k 0
k k k

⎞
⎠ =

⎧⎨
⎩

⎛
⎝

α11 0 0
0 α22 0

α31 α32 α33

⎞
⎠ | αij ∈ k for all i, j

⎫⎬
⎭

(b) A =

⎛
⎜⎜⎝

k 0 0 0
0 k 0 0
k k k 0
k k k k

⎞
⎟⎟⎠ =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

α11 0 0 0
0 α22 0 0

α31 α32 α33 0
α41 α42 α43 α44

⎞
⎟⎟⎠ | αij ∈ k for all i, j

⎫⎪⎪⎬
⎪⎪⎭

Exercise I.2.18. Prove that the following conditions are equivalent for an algebra
A:

(a) A is hereditary,
(b) rad A is a projective A-module,
(c) pd (A/ rad A) ≤ 1 where A/ rad A is considered an A-module,
(d) Ext1A(M,−) is right exact, for every A-module M ,
(e) Ext1A(S,−) is right exact, for every simple A-module S.

Exercise I.2.19. Let A = kQ/I be a bound quiver algebra and x, y ∈ Q0.

(a) Applying HomA(−, Sy) to the exact sequence 0 −→ rad Px −→ Px −→
Sx −→ 0, prove that Ext1A(Sx, Sy) ∼= HomA( rad Px

rad2 Px
, Sy).

(b) Deduce that dimk Ext1A(Sx, Sy) equals the number of arrows from x to y in Q.
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Exercise I.2.20 (Triangular matrix algebras). Let A,B be algebras and BMA a
B − A-bimodule. The set R of all matrices

R =
(

A 0
M B

)
=
{(

a 0
x b

)
| a ∈ A, x ∈ M,b ∈ B

}

becomes an algebra when endowed with the ordinary matrix addition and the
multiplication induced from the bimodule structure of M .

(a) Prove that rad R =
(

rad A 0
M rad B

)
.

(b) Let C be the category whose objects are the triples (X, Y, φ) where X is an A-
module, Y a B-module and φ : Y ⊗B M −→ X an A-linear map. A morphism
(u, v) : (X, Y, φ) −→ (X′, Y ′, φ′) is a pair consisting of an A-linear map
u : X −→ X′ and a B-linear map v : Y −→ Y ′ such that uφ = φ′(v ⊗ M).
Composition is induced from the usual composition of morphisms. Prove that
C ∼= mod R.

(c) Prove that the module category over the Kronecker algebra A =
(

k 0
k2 k

)
is

equivalent to the category C whose objects are quadruples (X, Y, f, g), where
X, Y are k-vector spaces, and f, g : X −→ Y are k-linear maps. A morphism is
a pair of maps (u, v) : (X, Y, f, g) −→ (X′, Y ′, f ′, g′) such that u : X −→ X′
and v : Y −→ Y ′ verify uf = vf ′, ug = g′v and the composition of morphisms
is induced from the usual composition of k-linear maps.

Exercise I.2.21 (One-point extensions). Let A be an algebra, M an A-module
and

B =
(

A 0
M k

)
=
{(

a 0
x λ

)
| a ∈ A, x ∈ M,λ ∈ k

}

be equipped with the usual matrix addition and the multiplication induced from the
module structure of M . Thus, B is an algebra, called the one-point extension of A

by M and denoted as A[M]. Prove the following facts:

(a) rad B = rad A ⊕ M , as vector spaces;
(b) The quiver QB contains QA as a full subquiver and there is exactly one

additional point x, which is a source. In addition, there is an additional arrow
x → y each time Sy appears as a summand in top M and these are all additional
arrows;

(c) Every indecomposable projective A-module remains indecomposable in mod B

and there is exactly one additional indecomposable projective B-module whose
radical equals M;

(d) gl. dim. B = max {gl. dim. A, 1 + pd M};
(e) B is hereditary if and only if A is hereditary and M is projective;
(f) Let A be the hereditary algebra given by the quiver.

1 ←− 2 ←− 3
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Compute the bound quiver of A[M], where M equals each of the following
A-modules:

(i) M = 3
2
1

,

(ii) M = 3
2 ,

(iii) M = 3,

(iv) M = 3
2
1

⊕ 3,

(v) M = 3
2
1

⊕ 3 ⊕ 3,

(vi) M = 3 ⊕ 2
1 .

Exercise I.2.22 (Representations of quivers). Let A = kQ/I be a bound quiver
algebra. We define a category rep(Q, I), called the category of representations of the
bound quiver (Q, I); an object M in rep(Q, I) is defined by the following data:

1) With each x ∈ Q0 is associated a finite dimensional k-vector space M(x).
2) With each arrow α : x −→ y in Q1 is associated a k-linear map M(α) :

M(x) −→ M(y). This is extended to a path α1 . . . αt by setting M(α1 . . . αt ) =
M(αt ) . . . M(α1), and M(ex) = 1M(x) for each x ∈ Q0.

3) If ρ = Σiλiwi is a relation in I , then M(ρ) = ΣiλiM(wi) = 0.

A morphism f : M −→ N in rep(Q, I) is a family of k-linear maps f = (fx :
M(x) −→ N(x)) such that, for each arrow α : x −→ y, we have N(α)fx =
fyM(α), that is, the following square commutes:

The composition of f : L −→ M , g : M −→ N is defined in the obvious way:
(gf )x = gxfx for each x ∈ Q0.

(a) Prove that rep(Q, I) is an abelian category.
(b) With each A-module M , we associate an object M ′ = F(M) of rep(Q, I) as

follows. For x ∈ Q0, we set M ′(x) = Mex and, for α : x −→ y in Q1, we
let M ′(α) : M ′(x) −→ M ′(y) be given by the right multiplication mex �→
m(α + I ) = m(α + I )ey (for m ∈ M). Prove that this extends to a functor
F : mod A −→ rep(Q, I).

(c) Conversely, with an object M ′ of rep(Q, I) we associate a module M = G(M ′)
as follows. As a k-vector space, set M = ⊕

x∈Q0
M ′(x). For a path w from x

to y in Q and m = (mx)x∈Q0 ∈ M , set

m(w + I ) = M ′(w)(mx).
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Prove that M is indeed a kQ-module annihilated by I , thus an A-module, then
prove that this assignment extends to a functor G : rep(Q, I) −→ mod A.

(d) Prove that F and G are quasi-inverse functors so that mod A ∼= rep(Q, I).

Exercise I.2.23. Prove that in each of the following bound quivers Ext2A(Ix, Py) is
one-dimensional.

Exercise I.2.24. Prove that for the following bound quiver algebra A:

we have id AA ≤ 1 and pd(DA)A ≤ 1, while gl. dim. A = ∞.



Chapter II
The radical and almost split sequences

As in Chapter I, we let k be an arbitrary (commutative) field. Our algebras are
finite dimensional k-algebras, associative and with an identity. The main working
tool in this book is the notion of almost split sequences. It arose from an attempt
to understand the morphisms lying in the radical of a module category. From this
attempt, Auslander and Reiten extracted the notions of irreducible morphisms and
almost split sequences, which allow all irreducible morphisms to be arranged in a
neat way. We start our discussion in Section II.1 with a short description of the
radical of a module category. We define and study irreducible morphisms and almost
split sequences in Section II.2. We prove in Section II.3 the existence theorem for
almost split sequences and we proceed to apply these sequences to the study of the
radical in Section II.4.

II.1 The radical of a module category

II.1.1 Categorical framework

In several places, we use a categorical language. For this reason, it is convenient to
fix the terminology and recall a few results.

Definition II.1.1. Let k be a field. A category C is called a k-category if it satisfies
the following conditions:

(a) For every pair of objects X, Y in C , the set HomC (X, Y ) of morphisms from
X to Y is a k-vector space.

(b) The composition of morphisms is k-bilinear, that is, if f, f1, f2 : X −→ Y and
g, g1, g2 : Y −→ Z are morphisms while λ1, λ2, μ1, μ2 are scalars, then we
have
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g ◦ (λ1f1 + λ2f2) = λ1 (g ◦ f1) + λ2 (g ◦ f2)

and

(μ1g1 + μ2g2) ◦ f = μ1 (g1 ◦ f ) + μ2 (g2 ◦ f ) .

In general, we do not need to assume that the Hom-spaces of a k-category are
finite dimensional k-vector spaces, though, in all of our examples, that will be the
case.

Clearly, if C is a k-category and X an object in C , then the k-vector space
EndC X, of all morphisms from X to itself, has a natural k-algebra structure. It
is in general infinite dimensional.

Often, one needs to consider not only the objects of a k-category, but also their
finite direct sums and products. This leads to the following definition.

Definition II.1.2. A k-category C is k-linear if it is additive, that is, if every finite
family of objects in C admits a direct sum and a direct product.

It is well-known that, given a finite family {X1, · · · , Xn} of objects in a k-
linear category C , then its direct sum ⊕n

i=1Xi and its direct product
∏n

i=1 Xi are
isomorphic. In particular, the empty sum and the empty product are isomorphic and
called the zero object. Predictably, the zero object is denoted by 0.

Example II.1.3. Examples of k-categories abound. Let, for instance, A be a finite
dimensional k-algebra. Then the category mod A of all finitely generated right A-
modules is a k-linear category. Also, the full subcategories proj A of projective
objects and inj A of injective objects in mod A, are k-linear.

Let, as before, ind A denote a full subcategory of mod A whose objects form
a complete set of representatives of the isoclasses of indecomposable A-modules.
Then, ind A, and actually every full subcategory of ind A, is a k-category, but not a
k-linear category.

Another class of examples is as follows: let M be an A-module, not necessarily
indecomposable and add M denote the full subcategory of mod A where objects are
all direct sums of indecomposable direct summands of M . Then, add M is a k-linear
category, see Exercise II.1.1.

The appropriate notion of functor between k-categories is that of k-functor.

Definition II.1.4. Let C ,D be k-categories. A (covariant or contravariant) functor
F : C −→ D is a k-functor if, for each pair of morphisms f, g : X −→ Y in C
and each pair of scalars λ,μ in k, we have

F (λf + μg) = λF (f ) + μF (g) .

Reformulating, F is a k-functor whenever, for each pair of objects X, Y in C the
mapping f �→ Ff induced by F on the Hom-spaces is a k-linear map.
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For instance, for every object X in C , the functors HomC (−, X) and
HomC (X,−) from C to the category Mod k of all (not necessarily finite
dimensional) k-vector spaces are k-functors. Unless otherwise specified, all functors
we deal with are k-functors.

We need the definition of a subfunctor. Let C ,D be k-categories and F,G :
C −→ D k-functors. We say that F is a subfunctor of G (and we write F ⊆ G) if
there exists a functorial monomorphism ϕ : F −→ G, that is, for every object X in
C there exists a monomorphism ϕX : FX −→ GX, which is compatible with the
morphisms in C . If, for instance, F and G are covariant, this means that, for every
morphism f : X −→ Y in C , we have a commutative square:

FY

FX

GY

GX

Ff Gf

X

ϕ

ϕ

Y

where ϕX and ϕY are monomorphisms. The definition is similar if F and G are
contravariant.

We recall the notion of an ideal in a k-category.

Definition II.1.5. An ideal I in a k-category C is defined by the following
data: for each pair of objects X, Y in C , there exists a k-subspace I (X, Y ) of
HomC (X, Y ) such that:

(a) f ∈ I (X, Y ) and h ∈ HomC (W,X) imply f h ∈ I (W, Y ), and
(b) f ∈ I (X, Y ) and g ∈ HomC (Y, Z) imply gf ∈ I (X,Z).

In other words, an ideal I is a family {I (X, Y )}X,Y of k-subspaces of the Hom-
spaces, which is stable under left and right compositions with arbitrary morphisms
in C .

For instance, let C ,D be k-categories and F : C −→ D a k-functor. Its kernel
K = Ker F is defined by assigning to each pair of objects X, Y in C the set

K (X, Y ) = {f ∈ HomC (X, Y ) : Ff = 0} ,

which is clearly a k-subspace of HomC (X, Y ). It is easily verified that these data
define an ideal K of C .

Given an ideal I in a k-category C , one can define the quotient category C /I .
This is the category having the same class of objects as C and the set of morphisms
from the object X to the object Y is the quotient space:

HomC /I (X, Y ) = HomC (X, Y )

I (X, Y )
.
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To define the composition, let f : X −→ Y and g : Y −→ Z be morphisms in
C and set:

(g + I (Y, Z)) ◦ (f + I (X, Y )) = (g ◦ f ) + I (X,Z).

Because of the definition of ideal, this yields a well-defined operation

HomC /I (Y, Z) × HomC /I (X, Y ) −→ HomC /I (X,Z) ,

which is the required composition.
With this definition, C /I inherits from C the structure of a k-category. Further,

if C is k-linear, then it is easily seen that so is C /I . In addition, if the Hom-
spaces in C are finite dimensional vector spaces, then the Hom-spaces in C /I are
also finite dimensional vector spaces. There is a natural functor from C to C /I ,
mapping each object to itself, and each morphism f ∈ HomC (X, Y ) to its residual
class f +I (X, Y ) ∈ HomC /I (X, Y ). This functor is called the projection functor
from C to C /I . It is clearly full and dense, and its kernel is precisely the ideal I .

II.1.2 Defining the radical of mod A

Motivated by the analogy between categories and algebras, we expect that all the
“significant” information of mod A is contained in its radical, in such a way that the
quotient of mod A by its radical is semisimple. Following a familiar strategy, we
start by defining the radical on ind A and then extend this definition to the whole of
mod A. In addition, the radical has to be an ideal in mod A, exactly as the radical
of an algebra is an ideal in it. Thus, with each pair M,N of indecomposable A-
modules, we wish to associate a subspace radA(M,N) of HomA (M,N), stable
under left and right composition by arbitrary morphisms.

A natural requirement is that, if M = N, then the radical radA(M,N) should
coincide with the radical rad EndA M of the endomorphism algebra End M of M .
Because we are assuming that M is indecomposable, the algebra End M is local;
thus, its radical consists of all noninvertible elements, that is, all nonisomorphisms
from M to itself. Generalising this observation to the case where M is perhaps
not equal to N , we are led to define the subspace radA(M,N) to consist of all
nonisomorphisms from M to N .

One way to extend this definition to decomposable modules is as follows. Let
M,N be arbitrary modules and M = ⊕m

i=1Mi,N = ⊕n
j=1Nj direct sum decompo-

sitions, with all Mi,Nj indecomposable. To these decompositions, we associate the
projections pj : N −→ Nj and injections qi : Mi −→ M. Because we want the
radical to be an ideal of mod A, it is reasonable to require that f : M −→ N belongs
to radA(M,N) if and only if, for all i and j, the morphism pjf qi : Mi −→ Nj

belongs to radA(Mi,Nj ), that is, it is not an isomorphism. It turns out that this
requirement suffices to define an ideal of mod A. We recall from Subsection II.1.3
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that a morphism f : X −→ Y in a category is a section (or a retraction) if there
exists f ′ : Y −→ X such that f ′f = 1X (or ff ′ = 1Y respectively).

Lemma II.1.6. There exists a unique ideal radA of mod A such that, if M,N are
A-modules, then radA(M,N) consists of all morphisms f : M −→ N such that,
for every section q : M ′ −→ M and retraction p : N −→ N ′, the composition
pf q : M ′ −→ N ′ is not an isomorphism.

Proof . We first show that we can assume that M ′ and N ′ are indecomposable.
Namely, we claim that a morphism f : M −→ N belongs to radA(M,N) if and
only if for every section q : M ′ −→ M and retraction p : N −→ N ′, with M ′, N ′
indecomposable, the composition pf q : M ′ −→ N ′ is not an isomorphism. Indeed,
sufficiency is trivial; therefore, let us prove necessity. Assume on the contrary that
there exist a section q : M ′ −→ M and a retraction p : N −→ N ′ such that the
composition g = pf q : M ′ −→ N ′ is an isomorphism. Then, g−1pf q = 1M ′ . Let
X be an indecomposable summand of M ′; then, for the injection v : X −→ M ′ and
the projection u : M ′ −→ X, we have uv = 1X. But then

1X = uv = ug−1pf qv = (ug−1p)f (qv)

is an isomorphism, with ug−1p : N −→ X a retraction, qv : X −→ M a section
and X indecomposable. This completes the proof of our claim.

Clearly, if M,N are given, then the property in the statement uniquely defines a
subset radA(M,N) of HomA(M,N). We thus have to prove that these data define
an ideal in mod A.

Let f, g ∈ radA(M,N) and λ,μ ∈ k. Then, for every section q : M ′ −→
M and retraction p : N −→ N ′, with M ′, N ′ indecomposable, the composition
pf q : M ′ −→ N ′ is not an isomorphism. We have two cases to consider. If M ′ 	∼=
N ′, then

p (λf + μg) q = λ (pf q) + μ(pgq)

is clearly not an isomorphism. On the other hand, if M ′ ∼= N ′, then the above linear
combination belongs to HomA

(
M ′, N ′) ∼= End M ′. Because the latter is a local

algebra, the sum of two noninvertible elements (radical elements) is noninvertible
(thus, it belongs to the radical). This shows that radA(M,N) is a subspace of
HomA(M,N).

Let now f ∈ radA(M,N) and g ∈ HomA(L,M). We claim that fg ∈
radA(L,N). If this is not the case, then there exist a section q : L′ −→ L and
a retraction p : N −→ N ′, with L′, N ′ indecomposable, such that the composition
p(fg)q : M ′ −→ N ′ is an isomorphism. But now p(fg)q = (pf )(gq). Hence, gq

is a section and the invertibility of pf (gq) contradicts the hypothesis that f belongs
to radA(M,N). This establishes our claim. The proof that the radical is stable under
left composition by arbitrary morphisms is similar. ��

The previous lemma justifies the definition of the radical of the module category.
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Definition II.1.7. The radical radA of mod A is the unique ideal such that, if
M,N are A-modules, then radA(M,N) consists of all morphisms f : M −→ N

such that, for every section q : M ′ −→ M and retraction p : N −→ N ′, the
composition pf q : M ′ −→ N ′ is not an isomorphism. The morphisms lying in
some radA(M,N) are called radical morphisms.

From this definition, we have an immediate consequence:

Corollary II.1.8. Let M,N be indecomposable A-modules.

(a) If M 	∼= N, then radA(M,N) = HomA(M,N).

(b) If M ∼= N, then radA(M,N) ∼= rad End M consists of all nonisomorphisms,
that is, of the nilpotent endomorphisms. ��

Also, it is easily seen that

radA

(
⊕m

i=1Mi,⊕n
j=1Nj

)
= ⊕m

i=1 ⊕n
j=1 radA

(
Mi,Nj

)
,

see Exercise II.1.2.
We now prove a first characterisation of the radical, which is sometimes used as

a definition.

Corollary II.1.9. Let M,N be A-modules. A morphism f : M −→ N is radical
if and only if, for every indecomposable module X and morphisms u : X −→ M ,
v : N −→ X, the composition vf u is not an isomorphism.

Proof . Let X be an indecomposable module, and u : X −→ M , v : N −→ X

morphisms. If vf u is an isomorphism, then v is a retraction and u is a section. Thus,
f /∈ radA(M,N). The converse is obvious. ��

In the case of one of the modules M,N being indecomposable, the definition of
radA(M,N) becomes simpler.

Corollary II.1.10. Let f : M −→ N be a morphism of A-modules.

(a) If M is indecomposable, then f is radical if and only if f is not a section.
(b) If N is indecomposable, then f is radical if and only if f is not a retraction.

Proof . We only prove (a), because the proof of (b) is dual.
Assume f /∈ radA(M,N). Then there exist a section q : M ′ −→ M and a

retraction p : N −→ N ′ such that pf q : M ′ −→ N ′ is an isomorphism. However,
the indecomposability of M implies that q is an isomorphism. Hence, so is pf .
Therefore, f is a section. Conversely, if f is a section, then there exists a retraction
f ′ such that f ′f = 1M . But then f /∈ radA(M,N). ��
Example II.1.11. Let A be given by the quiver:

1 2
α

β
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bound by the relation βα = 0. The indecomposable projective A-modules

P1 =
1
2
1

and P2 = 2
1

are uniserial. Clearly, radA (P1, P1) = rad End P1 is one-dimensional and generated
by the morphism f : P1 −→ P1 having as an image the simple socle of P1 (and
as a kernel its radical, which is isomorphic to P2). Observe that f 2 = 0, that
is, f is nilpotent. On the other hand, radA (P2, P2) = rad End P2 = 0, whereas
radA (P2, P1) = HomA(P2, P1) is one-dimensional, generated by the inclusion of
P2 as radical of P1. Finally, radA (P1, P2) = HomA(P1, P2) is one-dimensional,
generated by the morphism P1 −→ P2 having as an image the simple socle of P2.

We finish this subsection by proving that, as expected, the quotient of mod A by
its radical is a semisimple category. We recall the definition of the latter. Let Λ be
a set and (Cλ)λ∈Λ a collection of k-linear categories. The direct sum of the Cλ is
the full subcategory ⊕λCλ of ΠλCλ consisting of all the objects (Xλ)λ∈Λ such that
Xλ = 0 for all but at most finitely many λ ∈ Λ with the obvious morphisms. A k-
linear category is called semisimple if it is equivalent to the direct sum of categories
of the form modK , with K a skew field containing k.

Corollary II.1.12. If A is an algebra, then the category mod A/ rad A is semisim-
ple.

Proof . Let (Mλ)λ∈Λ denote a complete set of representatives of the isoclasses of
indecomposable A-modules. Clearly, Λ is in general an infinite set. For each λ ∈ Λ,
the algebra End Mλ is local and therefore

Kλ = End Mλ

rad(End Mλ)

is a skew overfield of k. We consider the functor

F : mod A −→ Πλ mod Kλ

defined on the objects as follows: for each X in mod A, we set

F(X) =
(

HomA(Mλ,X)

radA(Mλ,X)

)

λ∈Λ

and in the obvious way on the morphisms.
We claim that the essential image of the functor F is the full subcategory

⊕λ mod Kλ of Πλ mod Kλ.
Indeed, let M be an A-module. Because of the Krull–Schmidt theorem, we can

write M = ⊕λM
mλ

λ , where the Mλ are equal to zero for all but at most finitely many
values of λ. Then,
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F(M) =
(

HomA(Mλ,M
mλ

λ )

radA(Mλ,M
mλ

λ )

)

λ∈Λ

= (K
mλ

λ )λ∈Λ

which is indeed an object in ⊕λ mod Kλ.
This shows that the essential image of F lies inside ⊕λ mod Kλ, so that F is

actually a functor from mod A to ⊕λ mod Kλ. As such, this functor is dense: indeed,
let X be an object in ⊕λ mod Kλ, then X ∼= (K

mλ

λ )λ∈Λ where the mλ equal zero
for all but at most finitely many values of λ. Setting M = ⊕λM

mλ

λ , we see that
F(M) ∼= X. This proves the density of F : mod A −→ ⊕λ mod Kλ. Fullness is
proved in exactly the same way.

Finally, it is easily seen that the kernel of F is precisely the ideal radA. The
statement now follows. ��

II.1.3 Characterisations of the radical

The radical of an algebra is commonly defined as being the intersection of all
maximal right ideals, and then it equals the intersection of all maximal left ideals.
As stated in Subsection I.1.2, it can also be seen as the set of all elements a in the
algebra such that, for every x, the element 1−ax is right invertible, and then it equals
the set of all elements a such that, for every x, the element 1 − xa is left invertible.
The purpose of the present subsection is to provide similar characterisations for the
radical of a module category.

Our first observation is that the radical of mod A defines a subbifunctor
radA (−, ?) of HomA (−, ?). Indeed, let N be an A-module. We define a subfunctor
radA (−, N) of the contravariant Hom-functor HomA (−, N) by setting

radA (−, N) (M) = radA (M,N)

and, for a morphism f : M ′ −→ M ,

radA (−, N) (f ) = HomA (f,N) : radA(M,N) −→ radA(M ′, N).

Indeed, it follows from the definition of ideal in a category that, if v ∈
radA (M,N), then HomA (f,N) (v) = vf belongs to radA

(
M ′, N

)
. Thus,

HomA (f,N) is indeed a map from radA (M,N) to radA

(
M ′, N

)
.

In exactly the same way, for a fixed module M, we define a subfunctor
radA (M,−) of the covariant Hom-functor HomA (M,−). As required, this defines
a subbifunctor radA(−, ?) of HomA(−, ?).

For our first lemma, we need one more definition. A proper subfunctor F of a
functor G is maximal if, whenever F ′ is a subfunctor of G such that F ⊆ F ′ then
F ′ = F or F ′ = G.
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Lemma II.1.13. Let C be a linear category and X an object in C . Then, there exist
bijections between:

(a) The maximal right ideals of EndC X and the maximal subfunctors of
HomC (−, X).

(b) The maximal left ideals of EndC X and the maximal subfunctors of
HomC (X,−).

Proof . We construct the bijection in (a) because the construction in (b) is similar.
Let I be a maximal right ideal of EndC X. We define a corresponding subfunctor

FI of HomC (−, X). For an object Y in C , we let FI (Y ) be the subset of
HomC (Y,X) defined by

FI (Y ) = {f ∈ HomA(Y,X) : fg ∈ I for every g : X −→ Y } .

Clearly, FI (Y ) is a subspace of HomA(Y,X). Also, FI is made into a functor by
setting, for u : Y ′ −→ Y ,

FI (u) = HomA (u,X) .

Indeed, if f ∈ FI (Y ) and g : X −→ Y ′ is arbitrary, then (f u)g = f (ug) ∈ I

because ug : X −→ Y . This shows that FI (u) is well-defined as a map from FI (Y )

to FI (Y
′), and, therefore, that FI is a subfunctor of HomC (−, X). In addition, it is

apparent that FI (X) = I .
We have to prove that FI is a maximal subfunctor. Assume that F is a functor

such that FI ⊆ F ⊆ HomC (−, X). In particular, I = FI (X) ⊆ F(X) ⊆ EndC X.
Additionally, F(X) is actually a right ideal in EndC X: this indeed follows from the
fact that, because of the definition of a subfunctor, we have a commutative square

FX

F(u)

Hom𝒞(X,X)

Hom𝒞 (u,X)

FX Hom𝒞(X,X)

where u : X −→ X. Then, the maximality of I implies that we have one of the
following two cases. In the first case, F(X) = EndC X and then f ∈ HomC (Y,X)

and the commutative square

1X ∈ FX End𝒞(X) 1X

Hom𝒞 ( f,X)

F( f )(1X ) ∈

∈

∈FY Hom𝒞(Y, X) f

give F(f )(1X) = f ∈ F(Y ) so that HomC (Y,X) = F (Y ) for every object Y .
Consequently, F = HomC (−, X). In the second case, F(X) = I and then f ∈
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F(Y ) and g ∈ HomC (X, Y ) together with the commutative square

FY

F(g)

Hom𝒞(Y,X)

Hom𝒞(g,X)

I = FX End𝒞(X)

give F(g)(f ) = fg ∈ F(X) = I and so f ∈ FI (Y ) by definition. Hence, F = FI .

This completes the proof of the maximality of FI .
Conversely, let F be a maximal subfunctor of HomC (−, X). We claim that there

exists a unique maximal right ideal I of EndC X such that F = FI . Let us set
I = F(X). Then, I is certainly a subspace of EndC X. The fact that it is a right
ideal follows from the fact that F is a subfunctor, as seen before. It remains to prove
that I is maximal. Certainly, there exists a maximal right ideal J of EndC X such
that I ⊆ J . Let f ∈ F(Y ) and g : Y −→ X. Then

F(g)(f ) = fg ∈ F(X) = I ⊆ J

gives f ∈ FJ (Y ). Because F(X) = I ⊆ J = FJ (X), we have F ⊆ FJ . Then, the
maximality of F implies that F = FJ and so I = F(X) = FJ (X) = J . This shows
the maximality of I . Its uniqueness being obvious, the proof is complete. ��
Corollary II.1.14. Let C be a linear category and f : X −→ Y a morphism in C .
Then:

(a) f ∈ F(X) for every maximal subfunctor F of HomC (−, Y ) if and only if 1Y −
fg is invertible for every g : Y −→ X.

(b) f ∈ F(Y ) for every maximal subfunctor F of HomC (X,−) if and only if 1X −
gf is invertible for every g : Y −→ X.

Proof . We only prove (a), because the proof of (b) is similar.
Because of Lemma II.1.13 above, f ∈ F(X) for every maximal subfunctor F of

HomC (−, Y ) if and only if fg ∈ I for every maximal right ideal I of EndC Y and
every morphism g : Y −→ X. This is the case if and only if fg ∈ rad EndC Y for
every g : Y −→ X. A well-known property of the radical of an algebra implies that
1Y − fg is invertible. Conversely, assume that 1Y − fg is invertible for every g :
Y −→ X, and let h ∈ EndC Y . Our condition implies that 1Y −f (gh) = 1Y −(fg)h

is invertible for every such h. This shows that fg ∈ rad EndC Y and completes the
proof. ��

We can relax a bit the second condition of the previous corollary.

Lemma II.1.15. Let C be a linear category and f : X −→ Y a morphism in C .
Then:

(a) The morphism 1Y − fg is invertible for every g : Y −→ X if and only if it is
right invertible for every g : Y −→ X.
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(b) The morphism 1X − gf is invertible for every g : Y −→ X if and only if it is
left invertible for every g : Y −→ X.

Proof . We only prove (a), because the proof of (b) is similar.
Because the necessity is obvious, we show the sufficiency. If 1Y − fg is right

invertible, there exists h such that (1Y −fg)h = 1Y . Then, h = 1Y +fgh also admits
a right inverse l, because of the hypothesis. But then 1Y = hl = (1Y + fgh) l =
l + fg yields l = 1Y − fg and so h is also a left inverse of 1Y − fg, which is thus
invertible. ��

We now prove the equivalence of the conditions stated in (a) and (b) of
Lemma II.1.15 (and thus of Corollary II.1.14).

Lemma II.1.16. Let C be a linear category and f : X −→ Y a morphism in C .
Then, 1X −gf is invertible for every g : Y −→ X if and only if 1Y −fg is invertible
for every g : Y −→ X.

Proof . Assume that 1X − gf is invertible and let h be its inverse. Then,
h (1X − gf ) = 1X yields h = 1X + hgf and we have

(1Y + f hg) (1Y − fg) = 1Y −fg+f hg−f hgfg = 1Y −f (1X − h + hgf ) g = 1Y .

Similarly, (1X − gf ) h = 1X yields (1Y − fg) (1Y + f hg) = 1Y . Thus, 1Y − fg

is invertible. The converse is proven in exactly the same way. ��
The reader should be aware that we use in this subsection the terminology

“invertible, right invertible, left invertible” (instead of the more familiar “iso-
morphism, retraction, section” respectively) to underline the analogy between the
radical of a category and that of an algebra.

We are now able to prove the main result of this subsection, which gives various
equivalent characterisations of radical morphisms.

Theorem II.1.17. Let A be a finite dimensional k-algebra and f : M −→ N a
morphism of A-modules. The following conditions are equivalent:

(a) f ∈ radA (M,N) .

(b) f ∈ F(M) for every maximal subfunctor F of HomA(−, N).
(c) f ∈ F(N) for every maximal subfunctor F of HomA(M,−).
(d) 1N − fg is invertible for every g : N −→ M .
(e) 1M − gf is invertible for every g : N −→ M .
(f) 1N − fg is right invertible for every g : N −→ M .
(g) 1M − gf is left invertible for every g : N −→ M .

Proof . We have proved the equivalence of conditions (b) to (g). It thus suffices to
prove the equivalence of (f) with (a).

Let R (M,N) be the set

{f ∈ HomA(M,N) | 1N − fg is right invertible for every g : N −→ M} .
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(i) We first prove that, if M and N are indecomposable, then R (M,N) equals
radA (M,N).

Indeed, assume f ∈ R (M,N), then f cannot be an isomorphism because,
if it were, then 1N − ff −1 = 0 would be invertible, an absurdity. Thus,
R (M,N) ⊆ radA (M,N). Conversely, assume that f : M −→ N is not an
isomorphism. Then, for every g : N −→ M , the composition fg : N −→ N

is not an isomorphism either: for, if it were, then f would be a retraction,
and hence an isomorphism owing to the indecomposability of M , and this is
a contradiction. But then, because End N is local, the morphism 1N − fg is
(right) invertible.

(ii) We next prove that R defines an ideal of mod A.
Clearly, 0 ∈ R (M,N). Also, f ∈ R (M,N) and λ ∈ k imply λf ∈

R (M,N). We now show that, if f1, f2 ∈ R (M,N), then f1 + f2 ∈
R (M,N).

Let g : N −→ M be arbitrary. Then, 1N − f1g has a right inverse h1 and
1N − f2gh1 has a right inverse h2. We claim that h1h2 is a right inverse of
1N − (f1 + f2)g.

We first observe that (1N − f1g) h1 = 1N gives h1 − 1N = f1gh1 whereas
(1N − f2gh1) h2 = 1N gives h2 − 1N = f2gh1h2. Hence,

(1N − (f1 + f2)g)h1h2 = h1h2 − f1gh1h2 − f2gh1h2

= h1h2 − (h1 − 1N) h2 − (h2 − 1N)

= 1N

This shows that R (M,N) is a k-subspace of HomA (M,N).
Let now f ∈ R (M,N) and u ∈ HomA (L,M). Then, for every morphism

g : N −→ M , the morphism 1N − (f u)g = 1N − f (ug) is right invertible.
Therefore, f u ∈ R (M,N). Let v ∈ HomA (N,L) and g : L −→ M be
arbitrary. Then, because of the hypothesis, 1N − f (gv) has a right inverse h,
and (1N − fgv) h = 1N yields h − 1N = fgvh. Hence,

(1L − vfg) (1L + vhfg) = 1L + vhfg − vfg − vfgvhfg

= 1L + vhfg − vfg − v (h − 1N) fg

= 1L

Therefore, vf ∈ R (M,L). This completes the proof of (ii).
(iii) Let M,N be arbitrary modules. We prove that f ∈ R (M,N) if and only if,

for every section q : M ′ −→ M and retraction p : N −→ N ′ with M ′, N ′
indecomposable, we have pf q ∈ R

(
M ′, N ′).

Because necessity follows from (ii), we prove sufficiency. Assume that
M = ⊕m

i=1Mi , N = ⊕n
j=1Nj are direct sum decompositions with all Mi,Nj

indecomposable. Associate with these decompositions the projections pi :
M −→ Mi, p

′
j : N −→ Nj and injections qi : Mi −→ M,q ′

j : Nj −→ N .
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The hypothesis asserts that, for each pair (i, j), we have p′
j f qi ∈ R

(
Mi,Nj

)
.

But then, using again that R is an ideal, we get that:

f = 1Nf 1M =
⎛
⎝∑

j

q ′
jp

′
j

⎞
⎠ f

(∑
i

qipi

)
=
∑
i,j

q ′
j

(
p′

j f qi

)
pi ∈ R (M,N) .

The statement of the Theorem then follows from (i), (ii), (iii) and Lemma II.1.6.
��

As a consequence, we obtain one further characterisation of the radical (which
the reader can compare with Corollary II.1.14 above).

Corollary II.1.18. Let f : M −→ N be a morphism of A-modules. The following
conditions are equivalent:

(a) f ∈ radA (M,N).
(b) gf is nilpotent for every morphism g : N −→ M .
(c) fg is nilpotent for every morphism g : N −→ M .

Proof . We only prove the equivalence of (a) and (b), because the equivalence of (a)
and (c) is similar.

Assume first that gf is nilpotent for every morphism g : N −→ M . Let n > 0
be such that (gf )n = 0 but (gf )n−1 	= 0. Then, 1M + (gf ) + . . . + (gf )n−1 is an
inverse for 1M − gf , which is therefore invertible.

Conversely, assume that 1M −gf is invertible for every morphism g : N −→ M.

Then we have gf ∈ rad End M . But every element in rad End M is nilpotent, which
gives the result. ��

Exercises for Section II.1

Exercise II.1.1. Let C be a k-category. Prove that there exists a k-linear category
add C , unique up to isomorphism (called the linearisation of C ) such that:

(a) C is a full subcategory of add C .
(b) If D is a k-linear category and F : C −→ D a k-functor, then there exists a

unique k-functor F ′ : add C −→ D whose restriction to C equals F .

𝒞

F

add𝒞

F

𝒟
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Exercise II.1.2. Let A be an algebra and I an ideal in mod A. Assume that M =⊕m
i=1 Mi,M = ⊕n

j=1 Ni are A-modules with the Mi,Nj indecomposable, with
associated inclusions and projections qi : Mi −→ M,p′

j : N −→ Nj .

(a) Let f : M −→ N be a morphism. Prove that f ∈ I (M,N) if and only if
p′

j f qi ∈ I (Mi,Nj ) for all i, j .
(b) Deduce that I (M,N) ∼= ⊕m

i=1
⊕n

j=1 I (Mi,Nj ).

Exercise II.1.3. Let C be a k-linear category and I ,J ideals in C .

(a) We define the product I J as follows: for each pair of objects X, Y in C , we
let I J (X, Y ) be the set of all sums

∑
i gifi where gi ∈ I (Zi, Y ) , fi ∈

J (X,Zi) for some objects Zi in C . Prove that these data define an ideal in C .
(b) We define inductively, for m ≥ 1,I m = I m−1.I and I ∞ = ∩m≥1I m.

Prove that these data define ideals in C .

Exercise II.1.4. Let C be a k-linear category and I ,J ideals in C . We define
I ∩ J by:

(
I ∩ J

)
(X, Y ) = I (X, Y ) ∩ J (X, Y )

for all X, Y in C . Prove that I ∩J is an ideal in C and that it contains the product
ideal I J .

Exercise II.1.5. Let A be an algebra, I an ideal of mod A and P : mod A −→
(mod A)/I the canonical projection. Prove that I ⊆ radA if and only if
a morphism f in mod A is such that P(f ) is an isomorphism, then f is an
isomorphism.

Exercise II.1.6. Let C be a k-linear category and I ,J ideals in C . Prove that, if
I (X,X) ⊆ J (X,X) for all objects X in C , then I ⊆ J .

Exercise II.1.7. Let A be given by the quiver

α 1 2
β

bound by α3 = 0, α2β = 0.Let P1, P2 and I1, I2 be the indecomposable projective
and injective modules corresponding to the points 1 and 2 respectively. Compute
radA (M,N) for all M,N ∈ {P1, P2, I1, I2} .

Exercise II.1.8. Let A be given by the quiver

α

β
1 2

bound by βαβα = 0. Compute radA (M,N) for all indecomposable modules M,N.
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Exercise II.1.9. Let A be a finite dimensional algebra and M,N modules. Prove
that, for each m ≥ 2, radm

A(M,N) is a k-subspace of radm−1
A (M,N).

Exercise II.1.10. Let A be a finite dimensional algebra and M an A-module. As in
Example II.1.3, we denote by add M the full subcategory of mod A consisting of all
direct sums of direct summands of M .

(a) Prove that add M is the linearisation of the full subcategory of mod A consisting
of all the indecomposable summands of M , see Exercise II.1.1.

(b) Denote by 〈add M〉 the set of all morphisms in mod A which factor through an
object in add M . That is, f : XA −→ YA lies in 〈add M〉 whenever there exist
M0 in add M and morphisms g : X −→ M0, h : M0 −→ Y such that f = hg.

Prove that these data define an ideal in mod A.

II.2 Irreducible morphisms and almost split morphisms

II.2.1 Irreducible morphisms

If one admits that the relevant information about mod A (at least about indecom-
posable modules) lies in its radical, then it is reasonable to ask which morphisms
generate all radical morphisms by successive compositions and linear combinations.
Clearly, these are those radical morphisms between indecomposable modules that
cannot be further factored as sums of compositions of other radical morphisms.

Now, let f : L −→ M,g : M −→ N be radical morphisms. Their composition
lies in the product of the ideal radA of mod A with itself, namely rad2

A, see
Exercise II.1.3. Given modules L,N , the radical square rad2

A(L,N) is defined
as the set of all sums of the form

∑
i gifi where each fi is a radical morphism from

L to some A-module Mi , and each gi is a radical morphism from Mi to N .
Setting M = ⊕m

i=1Mi, this may be rewritten as

rad2
A(L,N) = {gf : for some M in mod A, f ∈ radA(L,M), g ∈ radA(M,N)} .

In view of that, we are interested in exactly those morphisms that belong to
the radical but not to the radical square. Dropping the assumption that these are
morphisms between indecomposable modules, we get to the following definition.
As usual, all modules are assumed to be finitely generated right modules over a
finite dimensional k-algebra A.

Definition II.2.1. Let L,M be modules (not necessarily indecomposable). A
morphism f : L −→ M is called irreducible if:

(a) f is neither a section nor a retraction, and
(b) whenever f = gh, then h is a section or g is a retraction:
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L
f

h

M

N
g

Clearly, this notion is self-dual, that is, f : L −→ M is irreducible in mod A if
and only if Df : DM −→ DL is irreducible in mod Aop.

Before giving examples, we justify this definition by considering the case where
L or M or both are indecomposable.

Lemma II.2.2. Let f : L −→ M be a morphism in mod A.

(a) If L or M is indecomposable, and f is irreducible, then f is radical.
(b) If both L and M are indecomposable, then f is irreducible if and only if it

belongs to radA(L,M) \ rad2
A(L,M).

Proof .

(a) Assume that L is indecomposable, and f : L −→ M is irreducible. Then f is
not a section. Because of Corollary II.1.10, it is radical. The proof is similar if
M is indecomposable.

(b) Assume that L and M are both indecomposable, then, again because of
Corollary II.1.10,f ∈ radA(L,M) if and only if it is neither a section nor a
retraction. In addition, f /∈ rad2

A(L,M) if and only if for every decomposition
f = gh with h : L −→ X and g : X −→ M , we have h /∈ radA(L,X) or
g /∈ radA(X,M). Invoking Corollary II.1.10 again, we see that this is the case
if and only if h is a section or g is a retraction.

��
Another property of irreducible morphisms is that they are either injective or

surjective.

Lemma II.2.3. Every irreducible morphism is a monomorphism or an epimor-
phism.

Proof . Let f : L −→ M be irreducible and f = jp its canonical factorisation
through its image, with p : L −→ Im f surjective and j : Im f −→ M injective.
Because f is irreducible, p is a section or j is a retraction. In the first case, p is an
isomorphism and f a monomorphism, and, in the second case, j is an isomorphism
and f an epimorphism. ��

As a consequence, there are no irreducible morphisms from a module to itself
because a monomorphism (or an epimorphism) f : M −→ M is necessarily an
isomorphism, see Lemma I.1.20.

We now give examples.

Example II.2.4. Let P be an indecomposable projective A-module. We claim that
the inclusion morphism j : rad P −→ P is irreducible. Indeed, j is evidently
neither a section nor a retraction. Assume j = gh with g : X −→ P and
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h : rad P −→ X. Suppose that g is not a retraction. Because P is projective, then
g is not surjective. Therefore, Im g ⊆ rad P , that is, there exists g′ : X −→ rad P

such that g = jg′. But then j = gh = jg′h, which implies g′h = 1rad P , because j

is a monomorphism. This proves that h is a section.
Dually, if I is indecomposable injective, then the projection morphism I −→
I/ soc I is irreducible.

Example II.2.5. Let A be the path algebra of the quiver

1 2
α

Consider the indecomposable projective A-module P2 = 2
1 at the point 2. Then

we have dimk HomA(P2, S2) = 1 and every nonzero morphism f : P2 −→ S2 is
surjective with kernel S1. We claim that every such morphism is irreducible.

Clearly, f is not a section, because it is a proper surjection, and not a retraction,
because P2 	∼= S2. Assume that there exists a factorisation f = gh, with h : P2 −→
X and g : X −→ S2. Then, g is surjective. Hence, S2 is a direct summand of the
top of X. But A is a Nakayama algebra so, up to isomorphism, there are only two
indecomposable A-modules having S2 in their top, namely P2 and S2. Thus, X ∼=
S2 ⊕ X′ or X ∼= P2 ⊕ X′. In addition, in the first case, the restriction g∣∣S2

of g to S2

is an isomorphism (so g is a retraction) and in the second case, the restriction g∣∣P2

of g to P2 is a scalar multiple of f (so h is a section).

Example II.2.6. The statement in Lemma II.2.2(b) ceases to be true if we stop
assuming that both L and M are indecomposable. Indeed, assume that f : L1 −→
M is an irreducible morphism with both L1 and M indecomposable. Let L2 be
an indecomposable module that is isomorphic to neither L1 nor M and such that
rad(End L2) 	= 0. Let u be a nonzero morphism in rad(End L2) and v : L1 −→ L2
be arbitrary (maybe zero). Then the morphism (f, 0) : L1 ⊕ L2 −→ M is not
irreducible. Indeed, it is certainly neither a section nor a retraction, but it admits
the factorisation

(f, 0) = (f, 0)

(
1L1 0
v u

)

that is, the following diagram commutes:

L1 ⊕L2
( f,0)

1L1 0
v u

M

L1 L2

( f,0)

Assume that
(

1L1 0
v u

)
is a retraction. Then there exists a matrix

(
g h

g′ h′
)

such that
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(
g h

vg + ug′ vh + uh′
)

=
(

1L1 0
v u

)(
g h

g′ h′
)

=
(

1L1 0
0 1L2

)
.

Thus, h = 0 and so uh′ = 1L2 , that is, u is a retraction, a contradiction.
On the other hand, it is clear that (f, 0) belongs to the radical but not to the radical
square, because f ∈ radA(L1,M) \ rad2

A(L1,M).
Explicit versions of this example are easy to construct. Consider for instance the

algebra given by the quiver

1 2
α

β

bound by βα = 0. As seen in Example II.2.4 above, the inclusion ι : S1 −→ P2 of
the radical S1 in the indecomposable projective module P2 is irreducible. Consider
now the morphism u : P1 −→ P1 mapping the top of P1 onto its socle and the
inclusion v : S1 −→ P1. Then the morphism (ι, 0) : S1 ⊕ P1 −→ P2 admits the

factorisation (ι, 0) = (ι, 0)

(
1S1 0
v u

)
.

Example II.2.7. Similarly, the statement in Lemma II.2.2(a) ceases to be true if
we stop assuming that L or M is indecomposable. We show an example of
an irreducible morphism between decomposable modules, which is not a radical
morphism. Let f : L −→ M be irreducible, with both L and M indecomposable.
Let N be an indecomposable which is neither comparable to L nor to M in
the sense that HomA(L,N) = 0, HomA(N,L) = 0, HomA(M,N) = 0 and

HomA(N,M) = 0. We claim that the morphism

(
f 0
0 1N

)
: L ⊕ N −→ M ⊕ N is

irreducible.
Indeed, it is not a section, because if it were, then there would exist a morphism(
u v

u′ v′
)

: M ⊕ N −→ L ⊕ N such that

(
u v

u′ v′
)(

f 0
0 1N

)
=
(

1L 0
0 1N

)
.

But this implies that uf = 1L so that f is a section, a contradiction. In exactly the
same way, we prove that it is not a retraction. So, assume that we have a factorisation

L⊕N M⊕ N

X

f 0
0 1

(u ,v ) u
v
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then we have

(
f 0
0 1N

)
=
(

u

v

)
(u′ v′) =

(
uu′ uv′
vu′ vv′

)
=
(

uu′ 0
0 vv′

)

because uv′ ∈ HomA(N,M) = 0 and vu ∈ HomA(L,N) = 0. Therefore, f = uu′
and 1N = vv′. In particular, v is a retraction and v′ is a section. Additionally,
because f is irreducible, u is a retraction or u′ is a section.
If u is a retraction, then there exists u′′ : M −→ X such that uu′′ = 1M . Then,

(
u

v

)
(u′′ v′) =

(
uu′′ uv′
vu′′ vv′

)
=
(

1M 0
0 1N

)
.

because uv′ = 0 as said before, whereas vu′′ ∈ HomA(M,N) = 0. Therefore,

(
u

v

)

is a retraction.
If, on the other hand, u′ is a section, then there exists u′′ : X −→ L such that
u′′u′ = 1L. Then,

(
u′′
v

)
(u′ v′) =

(
u′′u′ u′′v′
vu′ vv′

)
=
(

1L 0
0 1N

)

because vu′ = 0 as said before, whereas u′′v ∈ HomA(N,L) = 0. Therefore,
(u′ v′) is a section.

This completes the proof that

(
f 0
0 1N

)
is irreducible. On the other hand, it is

certainly not radical, because the composition

(0 1N)

(
f 0
0 1N

)(
0

1N

)
= 1N

is an isomorphism.
Again, explicit versions of this example are easy to construct. Assume for

instance that A is the path algebra of the quiver

1 2 3

Then, the inclusion i : S1 −→ P2 of the radical S1 into the indecomposable
projective P2 is irreducible. In addition, the simple module S3 is certainly neither

comparable to S1 nor to P2. Therefore, the morphism
(

i 0
0 1S3

)
: S1 ⊕S3 −→ P2 ⊕S3

is irreducible but not radical.
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The previous examples show that the irreducible morphisms are proper general-
isations of the radical morphisms that are not in the radical square. In these notes,
however, we are exclusively concerned with morphisms having source or target (or
both) indecomposable.

In the sequel, we are particularly interested in the situation where we have a short
exact sequence

0 −→ L
f−→ M

g−→ N −→ 0

with f and/or g irreducible. It turns out that, in this situation, L and/or N is
indecomposable; namely, we prove that the kernel (or cokernel) of an irreducible
epimorphism (or monomorphism respectively) is indecomposable. We need a
lemma.

Lemma II.2.8. Let 0 −→ L
f−→ M

g−→ N −→ 0 be a nonsplit exact sequence.

(a) The morphism f is irreducible if and only if for every v : V −→ N , there exists
v1 : V −→ M such that v = gv1 or there exists v2 : M −→ V such that
g = vv2.

(b) The morphism g is irreducible if and only if for every u : L −→ U , there exists
u1 : M −→ U such that u = u1f or there exists u2 : U −→ M such that
f = u2u.

Proof . It suffices to prove (a), because the proof of (b) is dual.
Necessity. A morphism v : V −→ N induces a commutative diagram with exact

rows

0 L
f

E

u

g
V

v

0

0 L
f

M
g

N 0

where E is the fibered product of g and v. Because f is irreducible, f ′ is a section
or u is a retraction. In the first case, g′ is a retraction; thus, there exists g′′ : V −→ E

such that g′g′′ = 1V . Setting v1 = ug′′ we get gv1 = g(ug′′) = vg′g′′ = v. In the
second case, there exists u′ : M −→ E such that uu′ = 1M and so, setting v2 = g′u′
yields vv2 = v(g′u′) = guu′ = g as required.

Sufficiency. Because the given sequence is not split, f is neither a section nor a
retraction. Assume that f = f1f2 with f2 : L −→ X, f1 : X −→ M . Because f is
injective, so is f2 and we get a commutative diagram with exact rows

0 L
f2 X

f1

Coker f2

v

0

0 L
f

M
g

N 0
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where v is deduced by passing to cokernels. In particular, X is isomorphic to the
fibered product of g and v. If there exists v1 : Coker f2 −→ M such that v = gv1,
then the universal property of the fibered product implies that the upper sequence
splits and so f2 is a section. If there exists v2 : M −→ Coker f2 such that g = vv2,
then the same universal property yields that f1 is a retraction. ��
Corollary II.2.9.

(a) The cokernel of an irreducible monomorphism is indecomposable.
(b) The kernel of an irreducible epimorphism is indecomposable.

Proof . It suffices to prove (a) because the proof of (b) is dual.
Let f : L −→ M be an irreducible monomorphism, N = Coker f and

g : M −→ N the surjection. Assume N = N1 ⊕N2 with N1 	= 0 and N2 	= 0. Then,
the inclusions q1 : N1 −→ N and q2 : N2 −→ N are both proper monomorphisms.
Apply Lemma II.2.8. If there exists u1 : M −→ N1 such that g = q1u1, then q1
would be surjective, a contradiction. Hence, there exists v1 : N1 −→ M such that
gv1 = q1. Similarly, there exists v2 : N2 −→ M such that gv2 = q2. But then
g(v1, v2) = (q1, q2) = 1N and g is a retraction, which implies that f is a section, a
contradiction. ��

II.2.2 Almost split and minimal morphisms

As stated in the introduction to Subsection II.2.1, the consideration of irreducible
morphisms came from the need to identify building blocks for radical morphisms,
so that other radical morphisms could be obtained from the irreducible ones by
successive compositions and linear combinations. Therefore, the next step is to
study the factorisation behaviour of radical morphisms. This leads to the following
definition.

Definition II.2.10.

(a) A radical morphism f : L −→ M with L indecomposable is called left almost
split if, for every radical morphism u : L −→ U , there exists u′ : M −→ U

such that u = u′f .

L
f

u

M

u

U

(b) A radical morphism g : M −→ N with N indecomposable is called right
almost split if, for every radical morphism v : V −→ N there exists v′ : V −→
M such that v = gv′.
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V

v
v

M
g

N

These notions are evidently dual to each other, that is, f : L −→ M is left almost
split if and only if Df : DM −→ DL is right almost split.

Saying in (a) that u : L −→ U with L indecomposable is a radical morphism
amounts to saying that u is not a section, because of Corollary II.1.10. In addition, if
U itself is indecomposable, then this amounts to saying that u is a nonisomorphism.
Dually, in (b), v : V −→ N with N indecomposable is radical if and only if it is not
a retraction. If V is also indecomposable, then this is the case if and only if it is a
nonisomorphism.

The characterisation of almost split morphisms given in the lemma below is their
original definition.

Lemma II.2.11.

(a) A morphism f : L −→ M is left almost split if and only if:

(i) f is not a section; and
(ii) if u : L −→ U is not a section, then there exists u′ : M −→ U such that

u = u′f .

(b) A morphism g : M −→ N is right almost split if and only if:

(i) g is not a retraction; and
(ii) if v : V −→ N is not a retraction, then there exists v′ : V −→ M such that

v = gv′.

Proof . We only prove (a), because the proof of (b) is dual.
We first assume that conditions (i) and (ii) hold and prove that this implies that

L is indecomposable. Indeed, if this is not the case, then L = L1 ⊕ L2 with L1, L2
nonzero. Hence, the projection morphisms p1 : L −→ L1 and p2 : L −→ L2 are
proper epimorphisms, and in particular are not sections. Because of condition (ii),
there exist p′

1 : M −→ L1 and p′
2 : M −→ L2 such that p1 = p′

1f and p2 = p′
2f .

Now,
(

p′
1

p′
2

)
f =

(
p1

p2

)
= 1L

and f is a section, a contradiction that establishes the indecomposability of L. But
then, a morphism with source L is radical if and only if it is not a section. ��

Example II.2.12. Let P be an indecomposable projective module. The inclusion
j : rad P −→ P is right almost split. Indeed, a radical morphism v : V −→ P

is a nonretraction, and hence a nonsurjection (because P is projective). Therefore,
Im v ⊆ rad P and so there exists v′ : V −→ rad P such that v = jv′.
Dually, if I is indecomposable injective, then the projection I −→ I/ soc I is left
almost split.



II.2 Irreducible morphisms and almost split morphisms 63

Example II.2.13. Let A be the path algebra of the quiver

1 2 3

There exist an epimorphism p : P3 = 3
2
1

−→ I2 = 3
2 and a monomor-

phism j : S2 = 2 −→ I2 = 3
2 , both unique up to scalar multiples, because

dimk Hom (P3, I2) = dimk Hom (S2, I2) = 1. We claim that the morphism

(
p j

) : P3 ⊕ S2 −→ I2

is right almost split. Indeed, it is not a retraction, because I2 is isomorphic to neither
P3 nor S2. Let v : V −→ I2 be a radical morphism. One sees that the only
indecomposable modules that map nontrivially to I2 are S2, P2 and P3. Therefore,
V ∼= V1 ⊕ V2, where V1 is one of these three indecomposable modules. If V1 = S2,

then the restriction v|V1 is equal to (a scalar multiple of) j. If V1 = P3, then v|V1

is equal to (a scalar multiple of) p. Finally, if V1 = P2, then v|V1 obviously factors
through p or j. In any case, v factors through

(
p j

)
.

Similarly, one proves that the obvious morphism P2 −→ S2 ⊕P3 is left almost split.

Example II.2.14. Knowing one almost split morphism, it is easy to construct a lot.
Indeed, let f : L −→ M be left almost split and f ′ : L −→ M ′ be radical. We
claim that the morphism

(
f

f ′
)

: L −→ M ⊕ M ′

is also left almost split. Indeed, neither f nor f ′ is a section, hence the indecompos-

able module L is isomorphic to no direct summand of M ⊕ M ′. Therefore,

(
f

f ′
)

is not a section either. Let u : L −→ U be radical and u′ : M −→ U be such that
u = u′f . Then we have the factorisation

u = (
u′ 0

) ( f

f ′
)

.

This establishes our claim. Dually, if g : M −→ N is right almost split and

g′ : M ′ −→ N is radical, then

(
g

g′
)

: M ⊕ M ′ −→ N is also right almost split.

The previous example tends to suggest that the “good” almost split morphisms
should satisfy a minimality condition, namely the target of a left almost split
morphism, or the source of a right almost split morphism, should be as small as
possible. This brings us to the definition of minimal morphisms.
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Definition II.2.15.

(a) A morphism f : L −→ M is left minimal if every h ∈ End M such that
hf = f is an automorphism.

(b) A morphism g : M −→ N is right minimal if every h ∈ End M such that
gh = g is an automorphism.

Again, these notions are dual to each other: f : L → M is left minimal if and
only if Df : DM → DL is right minimal.

Example II.2.16. Clearly, every epimorphism is left minimal and every monomor-
phism is right minimal. In addition, if P is an indecomposable projective module,
then the inclusion morphism rad P → P is right minimal. Dually, if I is
indecomposable injective, then the projection morphism I → I/ soc I is left
minimal.

Example II.2.17. An epimorphism g : M −→ N is called superfluous if, for every
morphism h : L −→ M such that gh : L −→ N is an epimorphism, we have that
h itself is an epimorphism. Typical superfluous epimorphisms are the projective
covers, see Subsection I.1.3. Now, we claim that every superfluous epimorphism
is right minimal. Indeed, let g : M −→ N be a superfluous epimorphism and
h : M −→ M be such that gh = g. In particular, gh is an epimorphism. Hence,
so is h. But M has finite length; hence, applying Lemma I.1.20, we get that h is an
automorphism.
The dual notion is that of an essential monomorphism. A monomorphism
f : L −→ M is called essential if, for every morphism h : M −→ N

such that hf : L −→ N is a monomorphism, we have that h itself is a
monomorphism. Typical essential monomorphisms are injective envelopes. Just as
above, ones proves that every essential monomorphism is left minimal.

Lemma II.2.18. Every irreducible morphism is both left and right minimal.

Proof . Let f : L → M be irreducible and h ∈ End M be such that hf = f.

Because f is not a section, then h must be a retraction, and in particular an
epimorphism. But then h is an automorphism, because M has finite length. This
proves left minimality. The proof of right minimality is similar. ��

As a consequence, it follows from Example II.2.4 that, if P is indecomposable
projective, then the inclusion rad P → P is left and right minimal, and, if I

is indecomposable injective, then the projection I → I/ soc I is left and right
minimal.

Now, we make explicit the meaning of minimality for almost split morphisms. A
left almost split morphism f : L → M will turn out to be left minimal if and only
if its target M has least composition length l(M) among the targets of left almost
split morphisms of source L. This means that, if f ′ : L → M ′ is also left almost
split, then l (M) ≤ l

(
M ′). Clearly, the dual statement holds true for right almost

split morphisms.
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Proposition II.2.19.

(a) Let f : L → M be a left almost split morphism. Then, f is left minimal if
and only if its target M has least length among the targets of left almost split
morphisms having source L. In addition, this condition uniquely determines f

up to isomorphism.
(b) Let g : M → N be a right almost split morphism. Then, g is right minimal if

and only if its source M has least length among the sources of right almost split
morphisms having target N . In addition, this condition uniquely determines g

up to isomorphism.

Proof . We only prove (a), because the proof of (b) is dual.
Sufficiency. Let f : L → M be left almost split, with l (M) minimal among the

lengths of the targets of left almost split morphisms of source L. Let h ∈ End M

be such that hf = f. Let h = jp be the canonical factorisation of h through its
image M ′ = Im h. We claim that pf : L → M ′ is left almost split. Clearly, pf

is not a section, because f is not. Because L is indecomposable, this implies that
pf is a radical morphism. Let u : L → U be a radical morphism. Then there exists
u′ : M → U such that u = u′f . But then, u = u′f = u′hf = u′jpf factors through
M ′. This establishes our claim that pf is left almost split. Then, by hypothesis,
l (M) ≤ l

(
M ′). On the other hand, M ′ ⊆ M implies that l

(
M ′) ≤ l (M). Hence,

l (M) = l
(
M ′); therefore, M = M ′, and so h is surjective. Now M has finite length;

hence, h is an automorphism. This shows that f is left minimal.
Necessity. Assume now that the left almost split morphism f : L −→ M is left

minimal, and let f ′ : L −→ M ′ be also left almost split. There exist h : M −→ M ′
such that f ′ = hf and h′ : M ′ −→ M such that f = h′f ′.

L
f

M

h

L
f

M

h

L
f

M

But then f = h′hf and left minimality of f imply that h′h is an automorphism.
Therefore, h is injective and we have l (M) ≤ l

(
M ′) as required.

Uniqueness. This is proved using the same argument. Indeed, assume that, the
left almost split morphism f ′ : L −→ M ′ is also left minimal. Then, as above,
f ′ = hh′f ′ gives that hh′ is an automorphism. Similarly, h′h is an automorphism.
Hence, h and h′ are isomorphisms (in particular, M ∼= M ′). ��
Definition II.2.20.

(a) A morphism is called left minimal almost split if it is at the same time left
minimal and left almost split.
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(b) A morphism is called right minimal almost split if it is at the same time right
minimal and right almost split.

It is an easy consequence of Proposition II.2.19 that, given an indecomposable
module L, there exists a left minimal almost split morphism with source L, provided
that there exists a left almost split morphism of source L. Dually, the existence
of right almost split morphisms with given indecomposable target N implies the
existence of right minimal almost split morphisms of target N .

Example II.2.21. As we have seen, for every indecomposable projective module P ,
the inclusion morphism rad P → P is right minimal almost split. Dually, if I is an
indecomposable injective module, then the projection I −→ I/ soc I is left minimal
almost split.

As a corollary to Proposition II.2.19, we prove that typical almost split mor-
phisms are exactly as in Example II.2.14.

Corollary II.2.22.

(a) Let f ′ : L −→ M ′ be left almost split. Then, there exists a decomposition

M ′ = M ⊕ X such that f ′ =
(

f
0

)
with f : L −→ M left minimal almost split.

(b) Let g′ : M ′ −→ N be right almost split. Then, there exists a decomposition
M ′ = M ⊕ Y such that g′ = (g 0 ) with g : M −→ N right minimal almost
split.

Proof . We only prove (a), because the proof of (b) is dual.
Let f ′ : L −→ M ′ be left almost split. Because of Proposition II.2.19, there

exists a left minimal almost split morphism f : L −→ M , having source L. As
before, we find morphisms h : M −→ M ′ such that f ′ = hf and h′ : M ′ −→ M

such that f = h′f ′. But then f = h′hf and left minimality of f implies that h′h
is an automorphism. Therefore, h′ is a retraction and h is a section. Identifying h′h
with the identity, we get M ′ = M ⊕ X with M = Im h and X = Ker h′. Then,

f ′ : L −→ M ′ = M ⊕ X may indeed be written in the form f ′ =
(

f
0

)
. ��

Our present objective is to compare almost split morphisms with irreducible
ones. The first step in this direction is the following lemma, which the reader should
compare with Lemma II.2.18.

Lemma II.2.23. Every (left or right) minimal almost split morphism is irre-
ducible.

Proof . We only prove the statement for left minimal almost split morphisms, the
other case being dual. Let f : L −→ M be left minimal almost split.

Because f is a radical morphism with an indecomposable source, then it is not
a section. It is not a retraction either, because otherwise the indecomposability of L

would imply that it is an isomorphism. Assume thus that f = f1f2 with f2 : L −→
X and f1 : X −→ M . Suppose that f2 is not a section. Because f is left almost
split, there exists f ′

2 : M −→ X such that f2 = f ′
2f .
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L
f

f2

M

f2
X

f1

But then f = f1f2 = f1f
′
2f. Left minimality of f yields that f1f

′
2 is an

automorphism. Hence, f1 is a retraction. ��
We are now able to prove our structure theorem for irreducible morphisms. It

says that irreducible morphisms with a given indecomposable source (or target) are
exactly those morphisms that can be completed to a minimal almost split morphism
having the same source (or target respectively).

Theorem II.2.24.

(a) Let f : L −→ M be left minimal almost split. Then, f ′ : L −→ M ′ is
irreducible if and only if M ′ 	= 0 and there exist a decomposition M = M ′⊕M ′′

and a morphism f ′′ : L −→ M ′′ such that
(

f ′
f ′′
)

: L −→ M is left minimal

almost split.
(b) Let g : M −→ N be right minimal almost split. Then, g′ : M ′ −→ N is

irreducible if and only if M ′ 	= 0 and there exist a decomposition M = M ′⊕M ′′
and a morphism g′′ : M ′′ −→ N such that

(
g′ g′′ ) : M −→ N is right minimal

almost split.

Proof . We only prove (a), because the proof of (b) is dual.
Necessity. Assume f ′ is irreducible. Then, clearly, M ′ 	= 0. Because f is left

almost split, there exists h : M −→ M ′ such that f ′ = hf . But now f is not a
section. Hence, h is a retraction. This implies the statement.

Sufficiency. Assume f =
(

f ′
f ′′
)

: L −→ M = M ′ ⊕ M ′′ is left minimal almost

split. We claim that f ′ is irreducible. To prove this statement, we first assume that
f ′ is a section. Let h : M ′ −→ L be such that hf ′ = 1L. Then,

(h 0 )
(

f ′
f ′′
)

= 1L

implies that f itself is a section, a contradiction. Thus, f ′ is not a section. Assume
now that f ′ is a retraction. Because L is indecomposable, then f ′ would be
an isomorphism and therefore a section, and we have seen that this leads to a
contradiction. Thus, f ′ is not a retraction either.

Suppose now that f ′ = f1f2 with f2 : L −→ X and f1 : X −→ M ′. If
f2 is not a section then, because f is left almost split, there exists a morphism
(h′ h′′ ) : M ′ ⊕ M ′′ −→ X such that

(h′ h′′ )
(

f ′
f ′′
)

= f2.

We deduce the following commutative diagram:
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L

f
f f2

f

f
f

M = M ⊕M
h h
0 1M

X ⊕M
f1 0
0 1M

M ⊕M = M

The minimality of f implies that

(
f1 0
0 1M ′′

)(
h′ h′′
0 1M ′′

)
=
(

f1h
′ f1h

′′
0 1M ′′

)

is an automorphism. Hence, f1h
′ is an isomorphism and so f1 is a retraction. ��

We finish this subsection with the following consequence of the above theorem.

Corollary II.2.25.

(a) Let f : L −→ M be left minimal almost split and p : M −→ M ′ a retraction.
Then, pf : L −→ M ′ is irreducible.

(b) Let g : M −→ N be right minimal almost split and j : M ′ −→ M a section.
Then, gj : M ′ −→ N is irreducible. ��

II.2.3 Almost split sequences

We are now ready to define almost split sequences. In the previous subsection,
we considered those radical morphisms through which other radical morphisms
factor. These are the almost split morphisms. Because of Corollary II.2.22, we may
even assume that we deal with minimal almost split morphisms. And then, these
morphisms are irreducible because of Lemma II.2.23; hence, if both their source and
target are indecomposable, they belong to the radical but not to the radical square
of the module category. The question therefore naturally arises whether there exist
sufficiently many minimal almost split morphisms inside the module category. Our
objective in this subsection and the next is to prove that this is indeed the case. We
start by showing that composable irreducible morphisms can be arranged in a neat
way, giving rise to minimal almost split morphisms.

Definition II.2.26. A short exact sequence 0 −→ L
f−→ M

g−→ N −→ 0
is an almost split sequence (or an Auslander–Reiten sequence) if both of the
morphisms f and g are irreducible.
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Remark II.2.27.

(a) Clearly, this is a self-dual concept, that is, a short exact sequence 0 −→ L
f−→

M
g−→ N −→ 0 is almost split in mod A if and only if 0 −→ DN

Dg−→
DM

Df−→ DL −→ 0 is an almost split sequence in mod Aop.

(b) Because irreducible morphisms never split, an almost split sequence never
splits.

(c) Because of Corollary II.2.9, f irreducible implies N indecomposable, and g

irreducible implies L indecomposable: an almost split sequence always has
indecomposable end terms.

(d) Because of Lemma II.2.18, both morphisms f and g are left and right minimal.

We give a first example of an almost split sequence.

Example II.2.28. Let A = k [t] /
〈
t2
〉
. Then, A is local and so has AA a unique

indecomposable projective module, up to isomorphism. Now dimkA = 2 and rad A

is equal to the simple module S = 〈t〉 /
〈
t2
〉
. As seen in Example II.2.4, the inclusion

j : S ↪→ A is irreducible. Its cokernel is the morphism p : A −→ S induced by
the multiplication by t . But AA is also the unique indecomposable injective module,
up to isomorphism, and p : A −→ S is the projection of A onto its quotient by its
socle. In particular, p is irreducible and we have an almost split sequence:

0 −→ S
j−→ A

p−→ S −→ 0.

Our objective in this subsection is to prove that almost split sequences may also
be defined via minimal almost split morphisms. We start with the following lemma.

Lemma II.2.29.

(a) Let

0 L
f

M

u

g
N

v

0

0 L
f

M
g

N 0

be a commutative diagram with exact nonsplit rows and N indecomposable.
Then, u and v are automorphisms.

(b) Let

0 L

u

f
M

v

g
N 0

0 L
f

M
g

N 0

be a commutative diagram with exact nonsplit rows and L indecomposable.
Then, u and v are automorphisms.



70 II The radical and almost split sequences

Proof . We only prove (a), because the proof of (b) is dual.
If v is not an automorphism, then the indecomposability of N implies that v is

nilpotent. Let m > 0 be such that vm = 0. Then, gum = vmg = 0 implies that um

factors through L: there exists h : M −→ L such that f h = um. But then f hf =
umf = f implies hf = 1L, because f is a monomorphism. Hence, f is a section,
a contradiction. This shows that v is an automorphism. Therefore, so is u. ��

As a consequence of this lemma, the indecomposability of the end terms in a
nonsplit short exact sequence implies minimality of the morphisms.

Corollary II.2.30. Let 0 −→ L
f−→ M

g−→ N −→ 0 be a nonsplit short exact
sequence.

(a) If N is indecomposable, then f is left minimal.
(b) If L is indecomposable, then g is right minimal.

Proof . We only prove (a), because the proof of (b) is dual.
Assume hf = f for some h ∈ End M. We have a commutative diagram with

exact nonsplit rows:

0 L
f

M

h

g
N

h

0

0 L
f

M
g

N 0

where h′ is deduced by passing to cokernels. Applying Lemma II.2.29 completes
the proof. ��

We are ready to prove our structure theorem for almost split sequences. It shows
that an almost split sequence is characterised by any of its two nonzero morphisms.

Theorem II.2.31. Let 0 −→ L
f−→ M

g−→ N −→ 0 be a short exact sequence.
The following conditions are equivalent.

(a) The sequence is almost split.
(b) The morphism f is left minimal almost split.
(c) The morphism g is right minimal almost split.

Proof . We first show that (a) implies (b). Because of Lemma II.2.18, f is left
minimal. We prove it is left almost split. Because f is irreducible and L is
indecomposable, it is a radical morphism. Let u : L −→ U be a radical morphism.
We may assume that U itself is indecomposable (then u is a nonisomorphism).
Because g is irreducible, it follows from Lemma II.2.8 that there exist u1 : M −→
U such that u = u1f (in which case we have finished) or there exists u2 : U −→ M

such that f = u2u. In the latter case, the irreducibility of f and the fact that u is not
a section imply that u2 is a retraction. Because U is indecomposable, this implies
that u2 is an isomorphism and we get u = u−1

2 f . Thus, we have finished in this case
as well.
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We now prove that (b) implies (c). First, g is not a retraction, because f is
not a section. Assume that v : V −→ N is a radical morphism. Corollary II.2.9
implies that N = Coker f is indecomposable. Then, v is not a retraction. We have
a commutative diagram with exact rows.

0 L h E

u

k V

v

0

0 L
f

M
g

N 0

where E is the fibered product of the morphisms g and v. We claim that the upper
sequence splits, that is, the morphism k is a retraction. If this is not the case, then h

is not a section and, because f is left almost split, there exists u′ : M −→ E such
that u′f = k. We deduce a larger commutative diagram with exact rows.

0 L
f

M

u

g
N

v

0

0 L h E

u

k V

v

0

0 L
f

M
g

N 0

where v′ is deduced by passing to cokernels. Because f is not a section, the lower
(= upper) sequence does not split. Applying Lemma II.2.29, we get that vv′ is an
automorphism. But then v is a retraction, a contradiction. This establishes our claim.
Therefore, there exists k′ : V −→ E such that kk′ = 1V . Then guk′ = vkk′ =
v and g is indeed right almost split. Because right minimality of g follows from
Corollary II.2.30(b), this finishes the proof of (c).

Dually, one proves that (c) implies (b). Therefore, (b) and (c) are equivalent.
But now the conjunction of (b) and (c) implies (a) because minimal almost split
morphisms are always irreducible, owing to Lemma II.2.23. ��

As a first consequence, we establish that, if an almost split sequence exists, then
it is uniquely determined up to isomorphism by one of its end terms.

Corollary II.2.32. An almost split sequence 0 −→ L
f−→ M

g−→ N −→ 0 is
uniquely determined by L (or by N ) up to isomorphism.

Proof . Let 0 −→ L
f−→ M

g−→ N −→ 0 and 0 −→ L′ f ′
−→ M ′ g′

−→ N ′ −→ 0
be almost split sequences. Assume L = L′. Because f and f ′ are left minimal
almost split, it follows from Proposition II.2.19 that there exists an isomorphism
h : M −→ M ′ such that hf = f ′. Passing to cokernels, we get an isomorphism
h′ : N −→ N ′ such that h′g = g′h. Thus, the sequences are isomorphic. The proof
is dual if we assume that N = N ′. ��
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We also obtain another characterisation of almost split sequences that will be
useful in the next section.

Corollary II.2.33. Let 0 −→ L
f−→ M

g−→ N −→ 0 be a short exact sequence.
The following conditions are equivalent:

(a) The sequence is almost split.
(b) The module N is indecomposable and the morphism f is left almost split.
(c) The module L is indecomposable and the morphism g is right almost split.

Proof . Because (a) clearly implies (b) and (c), it suffices, because of duality, to
prove that (b) implies (a). Because of Theorem II.2.31, we just need to show that f

is left minimal, and this follows from Corollary II.2.30(a). ��

Exercises for Section II.2

Exercise II.2.1.

(a) Prove that the following statements are equivalent for an epimorphism
f : P −→ M with P projective:

(i) f is a projective cover.
(ii) f is superfluous.

(iii) f is right minimal.

(b) Prove that the following statements are equivalent for a monomorphism f :
M −→ I with I injective:

(i) f is an injective envelope.
(ii) f is essential.

(iii) f is left minimal.

Exercise II.2.2.

(a) Let f : L −→ M , g : M −→ N be epimorphisms. Prove that:

(i) If both g and f are superfluous, then so is gf .
(ii) If gf is superfluous, then so is f .

(b) Let f : L −→ M , g : M −→ N be monomorphisms. Prove that :

(i) If both g and f are essential, then so is gf .
(ii) If gf is essential, then so is g.

Exercise II.2.3. Prove that a monomorphism f : L −→ M is essential if and only
if Im f has a nonzero intersection with every nonzero submodule of M . Deduce
that, if f : L −→ M is an essential monomorphism with L injective, then f is an
isomorphism.
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Exercise II.2.4. Consider a morphism in mod A of the form

(
f g
0 h

)
: M ⊕ N −→ M ′ ⊕ N ′

with f : M −→ M ′, g : N −→ M ′ and h : N −→ N ′. Prove that:

(a) If
(

f g
0 h

)
is an isomorphism, then f is a section and h is a retraction.

(b) If
(

f g
0 h

)
is an isomorphism, and either f or h is an isomorphism, then so is the

other.
(c) If both f and h are isomorphisms, then so is

(
f g
0 h

)
.

Exercise II.2.5.

(a) Let f : L −→ M be an irreducible monomorphism and M ′ a proper submodule
of M containing Im f . Prove that Im f is a direct summand of M ′.

(b) Let g : M −→ N be an irreducible epimorphism and M ′ a nonzero submodule
of M contained in Kerg. Prove that N is a direct summand of M/M ′.

Exercise II.2.6. Let 0 −→ L
f−→ M

g−→ N −→ 0 be a short exact sequence
with indecomposable middle term M. Prove that:

(a) If f is irreducible, then each irreducible morphism h : X −→ N is surjective.
(b) If g is irreducible, then each irreducible morphism k : L −→ Y is injective.

Exercise II.2.7. Let f : L −→ M be an irreducible morphism and N an A-
module. Prove that:

(a) If HomA (M,N) = 0, then Ext1A (N, f ) is a monomorphism.
(b) If HomA (N,L) = 0, then Ext1A (f,N) is a monomorphism.

Exercise II.2.8. Let 0 −→ L
f−→ M

g−→ N −→ 0 be a nonsplit short exact
sequence. Prove that:

(a) f is irreducible if and only if every subfunctor F of HomA (−, N) either
contains or is contained in the image of HomA (−, g) .

(b) g is irreducible if and only if every subfunctor F of HomA (L,−) either
contains or is contained in the image of HomA (f,−) .

Exercise II.2.9.

(a) Prove that a morphism f : L −→ M is left almost split if and only if it is
radical, L is indecomposable, and if U 	∼= L is indecomposable, then every
morphism u : L −→ U factors through f .

(b) Prove that a morphism g : M −→ N is right almost split if and only if it is
radical, N is indecomposable, and if V 	∼= N is indecomposable, then every
morphism v : V −→ N factors through g.
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Exercise II.2.10. Let 0 −→ L
f−→ M

g−→ N −→ 0 be an almost split
sequence.

(a) Let N ′ be a proper submodule of N. Show that the almost split sequence induces
a split exact sequence:

0 −→ L −→ g−1 (N ′) −→ N ′ −→ 0

(b) Let L′ be a proper submodule of L. Show that the almost split sequence induces
a split exact sequence:

0 −→ L/L′ −→ M/f
(
L′) −→ N −→ 0.

Exercise II.2.11. Let ξ : 0 −→ L
f−→ M

g−→ N −→ 0 be a nonsplit short
exact sequence with L,N indecomposable. Show that the following conditions are
equivalent:

(a) The sequence ξ is almost split.
(b) For every radical morphism u : L −→ U , we have Ext1A (N, u) (ξ) = 0.

(c) For every radical morphism v : V −→ N , we have Ext1A (v, L) (ξ) = 0.

Exercise II.2.12. Let 0 −→ L
f−→ M

g−→ N −→ 0 be an almost split sequence.
Prove that:

(a) For every commutative diagram with nonsplit exact rows

0 L

u

f
M

v

g
N 0 ,

0 L
f

M
g

N 0

the morphisms u and v are sections.
(b) For every commutative diagram with nonsplit exact rows

0 L
f

M

u

g
N

v

0 ,

0 L
f

M
g

N 0

the morphisms u and v are retractions.

Exercise II.2.13. Let 0 −→ L
f−→ ⊕t

i=1 Mi
g−→ N −→ 0 be an almost split

sequence with the Mi indecomposable. Prove that, for every i, we have l(Mi) 	=
l(N).
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Exercise II.2.14. Let 0 −→ L
f−→ M

g−→ N −→ 0 be an almost split sequence.
Prove that:

(a) If M is projective, then g : M −→ N is a projective cover.
(b) If M is injective, then f : L −→ M is an injective envelope.

Exercise II.2.15. Let A be given by the quiver:

1 2 3

Prove that the sequences:

(a) 0 −→ S1 −→ P2 −→ S2 −→ 0.

(b) 0 −→ P2 −→ S2 ⊕ P3 −→ I2 −→ 0.

(c) 0 −→ S2 −→ I2 −→ S3 −→ 0.

(where all morphisms are either inclusions or projections) are exact and almost split.

Exercise II.2.16. Let A be given by the quiver

1 2
α

β

bound by αβ = 0. Prove that the sequences:

(a) 0 −→ S2 −→ P1 −→ S1 −→ 0
(b) 0 −→ P1 −→ S1 ⊕ P2 −→ I1 −→ 0
(c) 0 −→ S1 −→ I1 −→ S2 −→ 0

(where all morphisms are either inclusions or projections) are exact and almost split.

Exercise II.2.17. Let A be given by the quiver

1 2 3 4
γ β α

bound by αβγ = 0. Prove that the sequences

(a) 0 −→ S1 −→ P2 −→ S2 −→ 0
(b) 0 −→ P2 −→ S2 ⊕ P3 −→ P3/S1 −→ 0
(c) 0 −→ S2 −→ P3/S1 −→ S3 −→ 0
(d) 0 −→ P3/S1 −→ P4 ⊕ S3 −→ I3 −→ 0
(e) 0 −→ S3 −→ I3 −→ S4 −→ 0

(where all morphisms are either inclusions or projections) are exact and almost split.

Exercise II.2.18. Let A be given by the quiver:
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α

β
1 2

bound by αβα = 0 and βαβ = 0. Prove that the sequences:

(a) 0 −→ S1 −→ P2/S2 −→ S2 −→ 0.

(b) 0 −→ S2 −→ P1/S1 −→ S1 −→ 0.

(c) 0 −→ P2/S2 −→ P1 ⊕ S2 −→ P1/S1 −→ 0.

(d) 0 −→ P1/S1 −→ P2 ⊕ S1 −→ P2/S2 −→ 0.

(where all morphisms are either inclusions or projections) are exact and almost split.

II.3 The existence of almost split sequences

II.3.1 The functor category Fun A

In the previous section, we defined and studied properties of almost split sequences.
Our objective now is to prove the existence theorem of these sequences, due
to Auslander and Reiten. The theorem asserts that, if A is a finite dimensional
k-algebra, and N an indecomposable nonprojective A-module, or dually L an
indecomposable noninjective A-module, then there exists an almost split sequence:

0 −→ L −→ M −→ N −→ 0.

A consequence of this theorem is the existence of enough minimal almost split
morphisms in the module category: for every indecomposable module L, there
exists a left minimal almost split morphism L −→ M , and, dually, for every
indecomposable module N , there exists a right minimal almost split morphism
M −→ N.

There are many proofs of this existence theorem. The proof we present in this
section uses a functorial approach to the theory. There are several reasons for
adopting this point of view. Indeed, it is well-known to specialists that the category
of k-functors from a module category into the category mod k of finite dimensional
k-vector spaces is, in several aspects, better behaved than the module category itself.
In addition, historically, it was the functorial approach that supplied both the original
inspiration and the original proofs of many results of the Auslander–Reiten theory.
Finally, the proof we present is relatively easy and elementary.

Let Fun A be the category whose objects are the contravariant k-functors from
mod A to mod k and whose morphisms are the functorial morphisms. Strictly
speaking, given objects F,G in Fun A, the functorial morphisms from F to G

do not usually constitute a set. However, the class of objects of every skeleton of
mod A is a set. Because we do not distinguish between isomorphic objects, we may
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identify mod A with one of its skeletons and then the class Hom (F,G) of functorial
morphisms from F to G becomes a set; thus, the category Fun A is well-defined. It
follows from well-known results of category theory that the category Fun A is k-
linear and actually abelian.

The most efficient tool for translating statements about modules into statements
about functors, and vice versa, is Yoneda’s lemma, which we now state and prove.

Theorem II.3.1 (Yoneda’s lemma). Let C be a k-linear category, F : C −→
mod k a contravariant k-functor and X an object in C . There is an isomorphism of
vector spaces:

ε : Hom(HomC (−, X) , F ) −→ F(X) given by ϕ �→ ϕX (1X) .

Proof . Clearly, ε maps Hom(HomC (−, X) , F ) into F(X). To prove that it is
bijective, we construct its inverse σ .

Let x ∈ F(X) and Y an arbitrary object in C . We define the functorial morphism
σ (x)Y : HomC (Y,X) −→ F(Y ) as follows: let f ∈ HomC (Y,X), then set
σ (x)Y (f ) = F(f )(x). Indeed, if f : Y −→ X, then F(f ) : F(X) −→ F(Y )

and thus F(f )(x) ∈ F(Y ).
We first prove that σ (x) : HomC (−, X) −→ F is a functorial morphism. Let

g : Y −→ Z be an arbitrary morphism. We must prove that the square

Hom𝒞(Z, X)

σ (x)Z

Hom𝒞(g,X)
Hom𝒞(Y,X)

σ (x)Y

F(Z)
F(g)

F(Y )

commutes. Indeed, let f ∈ HomC (Z,X). Then we have

F (g) σ (x)Z (f ) = F(g)F (f )(x) = F(fg)(x) = σ (x)Y (fg)

= σ (x)Y HomC (g,X) (f ),

which establishes our claim.
We now prove that ε and σ are mutually inverse. Let x ∈ F(X), then

εσ (x) = σ (x)X (1X) = F(1X)(x) = 1F(X)(x) = x.

Let ϕ be a functorial morphism from HomC (−, X) to F , and Y an object in C . We
claim that ϕY = σε (ϕ)Y . Let f ∈ HomC (Y,X), we have a commutative square

Hom𝒞(X ,X)

φX

Hom𝒞( f ,X)
Hom𝒞(Y,X)

φY

F(X)
F( f )

F(Y )
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from which we deduce:

σε (ϕ)Y (f ) = F(f ) (ε (ϕ)) = F(f )ϕX(1X) = ϕY HomC (f,X) (1X) = ϕY (f ).

This establishes our claim and hence the bijectivity of ε. Finally, ε is easily seen to
be a morphism of k-vector spaces. ��

Clearly, there also exists a version of Yoneda’s lemma using covariant functors
instead of contravariant ones. We leave to the reader its easy formulation and proof.

In the sequel, we need not only the existence of Yoneda’s bijections ε and σ ,
but also the explicit formulae expressing these bijections. We now consider the case
where C = mod A.

Corollary II.3.2. Let M,N be modules and F a subfunctor of HomA(−, N). Then
there exists an isomorphism of k-vector spaces F(M) ∼= Hom(HomC (−,M), F )

given by f �−→ HomA(−, f ). If, in particular, F = HomA(−, N),
then this map yields an isomorphism of vector spaces HomA(M,N) ∼=
Hom(HomA(−,M), HomA(−, N)).

Proof . Let f ∈ F(M). The Yoneda isomorphism σ applied to f gives a functorial
morphism σ (f ) : HomA (−,M) −→ F defined as follows. For every object X and
morphism g : X −→ M , we have, as seen in the proof of Theorem II.3.1,

σ (f )X (g) = HomA(g,N)(f ) = fg = HomA(X, f )(g).

Thus, σ (f )X = HomA(X, f ) for every object X, that is, σ (f ) = HomA(−, f ).
This completes the proof. ��

The best known consequence of Yoneda’s lemma is the projectivity of the
Hom functor. An object H in Fun A is called projective if, for every functorial
epimorphism ϕ : F −→ G and every functorial morphism η : H −→ G, there
exists a functorial morphism ξ : H −→ F such that ϕξ = η, that is, such that the
following diagram is commutative:

H
ξ

η

F
φ

G

Corollary II.3.3. Let M be an A-module. Then, HomA (−,M) is a projective
object in Fun A.

Proof . Let ϕ : F −→ G be a functorial epimorphism and η : HomA (−,M) −→ G

a functorial morphism. Then, ϕ induces a morphism

ϕ∗ : Hom(HomA(−,M), F ) −→ Hom(HomA(−,M),G)
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by ψ �−→ ϕψ . Now, let εF : Hom(HomA (−,M) , F ) −→ F(M) and
εG : Hom(HomA (−,M) ,G) −→ G(M) be the isomorphisms of Yoneda’s lemma
corresponding to the functors F and G respectively. Then we have a square:

Hom(HomA(−,M),F)

εF

φ∗
Hom(HomA(−,M),G)

εG

F(M)
φM G(M)

Let ψ : HomA (−,M) −→ F be a functorial morphism. Then we have

ϕMεF (ψ) = ϕMψM(1M) = (ϕψ)M (1M) = εG (ϕψ) = εGϕ∗ (ψ)

that is, the above square commutes. Now, ϕM is surjective, and hence so is ϕ∗.
Therefore, there exists ξ : HomA (−,M) −→ F such that η = ϕ∗ (ξ) = ϕξ . ��

Yoneda’s lemma and its corollaries show that one can reduce several questions
about arbitrary modules to questions about projective functors. Because working
with projective objects is always easier than working with arbitrary ones, this
partially explains why passing from mod A to FunA turned out to be a fruitful idea.

II.3.2 Simple objects in Fun A

Because the projective objects of the form HomA (−,M), with M a finitely
generated A-module, are particularly interesting, we consider the quotients of such
objects. A functor F is called finitely generated if there exist a (finitely generated)
module MA and a functorial epimorphism:

HomA (−,M) −→ F −→ 0.

We prove that the only finitely generated projective objects in Fun A are precisely
the functors of the form HomA (−,M).

Lemma II.3.4. An object F in Fun A is finitely generated projective if and only if
there exists an A-module M such that F ∼= HomA (−,M). Also, F is indecompos-
able if and only if M is indecomposable.

Proof . Because F is finitely generated, there exist a module MA and a functorial
epimorphism ϕ : HomA (−,M) −→ F. Because F is projective, ϕ is a retraction
and there exists ψ : F −→ HomA (−,M) such that ϕψ = 1F . Then, ψϕ :
HomA (−,M) −→ HomA (−,M) is an idempotent functorial endomorphism
whose image is F . Because of Corollary II.3.3, there exists f ∈ EndA M such
that ψϕ = HomA (−, f ), and f is idempotent because so is HomA (−, f ).
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Consequently, M ′ = Im f is a direct summand of M and is such that HomA

(−,M ′)
is the image of HomA (−, f ) = ψϕ. This shows that F ∼= HomA

(−,M ′). The last
assertion is easy to prove. ��

We next prove that every indecomposable finitely generated projective object in
Fun A has a unique maximal subobject, which is the radical, exactly as is the case
for indecomposable finitely generated projective A-modules.

Lemma II.3.5. Let M be an indecomposable module. Then, radA (−,M) is the
unique maximal subfunctor of HomA (−,M).

Proof . Let F be any proper subfunctor of HomA (−,M). We claim that F is
actually a subfunctor of radA (−,M). We must show that, for every indecomposable
A-module L, we have F(L) ⊆ radA (L,M). If L is not isomorphic to M , then
radA (L,M) = HomA (L,M) and the statement holds trivially. If L = M , let
f : M −→ M belong to F(M). Because of Corollary II.3.2, under the Yoneda
bijection, the functorial morphism

HomA (−, f ) : HomA (−,M) −→ F

corresponds to it. Composing it with the proper inclusion F ↪→ HomA (−,M), we
get that

HomA (−, f ) : HomA (−,M) −→ HomA(−,M)

is not an isomorphism. But then neither is f . Hence, f ∈ radA (M,M), as required.
��

An object in Fun A is called simple if it is nonzero and has only two subobjects,
namely itself and the zero functor. It follows immediately from Lemma II.3.5 above
that, for every indecomposable A-module M, the functor

SM = HomA (−,M) / radA (−,M)

is simple.
Because EndA M is local, SM(M) is a skew field. Applying Yoneda’s lemma,

the space of functorial morphisms Hom(HomA(−,M), SM) is also a skew field.
Therefore, there exists a (unique up to multiples by elements of the skew field)
nonzero functorial morphism

πM : HomA(−,M) −→ SM,

which is an epimorphism because SM is simple. We now prove that conversely,
every simple object in Fun A is of the form SM for some indecomposable module
M . Furthermore, we also prove that the morphism πM is actually a projective
cover. We define projective covers in Fun A exactly as we do in mod A: an
epimorphism ϕ : H −→ F with H projective is a projective cover if, whenever
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ϕ′ : H ′ −→ F is another epimorphism with H ′ projective, there exists an
epimorphism η : H ′ −→ H such that ϕ′ = ϕη. In particular, η is a retraction
so that H is a direct summand of H ′.

Lemma II.3.6. Let S be a simple object in Fun A. Up to isomorphism, there exists
a unique indecomposable A-module M such that S (M) 	= 0, and then S ∼= SM .
In addition, the functorial morphism πM : HomA(−,M) −→ SM is a projective
cover.

Proof . Because of Yoneda’s lemma, for every module X, we have S(X) 	= 0 if and
only if there exists a functorial morphism HomA (−, X) −→ S that is necessarily
an epimorphism because S is simple. Because S 	= 0, there exists at least an
indecomposable module M such that S(M) 	= 0. Assume that X is a module such
that S(X) 	= 0. The projectivity of the functors HomA(−,M) and HomA(−, X) and
Corollary II.3.2 yield morphisms u : M −→ X and v : X −→ M such that we have
a commutative diagram with exact rows

HomA(−,M)

HomA(−,u)

πM S 0

HomA(−,X)

HomA(−,v)

πX S 0

HomA(−,M)
πM S 0

The indecomposability of M implies that End M is local. Hence, vu : M −→ M is
nilpotent or invertible. If it were nilpotent, and m > 0 were such that (vu)m = 0,

then we would get the contradiction πM = πM HomA

(−, (vu)m
) = 0. Therefore,

vu is invertible; thus, v : X −→ M is a retraction. This shows that S(X) 	= 0 if and
only if M is a direct summand of X. In particular, the indecomposable module M is
unique up to isomorphism.

Replacing, in the proof above, HomA (−, X) by a projective functor F such that
there exists a nonzero functorial morphism F −→ S, the same argument gives that
πM : HomA(−,M) −→ SM is a projective cover morphism.

Finally, because S is simple and radA (−,M) is the unique maximal subfunctor
of HomA (−,M), we have S ∼= HomA (−,M) / radA (−,M) = SM . ��
Corollary II.3.7. Let M,N be A-modules, with M indecomposable. Then,
SM(N) 	= 0 if and only if M is isomorphic to a direct summand of N .

Proof . This was shown in the course of the proof of Lemma II.3.6 ��

II.3.3 Projective resolutions of simple functors

Our first lemma is an easy exercise of homological algebra.
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Lemma II.3.8. Let C be an abelian category and (P, p1, p2) the fibered product of
f1 : M1 −→ M,f2 : M2 −→ M in C . Let f1 = j1q1, p2 = j2q2 be the canonical
factorisations through K1 = Im f1 and K2 = Im p2 respectively. Then

(a) There exists a unique f : K2 −→ K1 such that j1f = f2j2.
(b) (P, p1, q2) is a fibered product of q1 : M1 −→ K1 and f : K2 −→ K1.
(c) Ker f1 ∼= Ker p2.

Proof .

(a) Let K denote the cokernel of f1, so that we have a short exact sequence

0 −→ K1
j1−→ M

h−→ K −→ 0.

Then, hf2j2q2 = hf2p2 = hf1p1 = 0. Hence, hf2j2 = 0, because q2 is an
epimorphism. Therefore, f2j2 factors through Ker h = K , that is, there exists
f : K2 −→ K1 such that j1f = f2j2.

P M2

K2

M1 M

K1

K

p2

h

j1q1

p1 f2

j2q2

f1

f

The uniqueness of f follows from the fact that j1 is a monomorphism.
(b) First, we have j1f q2 = f2j2q2 = f2p2 = f1p1 = j1q1p1. Hence, f q2 = q1p1

because j1 is a monomorphism.
Let (U, u1, u2) be such that f u2 = q1u1. Then, f2j2u2 = j1f u2 =

j1q1u1 = f1u1. The universal property of P yields a unique u : U −→ P

such that u1 = p1u and j2u2 = p2u = j2q2u. Because j2 is a monomorphism,
the latter equality is equivalent to u2 = q2u. This completes the proof of (b).

(c) We know that Ker f1 ∼= Ker q1 and Ker p2 ∼= Ker q2. The result then follows
from (a), (b) and the commutative diagram with exact rows

0 Kerp2 P

p 1

q 2 K2

f

0

0 Ker f 1 M1
q1 K1 0

��
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We now let N be an indecomposable module and examine the projective
resolution of the simple functor SN in the category Fun A. We start by considering
the case where N is projective.

Lemma II.3.9. Let N be an indecomposable A-module. Then, N is projective if
and only if the simple functor SN admits a projective resolution of the form

0 −→ HomA (−,M) −→ HomA (−, N) −→ SN −→ 0.

Proof . Assume first that N is projective. Because of Lemma II.3.5, we have a short
exact sequence of functors:

0 −→ radA (−, N) −→ HomA (−, N) −→ SN −→ 0.

Because of Corollary II.1.10, for every module X, the vector space radA (X,N)

consists of the nonretractions from X to N . But N is projective; therefore, this space
coincides with the set of nonsurjections from X to N , that is, the morphisms from
X to N whose image lies in the unique maximal submodule rad N of N . Therefore,
radA (X,N) = HomA (X, rad N) and the previous sequence becomes:

0 −→ HomA (−, rad N) −→ HomA (−, N) −→ SN −→ 0.

This completes the proof of this implication.
Conversely, assume that N is not projective and we have a short exact sequence

of functors of the form:

0 −→ HomA (−,M) −→ HomA (−, N) −→ SN −→ 0.

Evaluating this sequence on the module AA yields a short exact sequence:

0 −→ M −→ N −→ SN (A) −→ 0.

Because N is not projective, SN (A) = 0 where we used Corollary II.3.7. Therefore,
M ∼= N ; hence, HomA (−,M) ∼= HomA (−, N) and SN = 0, an absurdity that
completes the proof. ��

The main result of this section, when translated into module language, will imply
the existence theorem for almost split sequences. It asserts that simple objects in
Fun A have projective resolutions of length at most two and exhibits a minimal
projective resolution for such an object.

Theorem II.3.10. Let N be an indecomposable A-module. The simple functor SN

admits a minimal projective resolution of the form:

0 −→ HomA (−, L) −→ HomA (−,M) −→ HomA (−, N) −→ SN −→ 0.

If N is projective, then L = 0. Otherwise, L is indecomposable.
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Proof . The case where N is projective follows from Lemma II.3.9; thus, we may
assume that N is not projective. Let

P1
p1−→ P0

p0−→ N −→ 0

be a minimal projective presentation of N . It induces an exact sequence in Fun A of
the form

D HomA(P1,−)
D HomA(p1,−)−→ D HomA(P0,−)

D HomA(p0,−)−→ D HomA(N,−) −→ 0.

Now, we recall from Lemma I.1.18 that the Nakayama functor ν = D HomA (−, A)

induces, for each projective module P , a functorial isomorphism D HomA (P,−) ∼=
HomA (−, νP ). Therefore, the previous exact sequence may be rewritten as

HomA(−, νP1)
HomA(−,νp1)−→ HomA(−, νP0)

θ−→ D HomA(N,−) −→ 0

where θ denotes the composition of the isomorphism HomA(−, νP0) ∼=
D HomA(P0,−) with the morphism D HomA(p0,−). We claim that there exists
a functorial morphism from HomA (−, N) to D HomA (N,−) having the simple
functor SN as its image. Indeed, define a functorial morphism ηN : SN −→
D HomA (N,−) by sending the residual class g of a morphism g ∈ EndA N

modulo rad EndA N to the linear form mapping f ∈ EndA N to the residual class
gf of the composition gf in k. It is easily seen that ηN is well-defined and nonzero.
In addition, ηN is a monomorphism, because SN is simple. Because the projective
cover morphism πN : HomA (−, N) −→ SN is an epimorphism, the composition
ηNπN : HomA (−, N) −→ D HomA (N,−) is nonzero and admits SN as its image.
This establishes our claim.

The projectivity of HomA (−, N) and Corollary II.3.2 yield a morphism u :
N −→ νP0 such that θ HomA (−, u) = ηNπN , that is, the following diagram is
commutative.

HomA(−, N)

ηN πN
HomA(−.u)

HomA(−, νP0)
θ DHomA(N, −) 0

Let M be the fibered product of u and νp1. Setting L = Ker νp1, we get a
commutative diagram with exact rows

0 L
f

M

v

g
N

u

0 L νP1
ν p1 νP0
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Indeed, the exactness of the lower row is obvious and the exactness of the upper row
follows from Lemma II.3.8. We deduce a commutative diagram with an exact lower
row

HomA( ,L)

HomA(− ,L)0

0

HomA(−,M)

HomA( , νP1)

HomA(− , f)
HomA(−,N)

HomA( , νP0)

HomA(−, g)

HomA(−, ν)

HomA(−, νp1)

HomA(−, u)

SN

DHomA(N, )

ηN

0

0

We claim that the upper row is also exact. It suffices to prove its exactness at
HomA (−, N). Because of Lemma II.3.5, this amounts to showing that, for every
module X, we have Im HomA (X, g) = radA (X,N).

Because of commutativity, we have

ηNπN HomA (−, g) = θ HomA (−, νp1) HomA (−, v) = 0,

using the exactness of the lower row. Because ηN is a monomorphism, this implies
that πN HomA (−, g) = 0 and so Im HomA (−, g) ⊆ Ker πN = radA (−, N).
Therefore, for every module X, we have Im HomA (X, g) ⊆ radA (X,N). Con-
versely, assume that h ∈ radA (X,N), that is, h : X −→ N is not a retraction. Then
πN,X(h) = 0 and commutativity yield θ HomA (X, u) (h) = 0, that is, θ (uh) = 0.
Because the lower row is exact, there exists h′ : X −→ νP1 such that uh = (νp1)h

′.
The universal property of M yields k : X −→ M such that gk = h and uk = h′. In
particular, h ∈ Im HomA (X, g). This establishes our claim.

We have thus finished proving that the upper sequence is a projective resolution
of SN .

We next prove that L is indecomposable. The exact sequence

0 −→ L −→ νP1
νp1−→ νP0

is the start of an injective coresolution of L. If L were decomposable, then every
direct sum decomposition of L induces a direct sum decomposition of the morphism
νp1, and thus of p1, contradicting the minimality of the given projective presentation
P1 −→ P0 −→ N −→ 0.

It only remains to prove that the constructed projective resolution of SN is
minimal. Now, if this is not the case, then the indecomposability of L implies that
there exists a direct sum decomposition M ∼= M ′ ⊕ L such that we have a short
exact sequence of functors

0 −→ HomA

(−,M ′) −→ HomA (−, N) −→ SN −→ 0.

But then, because of Lemma II.3.9, N is projective, a contradiction. The proof is
now complete. ��
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It turns out that the minimal projective resolution of SN we just constructed
induces an almost split sequence.

Proposition II.3.11. Let N be an indecomposable nonprojective A-module and

0 −→ HomA(−, L)
HomA(−,f )−→ HomA(−,M)

HomA(−,g)−→ HomA(−, N)−→SN −→0

a minimal projective resolution of SN . Then the sequence

0 −→ L
f−→ M

g−→ N −→ 0

is exact and almost split.

Proof . We evaluate the sequence of functors on the module AA. Because N is
nonprojective, it follows from Corollary II.3.7 that SN (A) = 0. We thus get a short
exact sequence

0 −→ L
f−→ M

g−→ N −→ 0

with L indecomposable. Because of Corollary II.2.33, it suffices to show that the
morphism g is right almost split.

Indeed, assume first that g is not a radical morphism. Then, g is a retraction and
there exists g′ : N −→ M such that gg′ = 1N . But then, for every h ∈ EndA N , we
have:

h = gg′h = HomA (N, g)
(
g′h

) ∈ Im HomA (N, g) = Ker πN,N .

This implies SN (N) = 0, a contradiction. Hence, g is a radical morphism.
Now, let V be an A-module and v ∈ radA (V,N) . Because radA (V,N) =

Im HomA (V, g), as we saw in the proof of Theorem II.3.10, there exists v′ : V −→
M such that v = HomA (V, g) (v′) = gv′. This completes the proof. ��

The proof of Theorem II.3.10 contains a construction procedure for the almost
split sequence of Proposition II.3.11: indeed, the morphism g : M −→ N is
obtained by taking the fibered product of u : N −→ νP0 and νp1 : νP1 −→ νP0 ;
and the morphism f : L −→ M is just the kernel of g. We use this remark in the
following chapter.

We deduce the main existence theorem of Auslander and Reiten.

Theorem II.3.12. Let N be an indecomposable nonprojective A-module, or L an
indecomposable noninjective A-module. Then, there exists an almost split sequence

0 −→ L
f−→ M

g−→ N −→ 0.

Additionally, this sequence is uniquely determined by N , or by L, up to isomor-
phism.
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Proof . Assume that N is an indecomposable nonprojective module. Then the
existence statement follows directly from Theorem II.3.10 and Proposition II.3.11.
If L is an indecomposable noninjective module, then DL is an indecomposable
nonprojective left A-module; thus, there exists an almost split sequence

0 −→ N ′ −→ M ′ −→ DL −→ 0

in mod Aop. Applying the duality functor D yields the required almost split sequence
in mod A. Finally, the uniqueness assertion follows from Corollary II.2.32. ��

As an easy consequence, we get that the module category contains enough
minimal almost split morphisms.

Corollary II.3.13.

(a) If N is an indecomposable A-module, then there exists a right minimal almost
split morphism g : M −→ N .

(b) If L is an indecomposable A-module, then there exists a left minimal almost
split morphism f : L −→ M .

Proof . We only prove (a), because the proof of (b) is dual.
If N is projective, then the inclusion rad N ↪→ N is right minimal almost split.

Otherwise, there exists an almost split sequence

0 −→ L
f−→ M

g−→ N −→ 0

in which the morphism g is right minimal almost split. ��
The reader may wonder why, in this section, we decided to work with contravari-

ant functors instead of the perhaps more familiar covariant ones. This is because the
almost split sequence 0 −→ L −→ M −→ N −→ 0 is very easy to read from the
minimal projective resolution of Theorem II.3.10. In fact, one could work equally
well with the category Fun Aop of the covariant functors from mod A to mod k. But
this is left to the exercises.

Exercises for Section II.3

Exercise II.3.1. Prove that the category Fun A is an abelian k-linear category.

Exercise II.3.2. Let M,N be A-modules. Prove that the following conditions are
equivalent:

(a) M ∼= N in mod A.
(b) HomA(−,M) ∼= HomA(−, N) in Fun A.
(c) HomA(M,−) ∼= HomA(N,−) in Fun Aop.
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Exercise II.3.3. Let M,N be A-modules.

(a) Assume that there exists a monomorphism (or an epimorphism)
HomA(−,M) −→ HomA(−, N). Prove that there exists a monomorphism
(or an epimorphism respectively) M −→ N .

(b) Assume that there exists a monomorphism (or an epimorphism) HomA(M,−)

−→ HomA(N,−). Prove that there exists a monomorphism (or an epimor-
phism respectively) N −→ M .

Exercise II.3.4. Prove that, for every A-module M

(a) The functor D HomA(M,−) is an injective object in Fun A.
(b) The functor D HomA(−,M) is an injective object in Fun Aop.

Exercise II.3.5. Let M be an indecomposable nonprojective A-module. Prove that
the composition of the projective cover πM : HomA(−,M) −→ SM with
the morphism ηM : SM −→ D HomA(M,−) of the proof of Theorem II.3.10
is the morphism that assigns to f ∈ HomA(X,M) the linear form g �→ fg on
HomA(M,X), where fg ∈ End M/ rad End M is the residual class of fg ∈ End M

modulo the radical.

Exercise II.3.6.

(a) Let N be an indecomposable A-module. Prove that a morphism g : M −→ N

is right almost split if and only if the corresponding sequence

HomA(−,M)
HomA(−,g)−→ HomA(−, N)

πN−→ SN −→ 0

is a projective presentation. In addition, this is a minimal projective presentation
if and only if g is right minimal almost split.

(b) Let L be an indecomposable A-module. Prove that a morphism f : L −→ M is
left almost split if and only if the corresponding sequence

HomA(M,−)
HomA(f,−)−→ HomA(L,−)

ηL

−→ SL −→ 0

is a projective presentation. In addition, this is a minimal projective presentation
if and only if f is left minimal almost split.

Exercise II.3.7. Let 0 −→ F1 −→ F2 −→ F3 −→ 0 be a short exact sequence in
Fun A. Prove that:

(a) If F1 and F3 are finitely generated, then so is F2.
(b) If F2 is finitely generated, then so is F3.
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Exercise II.3.8. Let F be a finitely generated object in Fun A. Prove that:

(a) If M is an A-module of least dimension such that there exists an epimorphism
ϕ : HomA(−,M) −→ F , then ϕ is a projective cover.

(b) If M1 and M2 are such that ϕ1 : HomA(−,M1) −→ F and ϕ2 : HomA(−,M2)

−→ F are projective covers, then there exists an isomorphism f : M1 −→ M2
such that ϕ2 HomA(−, f ) = ϕ1.

II.4 Factorising radical morphisms

II.4.1 Higher powers of the radical

The radical being an ideal in the module category, it is possible to form its powers
in the usual way. We have already defined at the beginning of Subsection II.2.1
the radical square rad2

A(L,N), for modules L,N . Following the same idea, we can
define, inductively, for all m > 1,

radm
A = radm−1

A · radA

that is, for the modules L,N , we define radm
A (L,N) to consist of all compositions

gf with g ∈ radm−1
A (M,N) and f ∈ radA (L,M) for some module M (where we

agree that rad0
A = HomA).

It is easily seen that, for every m > 1, the set radm
A (L,N) is a k-subspace of

radm−1
A (L,N); thus, we have an infinite chain of inclusions:

HomA (L,N) ⊇ radA (L,N) ⊇ rad2
A (L,N) ⊇ . . .

We also set:

rad∞
A =

⋂
m≥1

radm
A .

This is the infinite radical of the module category.
The following easy lemma is particularly important.

Lemma II.4.1. Given the modules M,N there exists a least integer m ≥ 1
(depending on M and N) such that rad∞

A (M,N) = radm
A (M,N).

Proof . Indeed, HomA (M,N) is a finite dimensional vector space; hence, the
sequence of subspaces:

HomA (M,N) ⊇ radA (M,N) ⊇ rad2
A (M,N) ⊇ . . . ⊇ rad∞

A (M,N)

must eventually stabilise. ��
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Example II.4.2. Let A be given by the quiver

1 2
α

β

bound by αβαβα = 0. Then, the projection morphism f from the indecomposable
projective module

P1 =

1
2
1
2
1

to its socle S1 = 1 belongs to rad2
A(P1, P1). Indeed, letting

M =
1
2
1

and g : P1 −→ M , h : M −→ S1 be the projection morphisms, both are radical
morphisms, because they are nonisomorphisms and we clearly have f = hg.

Example II.4.3. As a second example, we show a morphism lying in the infinite
radical of the module category. Let A be the Kronecker algebra, given by the quiver

1 2
α

β

Consider the indecomposable modules L = S1 and M = 2
1 . There is an

obvious nonzero morphism f embedding L as the socle of M , given by the left
multiplication by α. Clearly, f is radical. We prove that f ∈ rad∞

A (L,M). For this
purpose, we construct an infinite family of nonisomorphic indecomposable modules
(Li)i≥0 starting with L0 = L and radical morphisms gi : Li−1 −→ Li such that,
for every i, f factors through gi . . . g1. This implies the statement. Let L1 be the
indecomposable projective module:

1 1

2

α βP2
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There exist two linearly independent embeddings of L = S1 as a socle factor of
P2, given by left multiplication by the arrows α and β respectively. We call these
embeddings j

(1)
α and j

(1)
β respectively. Because rad P2 = S2

1 , the morphism j (1) =(
j

(1)
α

j
(1)
β

)
: S2

1 −→ P2 is right minimal almost split and the morphisms j
(1)
α , j

(1)
β are

irreducible. Also, M = Coker j
(1)
β . Set g1 = j

(1)
α : S1 −→ P2. We now construct

L2. Let L1
2 = L1 ⊕ P2 = P 2

2 . Then we have four linearly independent embeddings
of S1 as a direct summand of the socle of L1

2, as shown in the picture below

1 1

2

α β ⊕
S1

1 1

2

α β

j
(1)
α

j
(1)
β j

(2)
β

j
(2)
α

Let L2 = Coker

(
j

(1)
β

j
(2)
α

)
∼= P 2

2 /S1. Because the morphism

(
j

(1)
β

j
(2)
α

)
identifies S1 to

the codomains of j
(1)
β , j

(2)
α , we get that L2 is a module of the form

1 1

2

β

1

2

α βα

that is, denoting by {e′
2, α

′, β ′} and {e′′
2 , α′′, β ′′} the basis vectors of the two copies

of P2 in the direct sum L′
2, we get that a k-basis of the five-dimensional module

L2 is given by {e′
2, e

′′
2 , e′

2α
′ = α′, e′

2β
′ = e′′

2α′′, e′′
2β ′′ = β ′′}. Its top is the two-

dimensional space with the basis {e′
2, e

′′
2}.

This implies that L2 is indecomposable. Indeed, assume that L2 = L′
2 ⊕ L′′

2.
Then, top L2 = top L′

2 ⊕ top L′′
2. If top L′

2 contains both basis vectors e′
2, e

′′
2 , then

L′
2 = L2 because L′

2 is a submodule. The situation is similar if top L′′
2 contains both

e′
2, e

′′
2 . Suppose, thus, that e′

2 ∈ L′
2 and e′′

2 ∈ L′′
2. Then e′

2β
′ = e′′

2α′′ ∈ L′
2 ∩ L′′

2. But
the latter should be zero, a contradiction.

Denoting the projection by p2 : L1
2 −→ L2, we see that the composition

g2 = p2

(
1
0

)
: P2 = L1

(
1
0

)

−→ L′
2 = L1 ⊕ P2

p−→ L2 is an embedding

such that g2g1 	= 0. We continue inductively. Assume that we have constructed
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indecomposable modules L1, L2, . . . , Li−1 and monomorphisms g1, g2, . . . , gi−1
such that gi−1 . . . g2g1 	= 0. We set L′

i = Li−1 ⊕ P2 and consider the two
embeddings of S1 as a direct summand of the socle of L′

i , which are shown in the
picture below

1 1

2

α β

S1

2

⊕

j
(i− 1)
β j

(i)
α

βαα

2

α β...

1 1 11

We let Li = Coker

(
j

(i−1)
β

j
(i)
α

)
∼= Li−1⊕P2

S1
and gi = pi−1

(
1
0

)
: Li−1

(
1
0

)

−→ Li−1 ⊕

P2
pi−1−→ Li , where pi−1 : Li−1 ⊕ P2 −→ Li is the projection. As before, Li is

indecomposable and gi is a monomorphism such that gigi−1 . . . g1 	= 0. For each
i ≥ 1, we have an epimorphism hi : Li −→ M defined by sending the “first” top
summand S2 of Li to top M , and the other summands to zero. Then we easily see
that higi . . . g1 = f , as required.

2

β

1

2

α βα

2

β

1

2

α βα

2

βαL = S1
g1

1 1 1 11 1 1 1

2

βα. . .. . .

2

1

M

f
h1

h2

hi

g2 gi

We have dimk HomA(L,M) = 1, and also dimk rad∞
A (L,M) ≥ 1 because f ∈

rad∞
A (L,M) is nonzero. Hence, we have

HomA(L,M) = radA(L,M) = . . . = rad∞
A (L,M)

in this case. That is, the integer m of Lemma II.4.1 is here equal to 1. Similarly, the
nonzero morphism M −→ S2 given by right multiplication by e2 also belongs to
the infinite radical.

We have proved in passing that the Kronecker algebra is representation-infinite:
indeed, we have exhibited an infinite family of nonisomorphic indecomposable
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modules. As a consequence, every path algebra having multiple arrows is
representation-infinite, see Exercise II.4.9.

II.4.2 Factorising radical morphisms

Our first proposition asserts that every morphism lying in a finite power of the
radical may be written as a sum of compositions of irreducible morphisms.

Proposition II.4.4. Let M,N be indecomposable modules and f ∈ radn
A(M,N)

for some n ≥ 2. Then:

(a) There exist s ≥ 1, indecomposable modules X1, . . . , Xs and morphisms

M
hi−→ Xi

gi−→ N with hi ∈ radA(M,Xi) and gi a sum of compositions of
n − 1 irreducible morphisms between indecomposables and f = ∑s

i=1 gihi .
In addition, if f /∈ radn+1

A (M,N), then at least one of the hi is irreducible and
f can be written as f = u + v, where u 	= 0 is a sum of compositions of
irreducible morphisms between indecomposables and v ∈ radn+1

A (M,N).
(b) There exist s ≥ 1, indecomposable modules X1, . . . , Xs and morphisms

M
hi−→ Xi

gi−→ N with gi ∈ radA(Xi,N) and hi a sum of compositions of
n − 1 irreducible morphisms between indecomposables and f = ∑s

i=1 gihi .
In addition, if f /∈ radn+1

A (M,N), then at least one of the gi is irreducible and
f can be written as f = u + v, where u 	= 0 is a sum of compositions of
irreducible morphisms between indecomposables and v ∈ radn+1

A (M,N).

Proof . We prove only (a) because the proof of (b) is similar.
Both statements in (a) are proven by induction on n.
Assume first that n = 2. Because of Corollary II.3.13, there exists a right minimal

almost split morphism g : E −→ N . Let E = ⊕s
i=1Ei be a decomposition of

E into indecomposable summands and gi = g|Ei
. Then, there exists a morphism

h =
⎛
⎜⎝

h1
...

hs

⎞
⎟⎠ : M −→ E such that f = ∑s

i=1 gihi :

M
h1
.
.
.

hs
f

E =⊕ s
i=1Ei

( g1 · · · gs )
N

Because f ∈ rad2
A(M,N), it is not irreducible, that is, none of the hi is an

isomorphism. Consequently, hi ∈ rad(M,Ei) for all i. This proves (a).
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If, on the other hand, f /∈ rad3
A(M,N), then there exists i such that hi /∈

rad2
A(M,Ei). But then such an hi is irreducible and we have proven (b).
Suppose now that n ≥ 3 and f ∈ radn

A(M,N). By definition, there exist an A-
module Y and morphisms f ′ ∈ radA(M, Y ) and f ′′ ∈ radn−1

A (Y,N) such that f =
f ′′f ′. Let Y = ⊕t

i=1Yi be a decomposition of Y into indecomposable summands so
that the morphisms f ′ and f ′′ can be written as

M

f ′=

⎛
⎜⎜⎜⎝

f ′
1
...

f ′
t

⎞
⎟⎟⎟⎠

−→ ⊕t
i=1Yi

f ′′=(f ′′
1 ···f ′′

t )−→ N;

thus, f = ∑t
i=1 f ′′

i f ′
i . Then we have f ′′

i ∈ radn−1
A (Yi, N) for each i. Applying the

induction hypothesis yields, for each i, a finite set of indecomposables Zi1, . . . , Zisi

and morphisms

Yi

g′
ij−→ Zij

gij−→ N

such that g′
ij ∈ radA(Yi, Zij ) for each j . In addition, each gij is a sum of compo-

sitions of n − 2 irreducible morphisms between indecomposable modules such that

f ′′
i =

si∑
j=1

gij g
′
ij . Because each g′

ij f
′
i : M −→ Zij belongs to rad2

A(M,Zij ), the

case n = 2 above yields g′
ij f

′
i =

mij∑
l=1

h′
ij lhij l where, for each l, h′

ij l : Eijl −→ Zijl

is an irreducible morphism between indecomposables and hijl ∈ radA(M,Eijl).
Substituting, we get

f = f ′′f ′ =
s∑

i=1

f ′′
i f ′

i =
∑
i,j

gij g
′
ij f

′
i =

∑
i,j,l

gij h
′
ij lhij l .

Because hijl ∈ radA(M,Eijl) and each gijh
′
ij l : M −→ Eijl is a sum of

compositions of n − 1 irreducible morphisms, this finishes the proof of the first
part of (a).

For the second part, assume f /∈ radn+1
A (M,N). Then, there exist indices i, j, l

above such that hijl /∈ rad2
A(M,Eijl). But then the morphism hijl is irreducible.

The statement follows. ��
Corollary II.4.5. Let M,N be indecomposable modules. Then, every radical
morphism f ∈ radA(M,N) can be written as f = u + v, where u is a sum of
compositions of irreducible morphisms, and v ∈ rad∞

A (M,N).

Proof . If f ∈ rad∞
A (M,N), then there is nothing to prove. Assume thus that

f /∈ rad∞
A (M,N). Then, there exists n > 0 such that f ∈ radn

A(M,N) \
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radn+1
A (M,N). Applying Proposition II.4.4(b), we get f = u0 + v1, where u0 is a

sum of compositions of irreducible morphisms between indecomposable modules
and v1 ∈ radn+1

A (M,N). Repeating the same procedure with v1 we get that
v1 = u1 + v2, where u1 is a sum of compositions of irreducible morphisms
between indecomposable modules and v2 ∈ radm

A(M,N), with m > n + 1. Then,
f = (u0 + u1) + v2, and we repeat this procedure again. It stops after finitely many
steps because there exists l > 0 such that radl

A(M,N) = rad∞
A (M,N). ��

Corollary II.4.6. Let M,N be indecomposable modules, and f ∈ radA(M,N). If
rad∞

A (M,N) = 0. Then, f is a sum of compositions of irreducible morphisms.

Proof . This follows from Corollary II.4.5 above. ��

II.4.3 Paths

The results of Subsection II.4.2 may be reformulated using the notion of path,
which we now define. Paths are used to visualise statements about compositions
of morphisms that may otherwise look technical.

Definition II.4.7. Let M,N be indecomposable modules. A path from M to N in
ind A (denoted as M � N ) of length t is a sequence

M = M0
f1−→ M1

f2−→ M2 −→ · · · −→ Mt−1
ft−→ Mt = N

where all Mi are indecomposable modules and all fi are nonzero morphisms. We
then say that M is a predecessor of N , or that N is a successor of M . This path
is called a radical path if all fi are radical morphisms. It is a path of irreducible
morphisms if all fi are irreducible.

For instance, if 0 −→ L −→ M −→ N −→ 0 is an almost split sequence,
and M ′ is an indecomposable summand of M , then we have a path of irreducible
morphisms L −→ M ′ −→ N of length two.

As we do in the case of quivers (see Subsection I.2.1), we agree to associate with
each module M a path of length zero, called the trivial, or the stationary path at M .

From Subsection II.4.2, we can already derive existence results for paths of
irreducible morphisms.

Corollary II.4.8. Let M,N be indecomposable modules and f : M −→ N a
nonzero radical morphism.

(a) If f ∈ radn
A(M,N) \ radn+1

A (M,N) for some n ≥ 1, then there exists a path of
irreducible morphisms M � N of length n.

(b) If rad∞
A (M,N) = 0, then there exists a path of irreducible morphisms M � N .
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Proof .

(a) This follows from Proposition II.4.4(a).
(b) This follows from Corollary II.4.6.

��
Suppose now rad∞

A (M,N) 	= 0 with M,N indecomposable. We prove that, in
this case, there exist paths of irreducible morphisms of arbitrary length, starting with
M or ending with N .

Proposition II.4.9. Let M,N be indecomposable modules such that rad∞
A (M,N)

	= 0. Then, for every i ≥ 0, there exist:

(a) a path of irreducible morphisms

M = M0
f1−→ M1 −→ . . . −→ Mt−1

fi−→ Mi

and a morphism gi ∈ rad∞
A (Mi,N) such that gifi . . . f1 	= 0, and

(b) a path of irreducible morphisms

Ni
gi−→ Ni−1 −→ . . . −→ N1

g1−→ N0 = N

and a morphism fi ∈ rad∞
A (M,Ni) such that g1 . . . gifi 	= 0.

Proof . We only prove (a), because (b) follows by duality.

Let h =
⎛
⎜⎝

h1
...

ht

⎞
⎟⎠ : M −→ ⊕t

j=1Ej be left minimal almost split with the Ej

indecomposable. We know that, for each j , there exists a least mj such that
rad

mj

A (Ej ,N) = rad∞
A (Ej ,N), see Lemma II.4.1. Let m = max{mj : 1 ≤ j ≤ t}.

Then, radm
A(Ej ,N) = rad∞

A (Ej ,N) for all j .
Now, let f ∈ rad∞(M,N) be a nonzero morphism. Because the infinite radical
is the intersection of all powers of the radical, we have, in particular, f ∈
radm+1

A (M,N). Then, we can write f =
s∑

i=1
gifi with the gi ∈ radm

A(Xi,N),

fi ∈ radA(M,Xi) and the Xi indecomposable. We can assume gifi 	= 0 for all
i.
Because f1 ∈ radA(M,X1) is not an isomorphism, it factors through h, that is, there
exists l = (l1 · · · lt ) : ⊕t

j=1 Ej −→ X1 such that f1 = lh = ∑t
j=1 lj hj . Because

g1f1 	= 0, there exists j such that g1lj hj 	= 0. Now we have g1lj ∈ radm
A(Ej ,N) =

rad∞
A (Ej ,N) and hj is irreducible. Repeating the same procedure with g1lj , the

result follows from an easy induction. ��
In Example II.4.3 above, we constructed precisely a path and a morphism as in

part (a) of the proposition.
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Exercises for Section II.4

Exercise II.4.1. Let L,M be indecomposable modules and f : L −→ M a
morphism. Assume that f is neither a monomorphism nor an epimorphism. Prove
that f ∈ rad2(L,M).

Exercise II.4.2. Let M,N be indecomposable A-modules and f : M −→ N a
nonzero radical morphism. Prove that

(a) If radm
A(−, N) = 0 for some m ≥ 0, then f is a sum of compositions of

irreducible morphisms between indecomposable modules.
(b) If radm

A(M,−) = 0 for some m ≥ 0, then f is a sum of compositions of
irreducible morphisms between indecomposable modules.

Conclude that, if A is such that radm
A = 0 for some m ≥ 0, then every nonzero

radical morphism is a sum of compositions of irreducible morphisms between
indecomposable modules.

Exercise II.4.3. Let A be a finite dimensional algebra and M,N modules. Prove
that the standard duality D = Homk (−, k) induces isomorphisms:

(a) radm
A(M,N) ∼= radm

Aop (DN, DM), for each m ≥ 1.
(b) rad∞

A (M,N) ∼= rad∞
Aop (DN, DM).

Exercise II.4.4. A functor F : mod A −→ mod k is called support-finite if
there are only finitely many isoclasses of indecomposable A-modules M such that
F(M) 	= 0. Let M be an A-module. Prove that:

(a) HomA(−,M) is support-finite if and only if there exists m ≥ 0 such that
radm

A(−,M) = 0.
(b) HomA(M,−) is support-finite if and only if there exists m ≥ 0 such that

radm
A(M,−) = 0.

Exercise II.4.5. Let M = M0
f1−→ M1 −→ · · · ft−→ Mt = N be a path in mod A,

and assume that there exists i such that fi+1 ∈ rad∞
A (Mi,Mi+1) and 0 ≤ i < t . Prove

that, for every pair of integers s, t ≥ 0, there exist paths of irreducible morphisms
Mi = M ′

0 −→ M ′
1 −→ . . . M ′

s and N ′
t −→ · · · −→ N ′

1 −→ N ′
0 = Mi+1, along

with a path M ′
s = X0 −→ X1 −→ . . . −→ Xp = N ′

t .

Exercise II.4.6. Prove the following weaker version of Proposition II.4.9. Let
M,N be indecomposable A-modules such that HomA(M,N) 	= 0 and assume that
there exists no path of irreducible morphisms from M to N of length less than t .
Then there exist:

(a) A path of irreducible morphisms

M = M0
f1−→ M1

f2−→ · · · ft−1−→ Mt−1
ft−→ Mt

and a morphism g : Mt −→ N such that gft · · · f1 	= 0.
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(b) A path of irreducible morphisms

Nt
gt−→ Nt−1

gt−1−→ · · · g2−→ N1
g1−→ N0 = N

and a morphism f : M −→ Nt such that g1 · · · gtf 	= 0.

Exercise II.4.7. Let A be given by the quiver

1 2 3

Prove that every indecomposable A-module lies on a path in ind A from S1 to S3.

Exercise II.4.8. Let A be given by the quiver

1 2
α

β

bound by αβ = 0. Prove that every indecomposable A-module lies on a cycle in
ind A from S1 to itself.

Exercise II.4.9.

(a) Let Q be an acyclic quiver having t ≥ 2 arrows α1, . . . , αt from a point a to a
point b. Prove that the path algebra kQ is representation-infinite.

(b) Let A = kQ/I be a bound quiver algebra, with Q acyclic. Prove that, if Q has
multiple arrows (as in (a)), then A is representation-infinite.



Chapter III
Constructing almost split sequences

The previous chapter was mainly of a theoretical nature: we defined irreducible
morphisms and almost split sequences and started to explore their use for the
understanding of the radical of a module category. However, we did not say much
about the explicit construction of almost split sequences, even though we pointed out
that the proof of Theorem II.3.10 suggests the idea of a construction. Carrying out
this construction in practice is quite difficult, and our objective in the present chapter
is to explain how it can be done, at least in the easiest cases. In the first section, we
prove that the indecomposable end terms of an almost split sequence are related
by functors, which are called the Auslander–Reiten translations. In Section III.2, we
derive the so-called Auslander–Reiten formulae, which lead us to a second existence
proof for almost split sequences. Next, in Section III.3, we show how to apply these
results to construct examples of almost split sequences. In the final Section III.4,
we relate the Auslander–Reiten translates of a given module over an algebra to that
over a quotient algebra.

III.1 The Auslander–Reiten translations

III.1.1 The stable categories

As seen in Corollary II.2.32, an almost split sequence

0 −→ L −→ M −→ N −→ 0

is uniquely determined by the indecomposable nonprojective module N , or by the
indecomposable noninjective module L. This uniqueness suggests that the relation
between N and L might conceal some functoriality.
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Now, if the correspondence between N and L extends to functors, then these
functors cannot be defined on the whole module category mod A because an almost
split sequence is not split; therefore, projective modules are excluded for the last
term N , and injective modules are excluded for the first term L. We thus need
functors defined on the quotients of mod A obtained by annihilating the projectives
or the injectives respectively.

Given modules M,N , we denote by P(M,N) the set of all morphisms from
M to N in mod A that factor through a projective A-module. Dually, we denote by
I (M,N) the set of all morphisms from M to N that factor through an injective
A-module. We show that these data define ideals in mod A.

Lemma III.1.1.

(a) The assignment (M,N) �→ P(M,N) defines an ideal P in mod A.
(b) The assignment (M,N) �→ I (M,N) defines an ideal I in mod A.

Proof . We only prove (a), because the proof of (b) is dual.
We first show that, for every M,N in mod A, the set P(M,N) is a subspace of

HomA(M,N). Let f1, f2 ∈ P(M,N). There exist projective modules P1, P2 and
morphisms h1 : M −→ P1, h2 : M −→ P2, g1 : P1 −→ N and g2 : P2 −→ N such
that f1 = g1h1 and f2 = g2h2. But then

f1 + f2 = g1h1 + g2h2 = (g1 g2)
(

h1
h2

)
,

that is, f1 + f2 factors through P1 ⊕ P2. Clearly, if λ ∈ k and f ∈ P(M,N), then
λf ∈ P(M,N).

Let f ∈ P(M,N) and u : L −→ M be any morphism. There exist a projective
module P and morphisms h : M −→ P , g : P −→ N such that f = gh. But then
f u = g(hu) also factors through P , and so lies in P(L,N). Thus, P is right stable
under composition by arbitrary morphisms. Similarly, it is left stable. ��

In fact, the construction of the ideals P and I are particular cases of a more
general construction. Given an A-module X, let add X denote the k-linear full
subcategory of mod A consisting of all direct sums of indecomposable summands of
X, see Example II.1.3. Then, add X generates an ideal X = 〈add X〉 as follows. For
modules M,N , let X(M,N) be the set of all morphisms from M to N that factor
through an object of add X. It is easy to prove, as above, that this defines an ideal in
mod A, see Exercise II.1.10. In this notation, a module is projective, or injective, if
and only if it belongs to add AA, or to add(DA)A respectively, so that P = 〈add A〉
whereas I = 〈add DA〉.

This brings us to the following definition.
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Definition III.1.2.

(a) The projectively stable category of mod A is the quotient category mod A =
(mod A)/P;

(b) The injectively stable category of mod A is the quotient category mod A =
(mod A)/I .

As seen in Subsection II.1.1, the objects of mod A coincide with those of mod A,
and the space of morphisms from M to N is the quotient space

HomA(M,N) = HomA(M,N)

P(M,N)
.

There is a projection functor mod A −→ mod A mapping each module to itself and
each morphism f : M −→ N to its residual class f = f + P(M,N).

Similarly, the objects of mod A coincide with those of mod A, and the space of
morphisms from M to N is the quotient space

HomA(M,N) = HomA(M,N)

I (M,N)
.

There is a projection functor mod A −→ mod A mapping each module to itself and
each morphism f : M −→ N to its residual class f = f + I (M,N).

We now prove that the projective modules are (the only modules) isomorphic
to the zero object in mod A. Dually, the injective modules are (the only modules)
isomorphic to the zero object in mod A. We recall here that an object X in a k-linear
category C is isomorphic to the zero object if and only if the identity 1X on X

is equal to the zero morphism from X to itself, and this is the case if and only if
EndC X = 0, see Exercise III.1.1.

Lemma III.1.3. Let M be an A-module.

(a) M is projective if and only if End M = 0;
(b) M is injective if and only if EndM = 0.

Proof . We only prove (a), because the proof of (b) is dual.
Certainly, if M is projective, then End M = P(M,M) and so End M = 0. If M

is not projective, then we claim that the identity 1M does not belong to P(M,M).
Indeed, if P is projective and g : P −→ M , h : M −→ P are such that 1M =
gh, then h would be a section and M would be projective, a contradiction. This
establishes our claim and thus End M 	= 0. ��
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III.1.2 Morphisms between projectives and injectives

The main result of this subsection is an alternative description of the stable
categories as quotients of the categories of morphisms between projectives or
injectives respectively.

Let mp A be the category whose objects are the morphisms P1
p−→ P0,

where P0, P1 are projective A-modules (the letters mp stand for morphism between
projectives). A morphism in mp A from p : P1 −→ P0 to p′ : P ′

1 −→ P ′
0 is a pair

(u1, u0) of morphisms in mod A such that u1 : P1 −→ P ′
1 and u0 : P0 −→ P ′

0
satisfy p′u1 = u0p, that is, we have a commutative square

P1

u1

p
P0

u0

P1
p

P0

The composition in mp A is induced from that in mod A: if (u1, u0) : p −→ p′ and
(v1, v0) : p′ −→ p′′, then their composition is

(v1, v0)(u1, u0) = (v1u1, v0u0).

A morphism (u1, u0) as above is called negligible if there exists a morphism
s : P0 −→ P ′

1 such that

p′sp = u0p = p′u1.

We denote by Np(p, p′) the set of negligible morphisms from p to p′. As we shall
see, the assignment (p, p′) �→ Np(p, p′) defines an ideal Np in mp A.

There is an obvious functor C : mp A −→ mod A defined by taking cokernels.
Namely, if p : P1 −→ P0 is an object in mp A, then we define C(p) = Coker p

and if (u1, u0) is a morphism from p : P1 −→ P0 to p′ : P ′
1 −→ P ′

0, then we let
C(u1, u0) be the unique morphism u : Coker p −→ Coker p′ obtained by passing
to cokernels, that is, such that the following diagram with exact rows is commutative

P1

u1

p
P0

u0

Coker p

u

0

P1
p

P0 Coker p 0

The composition of C with the projection functor mod A −→ mod A is denoted by
C : mp A −→ mod A.

Theorem III.1.4. The functor C : mp A −→ mod A is full, dense and admits as
kernel the set Np of negligible morphisms in mp A. In particular, C induces an
equivalence mp A/Np

∼= mod A.
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Proof . First, C is full and dense: every module is the cokernel of a projective
presentation and every morphism between modules lifts to a morphism between
their projective presentations.

We now claim that, if (u1, u0) is a morphism in mpA from p : P1 −→ P0 to
p′ : P ′

1 −→ P ′
0, then C(u1, u0) = 0 if and only if (u1, u0) is negligible.

Assume first that C(u1, u0) = 0. Then the morphism obtained by passing to the
cokernels M,M ′ of p, p′ respectively factors through a projective module P . That
is, there exist morphisms u′ : P −→ M ′, u′′ : M −→ P such that u = u′u′′. Thus,
we have a commutative diagram with exact rows:

P1
p

u1

P0
q

u0

M

u

0

P
v

u

P1
p

P0
q

M 0

Because P is projective, there exists v : P −→ P ′
0 such that q ′v = u′. But then we

have:

q ′(u0 − vu′′q) = q ′u0 − u′u′′q = 0.

Therefore, u0 − vu′′q factors through p′, which is the kernel of q ′, that is, there
exists s : P0 −→ P ′

1 such that u0 − vu′′q = p′s. We get u0 = vu′′q + p′s; hence,

u0p = (vu′′q + p′s)p = p′sp.

Thus, (u1, u0) is negligible.
Conversely, assume that (u1, u0) is negligible. There exists s : P0 −→ P ′

1 such
that u0p = p′sp. Consider the commutative diagram with exact rows

P1

u1

p
P0

s u0

q
M

u

0

P1
p

P0
q

M 0.

Because (u0 −p′s)p = 0, there exists w : M −→ P ′
0 such that u0 −p′s = wq. But

then uq = q ′u0 = q ′(p′s + wq) = q ′wq. Now, q is an epimorphism; therefore,
u = q ′w factors through the projective module P ′

0. Hence, C(u1, u0) = 0.
This establishes our claim. The statement of the theorem follows immediately.

��
In particular, because Np is the kernel of the functor C, it is an ideal of mp A.
As usual, dual considerations lead to dual results. Let mi A be the category whose

objects are the morphisms j : I0 −→ I1 between injective A-modules. A morphism
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in mi A from j : I0 −→ I1 to j ′ : I ′
0 −→ I ′

1 is a pair of morphisms (u0, u1) such
that u0 : I0 −→ I ′

0 and u1 : I1 −→ I ′
1 satisfy j ′u0 = u1j , that is, the following

square is commutative.

I0

u0

j
I1

u1

I0
j

I1

The composition of morphisms in mi A is induced in the obvious way from the
composition of morphisms in mod A. A morphism (u0, u1) as above is called
negligible if there exists a morphism s : I1 −→ I ′

0 such that j ′sj = j ′u0 = u1j ,
and the set of all negligible morphisms from j to j ′ is denoted by Ni (j, j

′). Let
K : mi A −→ mod A be the functor sending an object j : I0 −→ I1 of mi A
to K(j) = Ker j and a morphism (u0, u1) as above to the unique morphism
K(u0, u1) = u : Ker j −→ Ker j ′ obtained by passing to kernels. Finally,
let K : mi A −→ mod A be the composition of K with the projection functor
mod A −→ mod A.

Theorem III.1.5. The functor K : mi A −→ mod A is full, dense and admits as
kernel the class Ni of negligible morphisms in mi A. In particular, K induces an
equivalence mi A/Ni

∼= mod A. ��
In particular, Ni is an ideal in mi A.

III.1.3 The Auslander–Reiten translations

A remarkable consequence of Theorems III.1.4 and III.1.5 is that the categories
mod A and mod A are equivalent. Indeed, recall from Chapter I that the Nakayama
functor νA, which we denote here for brevity by

ν = − ⊗A DA ∼= D HomA(−, A) : mod A −→ mod A

induces an equivalence between the full subcategories proj A and inj A of mod A

consisting respectively of the projective and the injective A-modules, with quasi-
inverse given by the functor ν−1 = HomA(DA,−). In addition, if e is a primitive
idempotent in A, then ν maps the indecomposable projective module eA to the
indecomposable injective module D(Ae), corresponding to the same idempotent,
see Lemma I.1.18. This leads to the following corollary.

Corollary III.1.6. There exist equivalences τ : mod A −→ mod A

and τ−1 : mod A −→ mod A.
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Proof . Clearly, the Nakayama functor ν : projA −→injA and its quasi-inverse
ν−1 : injA −→projA induce functors mp A −→ mi A and mi A −→ mp A, which
are also quasi-inverse. In addition, the image under one of these functors of a
negligible morphism in either category is clearly negligible in the other. This shows
that ν and ν−1 induce an equivalence mp A/Np

∼= mi A/Ni . We take τ as the
composition of the equivalences mod A ∼= mp A/Np

∼= mi A/Ni
∼= mod A. The

functor τ−1 is constructed in the same way. ��
Definition III.1.7. The equivalences τ : mod A −→ mod A and τ−1 : mod A −→
mod A are called the Auslander–Reiten translations. For a module M , the modules
τM and τ−1M are called its translates.

It is useful to present in detail the construction of τ and τ−1. Let M be an A-
module, considered as an object in mod A. To view M as an object in mp A, we
must find a morphism between projectives of which M is the cokernel, that is, a
projective presentation of M . There exist several such presentations, but we always
assume implicitly that we are dealing with a minimal projective presentation

P1
p−→ P0 −→ M −→ 0.

Following the recipe above, the (right exact) Nakayama functor ν = − ⊗A DA

yields an exact sequence

νP1
νp−→ νP0 −→ νM −→ 0

and here νp is an object in miA (or, as well, in miA/Ni). To pass to mod A, it
suffices to apply the kernel functor, thus obtaining τM . This is summarised in the
following lemma.

Lemma III.1.8.

(a) Let P1
p−→ P0 −→ M −→ 0 be a minimal projective presentation. Then there

exists an exact sequence

0 −→ τM −→ νP1
νp−→ νP0 −→ νM −→ 0.

(b) Let 0 −→ M −→ I0
j−→ I1 be a minimal injective copresentation. Then there

exists an exact sequence

0 −→ ν−1M −→ ν−1I0
ν−1j−→ ν−1I1 −→ τ−1M −→ 0.

Proof . We have already proved (a), and the proof of (b) is dual. ��
The original approach of Auslander and Reiten is slightly different: it passes

through mod Aop and presents each of τ and τ−1 as the composition of two dualities.
This is natural if one recalls that the Nakayama functor ν = D HomA(−, A) itself
is the composition of two dualities. We outline this approach below.
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Let M be an A-module, and consider a minimal projective presentation

P1
p−→ P0 −→ M −→ 0.

We apply the left exact functor ( − )t = HomA(−, A) : mod A −→ mod Aop, thus
obtaining an exact sequence of left A-modules:

0 −→ Mt −→ P t
0

pt

−→ P t
1 −→ Coker pt −→ 0.

We denote Coker pt by Tr M and call it the transpose of M . Let f : M −→ M ′ be

a morphism of A-modules, and consider minimal projective presentations P1
p−→

P0 −→ M −→ 0 and P ′
1

p′
−→ P ′

0 −→ M ′ −→ 0 of M and M ′, respectively. Then,
f lifts to morphisms f0 : P0 −→ P ′

0 and f1 : P1 −→ P ′
1 such that the following

diagram with exact rows is commutative

P1

f1

p
P0

f0

M

f

0

P1
p

P0 M 0

Applying the left exact contravariant functor ( − )t , we deduce by passing to
cokernels a unique morphism Tr f : Tr M ′ −→ Tr M such that the following
diagram with exact rows is commutative

0 Mt Pt
0 Pt

1 TrM 0

0 M t

f t

P t
0

f t
0

P t
1

f t
1

TrM

Tr f

0.

We now prove that Tr defines a functor and actually a duality, called the transposi-
tion.

Corollary III.1.9. The above procedure induces dualities mod A −→ mod Aop

and mod A −→ mod Aop. Actually, we have τ = D Tr, and τ−1 = Tr D.

Proof . Let M be an A-module. A minimal projective presentation P1
p−→ P0 −→

M −→ 0 gives an exact sequence of left A-modules

0 −→ Mt −→ P t
0

pt

−→ P t
1 −→ TrM −→ 0.

Applying the standard duality D = Homk(−, k), we get an exact sequence of right
A-modules.

0 −→ D Tr M −→ DP t
1

Dpt

−→ DP t
0 −→ DMt −→ 0.
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Now, D( − )t = D HomA(−, A) ∼= ν. Thus, because of Lemma III.1.8, we have
D Tr M = τM . This shows that D Tr and τ coincide on objects. Similarly, they
coincide on morphisms. That is, Tr and Dτ coincide on objects and on morphisms.
Consequently, Tr extends to the functor Dτ : mod A −→ mod A −→ mod Aop,
which is a duality, because τ is an equivalence and D a duality. This proves the first
part.

To prove the second part, we apply successively D and ( − )t to a minimal

injective copresentation 0 −→ M −→ I0
j−→ I1, getting the exact sequence

0 −→ (DM)t −→ (DI0)
t (Dj)t−→ (DI1)

t −→ Tr DM −→ 0

where we used the fact that D applied to a minimal injective copresentation yields a
minimal projective presentation. Now we have functorial isomorphisms

(DX)t = HomAop (DX,A) ∼= HomA(DA,X) ∼= ν−1X

for every A-module X. Thus, the previous exact sequence is isomorphic to the
following

0 −→ ν−1M −→ ν−1I0
ν−1j−→ ν−1I1 −→ τ−1M −→ 0.

Applying Lemma III.1.8 again yields Tr DM ∼= τ−1M . Thus, Tr D and τ−1 coincide
on objects and similarly they coincide on morphisms. Therefore, Tr extends to a
duality τ−1D : mod A −→ mod Aop. ��

III.1.4 Properties of the Auslander–Reiten translations

The following proposition records the most immediate properties of the translations.

Proposition III.1.10. Let M be an indecomposable A-module.

(a) If M is projective, then τM = 0. If M is not projective, then τM is
indecomposable noninjective and τ−1τM ∼= M .

(b) If M is injective, then τ−1M = 0. If M is not injective, then τ−1M is
indecomposable nonprojective and ττ−1M ∼= M .

Proof . We only prove (a), because the proof of (b) is dual.
It follows from the definition that, if M is projective, then Tr M = 0 and so

τM = D Tr M = 0.
Assume, thus, that M is indecomposable nonprojective. A minimal projective

presentation P1
p−→ P0 −→ M −→ 0 yields an exact sequence
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0 −→ τM −→ νP1
νp−→ νP0,

which is actually a minimal injective copresentation. Note that τM is not injective,
because otherwise νp = 0 and so p = 0, a contradiction to the hypothesis that M is
nonprojective. Applying ν−1 yields a commutative diagram with exact rows

0 ν − −
−

− −1τM ν 1ν P1

∼= ∼=

ν 1ν p
ν 1ν P0 τ 1τM 0

P1
p

P0 M 0

from which we deduce τ−1τM ∼= M . Finally, this relation together with the
indecomposability of M yield the indecomposability of τM . ��

As an unexpected, but useful, dividend, we get a characterisation of modules of
projective or injective dimension at most one.

Proposition III.1.11. Let M be an indecomposable A-module. Then,

(a) pd M ≤ 1 if and only if HomA(DA, τM) = 0.
(b) id M ≤ 1 if and only if HomA(τ−1M,A) = 0.

Proof . We only prove (a), because the proof of (b) is dual.

Let P1
p−→ P0 −→ M −→ 0 be a minimal projective presentation. Then

pd M ≤ 1 if only if Ker p = 0. Now, we have an exact sequence

0 −→ τM −→ νP1
νp−→ νP0.

Applying ν−1 = HomA(DA,−) yields a commutative diagram with exact rows

0 HomA(DA, τM) ν −1ν P1

∼= ∼=

ν −1ν p
ν −1ν P0

0 Ker p P1 P0

Thus, Ker p ∼= HomA(DA, τM). The statement follows at once. ��
The previous result is sometimes stated in the following equivalent form: let M

be an indecomposable A-module, then:

(a) pd M ≤ 1 if and only if for every indecomposable injective A-module I , we
have HomA(I, τM) = 0.

(b) id M ≤ 1 if and only if for every indecomposable projective A-module P , we
have HomA(τ−1M,P) = 0.

Example III.1.12. Let A be given by the quiver
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αβ

γδ

2

1

3

4

bound by αβ = γ δ. We wish to compute the Auslander–Reiten translates of the
simple nonprojective module S2. Clearly, S2 ∼= P2/S1, so that we have a minimal
projective presentation

0 −→ P1
j−→ P2

p−→ S2 −→ 0

where j is the inclusion of S1 = P1 as the radical of P2 and p : P2 −→ S2 is the
projection. Applying ν yields an exact sequence

0 −→ τS2 −→ I1 = νP1
νj−→ I2 = νP2.

Now, up to scalars, there exists a unique nonzero morphism from I1 = 4
2 3
1

to I2 =
4
2 , and its kernel is 3

1 . Then, τS2 = 3
1 .

Similarly, we have a minimal injective copresentation

0 −→ S2
i−→ I2

q−→ I4 −→ 0

where i is the inclusion and q the projection onto I4 ∼= I2/S2. Applying ν−1 yields
an exact sequence

P2 = ν−1I2
ν−1q−→ P4 = ν−1I4 −→ τ−1S2 −→ 0.

Again, there is a unique nonzero morphism from 2
1 = P2 to P4 = 4

2 3
1

(up to

scalars) and we deduce that τ−1S2 ∼= 4
3 .

Exercises for Section III.1

Exercise III.1.1. Let C be a k-linear category and X an object in C . Prove that the
following conditions are equivalent.
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(a) X is isomorphic to the zero object.
(b) The identity 1X is equal to the zero morphism.
(c) EndC X = 0.

Exercise III.1.2. Let A be an algebra and X an A-module. Prove that, in the
quotient category mod A/〈add X〉, an object is isomorphic to the zero object if and
only if it lies in add X.

Exercise III.1.3. Let A be one of the following bound quiver Nakayama algebras
and M an indecomposable A-module. Compute τM for every M nonprojective and
τ−1M for every M noninjective.

(a) 123 αβ = 0
αβ

(b) 123 αβγ = 04
αβγ

(c) 1 2
α

β
αβ = 0

(d) 1 2
α

β
αβα = 0, βαβ = 0

Exercise III.1.4. Let f : M −→ N be a morphism of A-modules.

(a) Show that the following conditions are equivalent:

(i) For every epimorphism h : L −→ N , there exists g : M −→ L such that
f = hg.

(ii) For every epimorphism p : P −→ N with P projective, there exists
g : M −→ P such that f = pg.

(iii) f ∈ P(M,N).

(b) Show that the following conditions are equivalent:

(i) For every monomorphism h : M −→ L, there exists g : L −→ N such
that f = gh.

(ii) For every monomorphism j : M −→ I with I injective, there exists
g : I −→ M such that f = gj .

(iii) f ∈ I (M,N).

Exercise III.1.5. Let M,N be A-modules.

(a) If M,N have no projective direct summands, then M ∼= N in mod A if and only
if M ∼= N in mod A.

(b) If M,N have no injective direct summands, then M ∼= N in mod A if and only
if M ∼= N in mod A.

Exercise III.1.6. Prove that the functor ( − )t induces a duality between proj A and
proj Aop.
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Exercise III.1.7. Let M be an indecomposable nonprojective A-module, and

P1
p−→ P0 −→ M −→ 0 a minimal projective presentation in mod A. Prove

that P t
0

pt

−→ P t
1 −→ Tr M −→ 0 is a minimal projective presentation of Tr M in

mod Aop.

Exercise III.1.8. Let M,N be indecomposable nonprojective A-modules. Prove
that

(a) M ∼= N if and only if Tr M ∼= Tr N .
(b) Tr(M ⊕ N) ∼= Tr M ⊕ Tr N .
(c) Tr(Tr M) ∼= M .

Exercise III.1.9. Let M,N be indecomposable A-modules. Prove that

(a) If M,N are nonprojective, then

(i) M ∼= N if and only if τM ∼= τN .
(ii) τ(M ⊕ N) ∼= τM ⊕ τN .

(b) If M,N are noninjective, then

(i) M ∼= N if and only if τ−1M ∼= τ−1N .
(ii) τ−1(M ⊕ N) ∼= τ−1M ⊕ τ−1N .

Exercise III.1.10. Let M be an indecomposable A-module. Prove that

(a) If P1
p−→ P0 −→ M −→ 0 is a minimal projective presentation, then

soc τM ∼= P1/ rad P1.
(b) If 0 −→ M −→ I0 −→ I1 is a minimal injective copresentation, then

τ−1M/ rad τ−1M ∼= soc I1.

III.2 The Auslander–Reiten formulae

III.2.1 Preparatory lemmata

Our motivation for defining the Auslander–Reiten translations was to express
functorially the relation between the end terms of an almost split sequence. To do it,
we first prove the Auslander–Reiten formulae, which express the extension groups
between modules as stable homomorphism groups between one of these modules
and the Auslander–Reiten translate of the other. As we see in Subsection III.2.3
below, they allow us to prove that, as expected, each of the end terms of an almost
split sequence can be deduced from the other by an Auslander–Reiten translation.
As a consequence, we obtain a second existence proof for almost split sequences. In
this first subsection, we only prove lemmata, that are essentially used in the proof
of the Auslander–Reiten formulae.
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Lemma III.2.1. Let M,N be A-modules. The functorial morphism ϕM,N : N ⊗A

Mt −→ HomA(M,N) defined by y ⊗ f �→ (x �→ yf (x)) (with x ∈ M,y ∈
N, f ∈ Mt ) satisfies the following properties:

(a) If M is projective, then ϕM,N is an isomorphism.
(b) Coker ϕM,N = HomA(M,N).

Proof .

(a) Setting M = AA, we see that ϕA,N equals the composition of the three well-
known isomorphisms N ⊗A At −→ N ⊗ A defined by y ⊗ f �→ y ⊗ f (1),
N ⊗A A −→ N defined by y ⊗ a �→ ya and N −→ HomA(A,N) defined by
y �→ (a �→ ya) (for y ∈ N , f ∈ At and a ∈ A). The statement then follows
from the fact that we are dealing with k-functors.

(b) It suffices to prove that Im ϕM,N = P(M,N). Assume first that f ∈ Im ϕM,N ,
then, there exist y1, . . . , yn ∈ N and f1, . . . , fn ∈ Mt such that

f = ϕM,N

(
n∑

i=1

yi ⊗ fi

)
.

Thus, for x ∈ M , we have

f (x) =
n∑

i=1

yifi(x) = (y1, . . . , yn)

⎛
⎜⎝

f1
...

fn

⎞
⎟⎠ (x).

Now,

⎛
⎜⎝

f1
...

fn

⎞
⎟⎠ is a morphism from M to An, whereas the morphism

(y1, . . . , yn) : An −→ N is defined by left multiplication by the yi ∈ N ; thus, f

factors through An, which is projective (even free). Therefore, f ∈ P(M,N).
Conversely, let g ∈ P(M,N). There exist a projective module P and morphisms

g1 : M −→ P , g2 : P −→ N such that g = g2g1. Because N is finitely generated,
there exist m > 0 and an epimorphism p : Am −→ N . The projectivity of P yields
g′

2 : P −→ Am such that g2 = pg′
2 and hence g = pg′

2g1. Let {e1, . . . , em} denote
the canonical basis of the free module Am; thus, p : Am −→ N can be considered
as a row matrix of elements of N of the form p = (p(e1), . . . , p(em)) where each
p(ei) acts by left multiplication on an element of A. Also, g′

2g1 : M −→ Am can

be expressed as a column matrix

⎛
⎜⎝

f1
...

fn

⎞
⎟⎠ where each fi is the composition of g′

2g1

with the ith projection from Am to A. Therefore,
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g = pg′
2g1

= (p(e1), . . . , p(em))

⎛
⎜⎝

f1
...

fm

⎞
⎟⎠

= ϕM,N

(
m∑

i=1

p(ei) ⊗ fi

)
∈ Im ϕM,N .

��
Corollary III.2.2. There exists a functorial morphism ψM,N : D HomA(M,N) −→
HomA(N, νM) that is an isomorphism whenever M is projective.

Proof . Indeed, the morphism ϕM,N : N ⊗A Mt −→ HomA(M,N) of
Lemma III.2.1 induces a morphism DϕM,N : D HomA(M,N) −→ D(N ⊗A Mt),
which can be composed with the adjunction isomorphism ηM,N :

D(N ⊗A Mt) = Homk(N ⊗A Mt, k)

∼= HomA(N, Homk(Mt , k))

= HomA(N, DMt)

= HomA(N, νM),

thus yielding the required morphism

ψM,N = ηM,N DϕM,N : D HomA(M,N) −→ HomA(N, νM).

The last statement follows from part (a) of Lemma III.2.1. ��
We also need an easy diagram chasing lemma.

Lemma III.2.3. Assume that we have a commutative diagram in mod A

L

u

f
M

v

g
N

w

L
f

M
g

N

where v is an isomorphism, the upper row is exact and the lower row satisfies g′f ′ =
0. Then the restriction of gv−1 to Ker g′ defines a morphism ϕ : Ker g′ −→ Ker w

such that
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(a) If g is surjective, then so is ϕ.
(b) If u is surjective, then Ker ϕ = Im f ′.
(c) If both g and u are surjective, then Ker w ∼= Ker g′

Im f ′ .

Proof . Because v is an isomorphism, to each x′ ∈ Ker g′ corresponds a unique
x ∈ M such that x′ = v(x). Then, ϕ(x′) = g(x) and ϕ(x′) ∈ Ker w because
wϕ(x′) = wg(x) = g′v(x) = g′(x′) = 0. This defines the required morphism ϕ.

(a) Let y ∈ Ker w. Because g is surjective, there exists x ∈ M such that y =
g(x). Then, x′ = v(x) belongs to Ker g′ because g′(x′) = g′v(x) = wg(x) =
w(y) = 0, and we clearly have ϕ(x′) = g(x) = y. Thus, ϕ is surjective.

(b) Assume x′ ∈ Im f ′. There exists a unique x ∈ M such that x′ = v(x). Because
u is surjective, there exists z ∈ L such that x′ = f ′u(z) = vf (z). Then, v(x) =
vf (z) implies x = f (z) and ϕ(x′) = g(x) = gf (z) = 0. So x′ ∈ Ker ϕ and
Im f ′ ⊆ Ker ϕ.

Conversely, let x′ ∈ Ker ϕ and x ∈ M be such that x′ = v(x). Then, g(x) =
ϕ(x′) = 0 and so x ∈ Ker g. Because the upper row is exact, there exists z ∈ L

such that x = f (z). Therefore, x′ = v(x) = vf (z) = f ′u(z) ∈ Im f ′. This
completes the proof that Ker ϕ = Im f ′.

(c) This follows easily from (a), (b) and the isomorphism theorem.
��

Observe that in (b), we did not need the surjectivity of u to prove that Ker ϕ ⊆
Im f ′. Also, g′f ′ = 0 says that the lower row is a complex. We have computed in
(c) its cohomology group at the middle term.

III.2.2 Proof of the formulae

We are now able to express the first extension space between two modules as (the
dual of) a stable Hom-space. These are the Auslander–Reiten formulae.

Theorem III.2.4 (The Auslander–Reiten formulae). Let M,N be A-modules.
Then, there exist isomorphisms

Ext1A(M,N) ∼= DHomA(τ−1N,M) ∼= DHomA(N, τM)

that are functorial in both variables.

Proof . We prove only the first isomorphism, because the second is proved in the
same way. As our functors are k-functors, it suffices to prove the statement assuming
N indecomposable noninjective. Because of Proposition III.1.10, there exists an
indecomposable nonprojective A-module L such that N = τL and L = τ−1N . Let

P1
p1−→ P0

p0−→ L −→ 0
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be a minimal projective presentation. Because of Lemma III.1.8, we have an exact
sequence

0 −→ τL −→ νP1
νp1−→ νP0

νp0−→ νL −→ 0.

Applying the functor HomA(M,−) yields a complex

0−→HomA(M, τL)−→HomA(M, νP1)
p∗

1−→ HomA(M, νP0)
p∗

0−→ HomA(M, νL)

where p∗
i = HomA(M, νpi) for i = 0, 1.

We know that νP1 and νP0 are injective so that νp1 : νP1 −→ νP0 is the begin-
ning of an injective coresolution of τL. To compute Ext1A(M, τL) = Ext1A(M,N),
we need one more injective term. Let j : νL −→ J be a monomorphism with J

injective. We get an exact sequence

0 −→ τL −→ νP1
νp1−→ νP0

jνp0−→ J

and, by definition,

Ext1A(M, τL) ∼= Ker HomA(M, jνp0)

Im HomA(M, νp1)
.

But now HomA(M, jνp0) = HomA(M, j) HomA(M, νp0). Because j is
a monomorphism, so is HomA(M, j) and hence Ker HomA(M, jνp0) =
Ker HomA(M, νp0) = Ker p∗

0 . We have thus proved that Ext1A(M, τL) ∼=
Ker p∗

0/ Im p∗
1 .

On the other hand, applying the right exact functor D HomA(−,M) to the given
minimal projective presentation of L yields an exact sequence

D HomA(P1,M)
p̃1−→ D HomA(P0,M)

p̃0−→ D HomA(L,M) −→ 0

where p̃i = D HomA(pi,M) for i = 0, 1.
To relate the latter exact sequence with the complex found before, we use the

functorial morphism ψ of Corollary III.2.2 and get a commutative diagram with the
upper row exact and the lower row a complex

Because of Corollary III.2.2, ψP1,M and ψP0,M are isomorphisms. Applying
Lemma III.2.3, we get
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Ext1A(M, τL) ∼= Ker p∗
0

Im p∗
1

∼= Ker ψL,M

= Ker(ηL,MDϕL,M)

= Ker(DϕL,M)

∼= D(Coker ϕL,M).

Because of Lemma III.2.1(b) we have Coker ϕL,M
∼= HomA(L,M); hence,

Ext1A(M,N) = Ext1A(M, τL)

∼= D(Coker ϕL,M)

∼= DHomA(τ−1N,M).

��

III.2.3 Application to almost split sequences

We next show how the Auslander–Reiten formulae provide the relation between the
end terms of an almost split sequence, and also a second existence proof for almost
split sequences.

Lemma III.2.5. Let M be an indecomposable A-module.

(a) If M is nonprojective, then the right and the left socles of the End M − End M-
bimodule D(End M) are simple and coincide.

(b) If M is noninjective, then the right and the left socles of the End M − End M-
bimodule D(EndM) are simple and coincide.

Proof . We only prove (a), because the proof of (b) is dual.
Clearly, End M has a natural End M − End M-bimodule structure. We claim that

its top as a left End M-module and its top as a right End M-module are simple.
Because M is indecomposable, End M is a local algebra. We claim that the

nonprojectivity of M implies that P(M,M) ⊆ rad End M: indeed, let h ∈
P(M,M), then there exist a projective module P and morphisms f : M −→ P

and g : P −→ M such that h = gf . Now, if h = gf /∈ rad End M , then h is
invertible and g a retraction, so that M is projective, a contradiction. Therefore,
h ∈ rad(End M), as required.

This implies that

rad(End M) = rad

(
End M

P(M,M)

)
= rad(End M)

P(M,M)
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and so

End M

rad(End M)
∼= End M/P(M,M)

rad(End M/P(M,M))
∼= End M

rad End M

is a skew field because End M is local. Now, a skew field is generated by each
nonzero element; hence, End M/ rad(End M) is simple as a left, or as a right,
End M-module. Because the canonical projection End M −→ End M is surjective,
it is also simple as a left, or as a right, End M-module.

We have shown that D(End M) has a simple socle either as a left, or as a right,
End M-module. These two socles coincide because they both correspond to the skew
field End M/ rad(End M). ��
Lemma III.2.6. Let M be an indecomposable A-module.

(a) If M is nonprojective and v : V −→ M is a radical morphism, then, for every
element ϕ of the socle of D(End M) we have DHomA(M, v)(ϕ) = 0.

(b) If M is noninjective and u : M −→ U is a radical morphism, then, for every
element ϕ of the socle of D(EndM) we have DHomA(M, v)(ϕ) = 0.

Proof . We only prove (a), because the proof of (b) is dual.
The morphism v : V −→ M induces a morphism

HomA(M, v) : HomA(M,V ) −→ HomA(M,M) = End M

and hence a morphism

DHomA(M, v) : D(End M) −→ DHomA(M,V )

as follows: if ϕ ∈ D(End M) then

DHomA(M, v)(ϕ) = ϕHomA(M, v).

We need to prove that, if ϕ ∈ soc D(End M), then ϕHomA(M, v) = 0. Let
u ∈ HomA(M,V ). Then, HomA(M, v)(u) = vu ∈ rad(End M) because v ∈
radA(V,M). Now, ϕ belonging to the socle yields

ϕvu ∈ soc D(End M) rad(End M) = rad(soc D(End M)) = 0

because the socle of D(End M) is simple. Thus, ϕvu = 0. ��
The reason for our interest in the End M − End M-bimodules D(End M) and

D(EndM) with M indecomposable comes from the Auslander–Reiten formulae,
which imply that:

(a) If M is nonprojective, then Ext1A(M, τM) ∼= D(End M).
(b) If M is noninjective, then Ext1A(τ−1M,M) ∼= D(EndM).
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The nonzero elements of the socle of D(End M) and D(EndM), such as, for
instance, the (duals of the) identity morphism 1M , correspond to nonsplit extensions.
We now prove that these extensions are almost split sequences.

Corollary III.2.7. Let M be an indecomposable A-module.

(a) If M is nonprojective and ξ : 0 −→ τM
f−→ E

g−→ M −→ 0 represents a
nonzero element of the socle of Ext1A(M, τM), then the sequence ξ is almost
split.

(b) If M is noninjective and ξ : 0 −→ M
f−→ E

g−→ τ−1M −→ 0 represents a
nonzero element of the socle of Ext1A(τ−1M,M), then the sequence ξ is almost
split.

Proof . We only prove (a), because the proof of (b) is dual.
Because M is indecomposable nonprojective, the module τM is indecomposable

owing to Proposition III.1.10. Applying Corollary II.3.13, it suffices to prove that
the morphism g is right almost split. Because the given sequence is not split, g is
not a retraction and therefore is a radical morphism. Let v : V −→ M be radical.
The functoriality in the Auslander–Reiten formulae yields a commutative square

D(EndAM)

DHomA(M,v)

∼=

∼=

Ext1A(M, τM)

Ext1
A(v,τM)

DHomA(M, V ) Ext1A(V, τM)

Because the given sequence ξ is a nonzero element of the socle, Lemma III.2.6
above gives Ext1A(v, τM)(ξ) = 0. This means that, if we take the fibered product of
the morphisms g and v, the upper sequence in the commutative diagram with exact
rows

0 tM
f

E

u

g
V

v

0

0 tM
f

E
g

M 0

is split. Let g′′ : V −→ E′ be such that g′g′′ = 1V . Then, ug′′ satisfies g(ug′′) =
(gu)g′′ = vg′g′′ = v. This proves that g is right almost split. ��

This corollary is obviously a second existence proof for almost split sequences.
But also, because of uniqueness, see Corollary II.2.32, it implies that, if 0 −→
L −→ M −→ N −→ 0 is almost split, then L ∼= τN and N ∼= τ−1L.
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III.2.4 Starting to compute almost split sequences

This subsection is devoted to three easy lemmata that are useful in practical
computations.

Lemma III.2.8. Let M be an indecomposable module.

(a) There exists a right minimal almost split morphism g : E −→ M . Also, E = 0
if and only if M is simple projective.

(b) There exists a left minimal almost split morphism f : M −→ E. Also, E = 0 if
and only if M is simple injective.

Proof . We only prove (a), because the proof of (b) is dual.
The first statement is just Corollary II.3.13. In particular, if M is projective and

g : E −→ M is right minimal almost split, then it is isomorphic to the inclusion of
rad M into M . Also, rad M = 0 if and only if M is simple projective. On the other
hand, if M is nonprojective and g : E −→ M is right minimal almost split, then g

is surjective, and so E 	= 0. ��
We now prove that every irreducible morphism whose target (or source) is inde-

composable nonprojective (or noninjective) corresponds to an irreducible morphism
starting (or ending, respectively) at the translate of this module.

Lemma III.2.9.

(a) Let N be indecomposable nonprojective. There exists an irreducible morphism
f : X −→ N if and only if there exists an irreducible morphism f ′ : τN −→
X.

(b) Let L be indecomposable noninjective. There exists an irreducible morphism
g : L −→ Y if and only if there exists an irreducible morphism g′ : Y −→
τ−1L.

Proof . We only prove (a) because the proof of (b) is dual.
Assume that there exists an irreducible morphism f : X −→ N . Because of

Theorem II.2.24, there exists h : Z −→ N such that (f, h) : X ⊕ Z −→ N is right
minimal almost split. Because N is indecomposable nonprojective, there exists an
almost split sequence

0 −→ τN

(
f ′
h′
)

−→ X ⊕ Z
(f h)−→ N −→ 0.

Therefore, f ′ : τN −→ X is irreducible. The proof is similar, if one starts with f ′
instead of f . ��

Finally, irreducible morphisms starting at a simple projective module have
projective targets, and dually.
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Lemma III.2.10.

(a) Let S be simple projective and M indecomposable. If f : S −→ M is
irreducible, then M is projective.

(b) Let S be simple injective and M indecomposable. If f : M −→ S is irreducible,
then M is injective.

Proof . We only prove (a), because the proof of (b) is dual.
Assume that M is nonprojective. Because of Lemma III.2.9, there exists an

irreducible morphism f ′ : τM −→ S. But S is simple; hence, f ′ is surjective.
Now, S is projective; hence, f ′ is a retraction and this contradicts the fact that it is
irreducible. ��

We show in an example how to apply these lemmata.

Example III.2.11. Let A be given by the quiver

αβ

γδ

2

1

3

4

bound by αβ = γ δ. The simple module S1 is projective and noninjective. Because of
Lemma III.2.10, every indecomposable target P of an irreducible morphism S1 −→
P is projective. Actually, the morphism S1 −→ P is a monomorphism whose image
is a direct summand of rad P . So, to find P , we need to find those indecomposable
projective A-modules that have S1 as a summand of the radical. Now,

P1 = S1 P2 = 2
1 P3 = 3

1 P4 =
4

2 3
1

.

Thus, S1 = rad P2 = rad P3. This shows that, up to scalars, there exist exactly two
irreducible morphisms starting with S1; namely, the inclusions j2 : S1 −→ P2 and

j3 : S1 −→ P3. But then, because of Theorem II.2.24, the morphism
(

j2
j3

)
: S1 −→

P2 ⊕P3 is left minimal almost split. Therefore, there exists an almost split sequence

0 −→ S1

( j2
j3

)
−→ P2 ⊕P3

( f2 f3)−→ t−1S1 −→ 0.

This allows to compute t−1S1. Indeed

t−1S1 = Coker
(

j2
j3

) ∼= P2 ⊕P3

S1
∼= 2 3

1
.
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Next, we wish to find the almost split sequence starting with P2. Assume that X

is indecomposable and we have an irreducible morphism P2 −→ X. Either X is
projective and then P2 is isomorphic to a direct summand of its radical, or else there
exists an irreducible morphism τX −→ P2. The first case is easily discarded: there
is no indecomposable projective A-module X that has P2 isomorphic to a direct
summand of its radical. Therefore, X is nonprojective. Because rad P2 = S1, the
only irreducible morphism of target P2 is (up to scalars) the inclusion S1 −→ P2.
Then, τX ∼= S1 and X ∼= τ−1S1. Because of Theorem II.2.24, this proves that the
morphism f2 : P2 −→ τ−1S1 is left minimal almost split. Thus, we get an almost
split sequence

0 −→ P2
f2−→ τ−1S1

g2−→ τ−1S1

P2

∼= S3 −→ 0.

Similarly, we have an almost split sequence

0 −→ P3
f3−→ τ−1S1

g3−→ τ−1S1

P3

∼= S2 −→ 0.

We finally compute the almost split sequence starting with τ−1S1 = 2 3
1

. This
module τ−1S1 is the (indecomposable) radical of P4 so we have an irreducible
morphism j : τ−1S1 −→ P4. This is easily seen to be the only irreducible
morphism, up to scalars, from τ−1S1 to an indecomposable projective module.
Otherwise, if X is indecomposable nonprojective and there exists an irreducible
morphism τ−1S1 −→ X, then there exists an irreducible morphism τX −→ τ−1S1.
But, because of the (already known) almost split sequence ending with τ−1S1, such
an irreducible morphism can only be a scalar multiple of f2 or f3. Then, τX ∼= P2
or τX ∼= P3 so that X ∼= τ−1P2 ∼= S3 or X ∼= τ−1P3 ∼= S2 respectively. Hence,

the morphism

(
j
g2
g3

)
: τ−1S1 −→ P4 ⊕ S3 ⊕ S2 is left minimal almost split and we

have an almost split sequence

0 −→ t−1S1

( j
g2
g3

)

−→ P4 ⊕S3 ⊕S2 −→ 4
2 3 −→ 0.

The alert reader will detect in this example an inductive method for computing
almost split sequences. We shall return to it later.

Exercises for Section III.2

Exercise III.2.1. Prove that the morphism ϕM,N : N ⊗A Mt −→ HomA(M,N)

defined in Lemma III.2.1 is an isomorphism whenever N is projective.
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Exercise III.2.2.

(a) Let M,N be indecomposable nonprojective. Prove that

HomA(M,N) ∼= HomA(τM, τN).

(b) Let M,N be indecomposable noninjective. Prove that

HomA(M,N) ∼= HomA(τ−1M, τ−1N).

Exercise III.2.3. Let M,N be indecomposable modules. Prove that

(a) If pd M ≤ 1, then Ext1A(M,N) ∼= D HomA(N, τM).
(b) If id N ≤ 1, then Ext1A(M,N) ∼= D HomA(τ−1N,M).
(c) If pd M ≤ 1 and id N ≤ 1, M is nonprojective and N is noninjective, then

HomA(N, τM) ∼= HomA(τ−1N,M).

(d) If pd M ≤ 1, id τN ≤ 1 and N is nonprojective, then

HomA(τN, τM) ∼= HomA(N,M).

(e) If pd τ−1M ≤ 1, id N ≤ 1 and M is noninjective, then

HomA(τ−1N, τ−1M) ∼= HomA(N,M).

Exercise III.2.4. Let A be a hereditary algebra. Prove the following.

(a) We have an isomorphism of functors τ ∼= Ext1A(−, A).

(b) mod A is equivalent to the full subcategory of mod A consisting of all modules
that have no projective direct summand.

(c) mod A is equivalent to the full subcategory of mod A consisting of all modules
that have no injective direct summand.

Exercise III.2.5. Let M be an indecomposable nonprojective A-module. Prove
that the functors HomA(M,−) and TorA1 (−, Tr M) from mod A to mod k are
isomorphic.

Exercise III.2.6. Let M be an indecomposable module. Prove that

(a) If M is nonprojective, then EndM is a skew field if and only if EndτM is a skew
field and, in this case, any nonsplit short exact sequence 0 −→ τM −→ E −→
M −→ 0 is almost split.

(b) If M is noninjective, then EndM is a skew field if and only if Endτ−1M is a
skew field and, in this case, any nonsplit short exact sequence 0 −→ M −→
F −→ τ−1M −→ 0 is almost split.
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Exercise III.2.7. Let 0 −→ L −→ M −→ N −→ 0 be an almost split
sequence and P a nonzero projective module. Prove that the following assertions
are equivalent:

(a) P is isomorphic to a direct summand of M .
(b) There exists an irreducible morphism P −→ N .
(c) There exists an irreducible morphism L −→ P .
(d) L is isomorphic to a direct summand of rad P .
(e) There is an indecomposable direct summand R of rad P such that N ∼= τ−1R.
(f) If v : V −→ N is a radical epimorphism, then P is isomorphic to a direct

summand of V .

Exercise III.2.8. Let 0 −→ L
f−→ M

g−→ N −→ 0 be a short exact sequence.
Prove that the following are equivalent:

(a) It is almost split.
(b) L ∼= τN and g is right almost split.
(c) N ∼= τ−1L and f is left almost split.

Exercise III.2.9. Let 0 −→ L
f−→ M

g−→ N −→ 0 be an almost split sequence.
Prove that:

(a) M is projective if and only if g is a projective cover.
(b) M is injective if and only if f is an injective envelope.

Exercise III.2.10. Let S be a simple module. Prove that:

(a) If S is projective noninjective, then pd(τ−1S) = 1 and End(τ−1S) is a skew
field.

(b) If S is injective nonprojective, then id(τS) = 1 and End(τS) is a skew field.

Exercise III.2.11.

(a) Let M be indecomposable nonprojective and X arbitrary. Prove that
f : τM −→ X is a section provided that the induced morphism
Ext1A(M, f ) : Ext1A(M, τM) −→ Ext1A(M,X) is a monomorphism.

(b) Let M be indecomposable noninjective and Y arbitrary. Prove that
g : Y −→ τ−1M is a retraction provided that the induced morphism
Ext1A(g,M) : Ext1A(τ−1M,M) −→ Ext1A(Y,M) is a monomorphism.

Exercise III.2.12. Let I be an indecomposable injective, and P an indecomposable
projective A-module. Prove that there exists no irreducible morphism I −→ P .

Exercise III.2.13. For each bound quiver below, consider the corresponding alge-
bra and

(a) Compute the almost split sequences starting at Pi and at τ−1Pi for i = 1, 2, 3, 4.
(b) Compute the almost split sequences ending at Ii and at τIi for i = 1, 2, 3, 4.
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(i)

1

2 4

3

(ii) 1 2 3

4

αβ = 0αβ

(iii)

αβ

γδ

2

1

3

4

III.3 Examples of constructions of almost split sequences

III.3.1 The general case

In general, constructing an almost split sequence is a difficult exercise. There
is, however, a technique that is implicit in the proofs of Theorem II.3.10 and
Proposition II.3.11. Namely, assume that we want to construct an almost split
sequence ending with a given indecomposable nonprojective A-module N . We start
by constructing a minimal projective presentation

P1
p1−→ P0

p0−→ N −→ 0

Let ξN : HomA(−, N) −→ D HomA(N,−) be the unique functorial morphism that
has the simple functor SN as its image. We denote by

αP0 : D HomA(P0,−) −→ HomA(−, νP0)

the functorial isomorphism induced by the Nakayama functor, see Lemma I.1.19.
Let u : N −→ νP0 be a morphism making the following diagram commutative
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HomA(−, N)
HomA(−,u)

ξN

HomA(−, ν P0)
α −1

P0

∼= DHomA(P0, −)
HomA(p0, −)

DHomA(N, −) 0.

The existence of such a morphism u follows from the projectivity of HomA(−, N) in
the category Fun A, and from Yoneda’s lemma II.3.1. We then construct the fibered
product M of the morphisms u : N −→ νP0 and νp1 : νP1 −→ νP0.

The upper row in the commutative diagram with exact rows

0 L
f

M

g

g
N

u

0

0 L ν P1
ν p1 ν P0

is an almost split sequence ending with N , as we now state.

Lemma III.3.1. If the morphism u is chosen as shown above, then the short exact
sequence

0 −→ L
f−→ M

g−→ N −→ 0

obtained by taking M as the fibered product of the morphisms u and νp1 is almost
split.

Proof . This follows directly from the proofs of Theorem II.3.10 and Proposi-
tion II.3.11. ��

The fibered product M and the morphism g can be computed as the kernel term
in the exact sequence

0 −→ M

(g

g′
)

−→ N ⊕ νP1
(u νp1)−→ νP0.

However, once one computes the module M and the morphism g, then it may
become necessary to decompose M into its indecomposable summands (and hence
g into its restriction to the summands). Carrying out this decomposition is either
very difficult or tedious. No general technique seems to be known, and it can
only be done efficiently in “small enough” examples. Our objective in this section
is to present some instances where the computation of almost split sequences is
reasonably easy.
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III.3.2 Projective–injective middle term

We look here at the situation where an almost split sequence has a projective–
injective module as summand of its middle term. Our main result in this subsection
is the following.

Proposition III.3.2. Let 0 −→ L
f−→ M

g−→ N −→ 0 be an almost split
sequence, and write M = ⊕t

i=1Mi with the Mi indecomposable. Then,

(a) If Mi is projective and Mj is injective, then i = j and Mi is projective–injective.
(b) At most one of the indecomposable summands of M is projective–injective.
(c) If M admits an indecomposable projective–injective module P as a direct

summand, then this sequence is isomorphic to

0 −→ rad P

(
u
p

)

−→ P ⊕ rad P

soc P

(q v)−→ P

soc P
−→ 0

where u, v are the inclusions and p, q the projections. In addition, the
summands of M other than P are neither projective nor injective.

Proof .

(a) Assume that i 	= j . Comparing lengths, we have l(L) < l(Mi) and l(N) <

l(Mj ). Therefore,

l(L) + l(N) < l(Mi) + l(Mj ) ≤
t∑

k=1

l(Mk) = l(L) + l(N),

a contradiction. Hence, i = j and Mi = Mj is projective–injective.
(b) Suppose that Mi,Mj are projective–injective. Because Mi is projective and Mj

is injective, the reasoning made in (a) yields Mi = Mj .
(c) Write the sequence as

0 −→ L

(
f1
f2

)

−→ P ⊕ M ′ (g1 g2)−→ N −→ 0

with M ′ in general decomposable. The projectivity of P implies that L is a
direct summand of its radical. However, because P is also indecomposable
injective, it has a simple socle, and therefore its radical rad P also has a simple
socle. This implies that rad P is indecomposable and thus L ∼= rad P , and the
morphism f1 : L −→ P is isomorphic to the inclusion u : rad P −→ P .
Dually, N ∼= P/ soc P has simple top and the morphism g1 : P −→ N is
isomorphic to the projection q : P −→ P/ soc P . Now we have
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l(M ′) = l(L) + l(N) − l(P )

= l(rad P) + l(P/ soc P) − l(P )

= l(P ) − 2,

because l(rad P) = l(P/ soc P) = l(P ) − 1. In particular, f2 : L −→ M ′
is surjective. But now, because rad P has a simple socle, then it has, up to
isomorphism, exactly one quotient of length l(P ) − 2 = l(rad P) − 1, namely
its quotient rad P/ soc P by its simple socle. Therefore, M ′ ∼= rad P/ soc P

and f2 is isomorphic to the projection p : rad P −→ rad P/ soc P . Similarly,
g2 : M ′ −→ N is isomorphic to the inclusion v of rad P/ soc P as the unique
maximal submodule of P/ soc P .

The last statement follows from the fact that, because of (a), M ′ = rad P/ soc P

has neither projective nor injective summands. ��
We point out that although rad P and P/ soc P are indecomposable, the term

rad P/ soc P is, in general, decomposable and may in fact have an arbitrary number
of direct summands, see Exercise VI.4.2 below.

Example III.3.3. Let A be given by the quiver

αβ

γδ

2

1

3

4

bound by αβ = γ δ. Here,

P4 = I1 =
4

2 3
1

is indecomposable projective–injective. The radical of P4 is rad P4 = 2 3
1 whereas

its quotient by the socle is P4/ soc P4 = 4
2 3 . Finally, rad P4/ soc P4 = S2 ⊕ S3, so

we get an almost split sequence

0 −→ 2 3
1 −→ 4

2 3
1

⊕2⊕3 −→ 4
2 3 −→ 0

where the morphisms are either inclusions or projections. This is the sequence we
obtained at the end of Example III.2.11.



128 III Constructing almost split sequences

III.3.3 Almost split sequences for Nakayama algebras

We recall from Subsection I.2.4 that an algebra A is a Nakayama algebra if all
its indecomposable projective and injective modules are uniserial. We have also
seen that, if N is an indecomposable A-module, then there exist an indecomposable
projective A-module P and an integer t ≥ 0 such that N ∼= P/ radt P . We now
describe the almost split sequence ending with N .

Proposition III.3.4. Let A be a Nakayama algebra and N = P/ radt P an
indecomposable nonprojective A-module. Then the almost split sequence ending
with N is isomorphic to the sequence

0 −→ rad P

radt+1 P

(
i
p

)

−→ P

radt+1 P
⊕ rad P

radt P

(q j)−→ P

radt P
−→ 0

where i, j are the inclusions and p, q the projections.

Proof . Clearly, the sequence in the statement is exact and nonsplit. In addition, both
end terms are uniserial and hence indecomposable. Because of Corollary II.3.13, it
suffices to prove that the morphism (q j) is right almost split.

Let v : V −→ P/ radt P be a radical morphism. We may assume without loss of
generality that V is indecomposable (and then v is simply a nonisomorphism). We
consider two cases.

(a) If v is not surjective, then its image is contained in the unique maximal
submodule rad P/ radt P of P/ radt P . Therefore, in this case, v factors through
the middle term.

(b) If, on the other hand, v is surjective then, because V is also uniserial, it
must have the same top as P/ radt P . It follows from the description of the
indecomposable A-modules, see Theorem I.2.25, that V ∼= P/ rads P with
s > t . But then, v clearly factors through P/ radt+1 P and we are done.

��
There is a similarity between almost split sequences over Nakayama algebras

and almost split sequences with projective–injective middle terms. Indeed, letting
U = P/ radt+1 P , the almost split sequence in the proposition can be written as

0 −→ rad U −→ U ⊕ rad U

soc U
−→ U

soc U
−→ 0,

see Exercise III.3.4 below.

Corollary III.3.5. Let A be a Nakayama algebra and N an indecomposable
nonprojective A-module. Then, l(τN) = l(N).

Proof . If N = P/ radt P for some projective A-module P and some t > 0, then
τN ∼= rad P/ radt+1 P so that l(τN) = t = l(N). ��
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In particular, if S is simple, then so are τS, τ 2S, etc.

Example III.3.6. Let A be given by the quiver

1

2

3 γ

α β

bound by αβγ = 0. The indecomposable projective modules are

P1 =
1
2
3

P2 =

2
3
1
2
3

P3 =
3
1
2
3

We deduce a complete list of the isoclasses of indecomposable nonprojective
A-modules

P1
radP1

= 1 P2
radP2

= 2 P3
radP3

= 3

P1
rad2P1

= 1
2

P2
rad2P2

= 2
3

P3
rad2P3

= 3
1

P2
rad3P2

=
2
3
1

P3
rad3P3

=
3
1
2

P2
rad4P2

=
2
3
1
2

Proposition III.3.4 above gives all almost split sequences in mod A

0 −→ 2 −→ 1
2 −→ 1 −→ 0 0 −→ 3 −→ 2

3 −→ 2 −→ 0

0 −→ 1 −→ 3
1 −→ 3 −→ 0 0 −→ 2

3 −→ 1
2
3

⊕2 −→ 1
2 −→ 0

0 −→ 3
1 −→ 2

3
1

⊕3 −→ 2
3 −→ 0 0 −→ 1

2 −→ 3
1
2

⊕1 −→ 3
1 −→ 0

0 −→ 3
1
2

−→
2
3
1
2

⊕ 3
1 −→ 2

3
1

−→ 0 0 −→ 1
2
3

−→
3
1
2
3

⊕ 1
2 −→ 3

1
2

−→ 0

0 −→
3
1
2
3

−→
2
3
1
2
3

⊕ 3
1
2

−→
2
3
1
2

−→ 0
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where the morphisms are either inclusions or projections. The reader will notice that
P2 = I3 is projective–injective; thus, the last sequence provides an example of an
almost split sequence with a projective–injective middle term.

Example III.3.7. A particularly interesting example of a Nakayama algebra is the
algebra A = k[t]/ 〈tn〉, with n ≥ 2. It is given by the quiver

α

bound by αn = 0. In this case, a complete list of the isoclasses of indecomposable
A-modules is obtained as follows. Let I = 〈t〉 / 〈tn〉 be the unique maximal ideal
of A and thus its radical. Then, because A is indecomposable projective, the list is
A,A/I,A/I 2, . . . , A/In−1. The almost split sequence ending with A/I t , where t

is such that 1 ≤ t ≤ n − 1, is of the form

0 −→ A

I t
−→ A

I t+1 ⊕ A

I t−1 −→ A

I t
−→ 0.

If t = n−1, then the middle term is indecomposable and equal to A/In−2, whereas,
if t = 1, then the middle term has the projective–injective module AA as a direct
summand. In particular, for every indecomposable nonprojective A-module M , we
have τM ∼= M .

III.3.4 Examples of almost split sequences over bound quiver
algebras

Example III.3.8. Let A be given by the quiver

αβ

γδ

2

1

3

4

bound by αβ = γ δ. We wish to compute the almost split sequences ending and
starting in the simple module S3, which is neither projective nor injective.

We first compute τS3. The projective cover morphism q : P3 −→ S3 has as a
kernel S1 = P1, so that a minimal projective presentation of S3 is

0 −→ P1
p−→ P3

q−→ S3 −→ 0
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where p is the inclusion morphism. In particular, pd S3 ≤ 1. Applying the
Nakayama functor yields an exact sequence

0 −→ tS3 −→ I1
np−→ I3.

Now

I1 =
4

2 3
1

and I3 = 4
3 .

Up to scalars, there is exactly one nonzero morphism I1 −→ I3: it is surjective

with kernel P2 = 2
1 . Thus, τS3 ∼= P2. The middle term M of the almost split

sequence ending with S3 is the fibered product of the morphisms

S3

u

I1
νp

I3

In our case, there is exactly one nonzero morphism S3 −→ I3 up to scalars, namely
the inclusion of S3 as the socle of I3. Then, M is the kernel term in the short exact
sequence

0 −→ M −→ I1 ⊕ S3
(νp,u)−→ I3 −→ 0.

Indeed, (νp, u) is surjective because so is νp. We claim that M = 2 3
1 . Clearly, the

composition factors of M are S1, S2, S3. Moreover, P2 = 2
1 lies in the kernel of

νp and is a proper submodule of M . On the other hand, (νp, u) maps diagonally
the direct sum of the two composition factors of I1 ⊕ S3 isomorphic to S3 onto the
socle of I3. Therefore, the kernel must contain a copy of S3 located above S1 in its
composition series. This may be viewed in the following sequence

0 −→ 2 3
1 −→ 4

2 3
1

⊕3 −→ 4
3 −→ 0.

Thus, the required almost split sequence is:

0 −→ 2
1 −→ 2 3

1 −→ 3 −→ 0.

Dually, to compute τ−1S3, we start with a minimal injective copresentation
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0 −→ S3
i−→ I3

j−→ I4 −→ 0

where i is the inclusion and j is the projection. Applying ν−1 yields an exact
sequence

P3
−1 j−→ P4 −→ −1S3 −→ 0.

P3 = 3
1 , P4 =

4
2 3
1

and P3 = 3
1 .

Up to scalars, there is exactly one nonzero morphism P3 −→ P4: it is injective

with cokernel 4
2 = I2. Thus, τ−1S3 ∼= I2. The middle term N of the almost split

sequence starting with S3 is the amalgamated sum of the morphisms

P3
ν −1 j

v

P4

S3

In our case, there is, up to scalars, exactly one nonzero morphism P3 −→ S3. This
is the projection of P3 onto its top. So N is the cokernel term in the short exact
sequence

So N = 4
2 3 and the required almost split sequence is

In the previous example, we used essentially the fact that, between two of the
modules under consideration, the morphism space is at most one dimensional.
Obviously, this is not the case in general. To perform the calculation, we need, given
an indecomposable nonprojective module M , and a minimal projective presentation

P1
p−→ P0 −→ M −→ 0,
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to compute the image of the morphism p : P1 −→ P0 under the action of the
Nakayama functor ν, because τM = Ker(νp). Dually, if M is indecomposable
noninjective and has a minimal injective copresentation

0 −→ M −→ I1
j−→ I1,

we need to compute ν−1j , because τ−1M = Coker(ν−1j).
We show how to solve the first problem, leaving the dual case to the reader,

see Exercise III.3.5. Given projective modules P1 = e1A, P2 = e2A (with e1, e2
idempotents), we have

HomA(P2, P1) ∼= HomA(e2A, e1A) ∼= e1Ae2

and the isomorphism is given by left multiplication by an element w ∈ e1Ae2. That
is, every morphism e2A −→ e1A is of the form e2a �→ wa ∈ e1A, for some
w ∈ e1Ae2. In particular, the image of e2 is exactly w.

We also remind the reader that, given an idempotent e ∈ A, we have canonical
isomorphisms μ : eA ⊗A DA −→ eDA given by e ⊗ f �−→ ef and ϕ : eDA −→
D(Ae) given by ef �−→ f (·e) where the latter is the linear form ae �−→ f (ae).

Lemma III.3.9. Let p : e2A −→ e1A be given by left multiplication by w ∈ e1Ae2.
Then, νp : D(Ae2) −→ D(Ae1) is the morphism f �→ (ae1 �→ f (aw)).

Proof . Let η : D(Ae2) −→ D(Ae1) be defined by f �→ (ae1 �→ f (aw)). Because
ν = − ⊗A DA, it suffices to prove that the following square commutes.

e2A ⊗A DA
p⊗DA

μ2 ∼=

e1A ⊗A DA

μ1∼=

e2DA

φ φ2 ∼=

e1DA

1∼=

D(Ae2)
η

D(Ae1)

where the μi, ϕi are the canonical isomorphisms. For this, let e2 ⊗ f ∈ e2A ⊗ DA,
then

ηϕ2μ2(e2 ⊗ f ) = ηϕ2(e2f ) = ηf (·e2)

is the linear form mapping ae1 ∈ Ae1 to f (awe2) = f (aw). On the other hand,

ϕ1μ1(p⊗DA)(e2⊗f ) = ϕ1μ1(p(e2)⊗f ) = ϕ1μ1(w⊗f ) = ϕ1(wf ) = (wf )(·e1)

is the linear form that maps ae1 ∈ Ae1 to (wf )(ae1) = f (aw). The proof is
complete. ��
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Example III.3.10. Let A be given by the quiver

1 2
α

β

bound by βαβα = 0. We want to compute τS1. For this purpose, we first need a
minimal projective presentation. The projective cover of S1 is clearly

P1 =

1
2
1
2
1

with kernel equal to the indecomposable projective P2. Thus, the required minimal
projective presentation is

0 −→ P2
p−→ P1 −→ S1 −→ 0,

where p is the inclusion. Identifying paths to their classes modulo the binding ideal,
the basis of A as a k-vector space is {e1, e2, α, β, αβ, βα, αβα, βαβ, αβαβ}, that
of P1 is {e1, α, αβ, αβα, αβαβ} and that of P2 is {e2, β, βα, βαβ}. We see easily
that the morphism p is given by left multiplication by α. Applying the Nakayama
functor ν yields an exact sequence

0 −→ τS1 −→ I2
νp−→ I1.

Denoting by {e∨
1 , e∨

2 , α∨, β∨, (αβ)∨, (βα)∨, (αβα)∨, (βαβ)∨, (αβαβ)∨} the dual
basis to the above basis of A, we see that the basis of I2 is {e∨

2 , α∨, (βα)∨, (αβα)∨},
see Lemma I.2.17. Because of the previous lemma, νp maps f ∈ D(Ae2) to the
linear form ae1 �→ f (aα). Thus,

(νp)(e∨
2 )(ae1) = e∨

2 (aα) = 0 for every a ∈ A

(νp)(α∨)(ae1) = α∨(aα) 	= 0 because α∨(α) = 1
(νp)(βα)∨)(ae1) = (βα)∨(aα) 	= 0 because (βα)∨(βα) = 1

and similarly (νp)(αβα)∨(ae1) 	= 0. This proves that τS1 = Ker(νp) is the one-
dimensional vector space spanned by e∨

2 ; thus, τS1 ∼= S2.

Example III.3.11. Let A be the Kronecker algebra with quiver

1 2
α

β
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and consider the indecomposable nonprojective module

We wish to construct the almost split sequence ending with M .
A minimal projective presentation of M is

0 −→ P1
p−→ P2 −→ M −→ 0

where the morphism p is given by left multiplication by β. Applying the Nakayama
functor ν yields an exact sequence

0 −→ τS1 −→ I1
νp−→ I2.

Denote by {e∨
1 , e∨

2 , α∨, β∨} the dual basis to the k-basis of A given by {e1, e2, α, β},
we have I2 = D(Ae2) = S2, whereas I1 = D(Ae1) has a basis {e∨

1 , α∨, β∨} and is
in fact the module

The morphism νp : I1 −→ I2 maps f ∈ D(Ae2) to the linear form ae1 �→ f (aβ).
Thus, we see that

(νp)(e∨
2 )(ae1) = e∨

2 (aβ) = 0 for every a ∈ A

(νp)(α∨)(ae1) = α∨(aβ) = 0 for every a ∈ A

whereas (νp)(β∨)(ae1) = β∨(aβ) 	= 0 because β∨(β) = 1.

A basis of τM is {e∨
2 , α∨} so that

In particular, τM ∼= M .
Next, the middle term H of the almost split sequence

0 −→ τM −→ H −→ M −→ 0
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is the fibered product of the morphisms

where u is as in Subsection III.3.1. Again, up to scalars, there is a unique morphism
u : M −→ I2 = S2: it is the surjection with kernel S1. Hence, H is the kernel term
in the short exact sequence

0 −→ H −→ I1 ⊕ M
(Dp′

1,u)−→ S2 −→ 0.

We get that H is the module

and, in particular, is indecomposable. This module H will appear again below in
Subsection IV.4.1.

Exercises for Section III.3

Exercise III.3.1. State and prove the dual of Lemma III.3.9.

Exercise III.3.2. Let A be given by the quiver

α

β
1 2

bound by βαβ = 0.

(a) Applying the techniques of this subsection, for each indecomposable nonpro-
jective A-module M , compute τM by exhibiting in each case a k-basis of this
module.

(b) Same question for τ−1M , where M is indecomposable noninjective.

Exercise III.3.3. Same exercise if the quiver is bound by βαβαβ = 0.

Exercise III.3.4. Let A be a Nakayama algebra and U an indecomposable A-
module.
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(a) Prove that the support of U , namely the full subquiver

supp U = {x ∈ (QA)0 | Uex 	= 0}

is a nonzero path w in QA.
(b) Let α, β be the unique arrows (if they exist) such that t (α) = s(w) and s(β) =

t (w). Prove that the quotient of A by the ideal I generated by the classes of the
paths αw and wβ is a Nakayama algebra.

(c) Prove that U is a projective–injective A/I -module.

Exercise III.3.5. Let A be an algebra, and e1, e2 idempotents of A. Given a
morphism j : D(e1A) −→ D(e2A), compute the morphism ν−1j : e1A −→ e2A.

Exercise III.3.6. For each of the following Nakayama algebras given by their
bound quivers, give a complete list of all the almost split sequences.

(a) 1 2 3 4 5 6
ε δ γ β α αβ = 0 βγδ = 0,

(b)

γ

αβ = 0
1

3

3

αβ

(c)
α

β
αβ αβ = 01 2

(d)

1 2

34

α

β

γ

δ αβ = 0, βγ = 0

Exercise III.3.7. An algebra A is called selfinjective if the module AA is injective.
Prove that each of the following bound quiver algebras A is selfinjective and
compute the almost split sequences with a projective–injective middle term.

(a) αβ = γδ, δεα = 0, βεγ = 0

β α

γδ

ε
2

1 4

3

(b) 1 2 3
β
γ

α

ε
αβ = 0, εγ = 0, εβ = δαγ, βδ = 0,
γε = 0, βε = γδ α, αγ ε = 0, εγδ = 0

δ

(c) 1 2 3
β

γα
αβ = γδ, βγ = 0, δα = 0

δ
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(d) 1 3
β

γ

λα = μβ = νγ , αμ = 0, αν = 0, βλ = 0,
βν = 0, γλ = 0, γμ = 0

2

4

α

μ

λ

ν

III.4 Almost split sequences over quotient algebras

III.4.1 The change of rings functors

Let A be a finite dimensional algebra, E a two-sided ideal in A and B = A/E. Our
aim in this section is to derive relations between the Auslander–Reiten translations
τA in mod A and τB in mod B. In this situation, we have the four classical change
of rings functors, namely the functors − ⊗A BB and HomA(BBA,−) from mod A

to mod B, and the corresponding functors − ⊗B AA and HomB(AAB,−) from
mod B to mod A. There exist several adjunction relations between these functors,
but moreover we have the following lemma.

Lemma III.4.1. There exist isomorphisms of functors

(a) − ⊗B AA ⊗A BB
∼= 1mod B .

(b) HomA(BBA, HomB(AAB,−)) ∼= 1mod B .

Proof . The proof of (a) is clear.
For (b), we observe that, for every B-module M , we have functorial isomor-

phisms

HomA(BBA, HomB(AAB, M)) ∼= HomB(BBA ⊗A AB, M) ∼= HomB(BBB,M) ∼= MB.

��
It is important to observe that the reverse compositions of these functors are not

isomorphic to the identity in mod A. Another important observation is that, because
B = A/E, there exist a surjective morphism of algebras ϕ : A −→ B, so that
every B-module M can be viewed as an A-module when one defines multiplication
as follows

xa = xϕ(a)

for x ∈ M and a ∈ A. Then, mod B is fully embedded in mod A and can actually
be identified with the full subcategory of mod A consisting of all the A-modules M

that are annihilated by E, that is, such that ME = 0, see Exercise III.4.2.
Corresponding to an arbitrary A-module M , there are two modules that are

clearly annihilated by E, namely, the quotient module M∗ = M/ME and the
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submodule M∗ = {x ∈ M : xE = 0}. Thus, M∗ and M∗ are B-modules. We prove
that these constructions are other versions of using the change of rings functors.

Lemma III.4.2. Let M be an A-module. We have functorial isomorphisms:

(a) M ⊗A B ∼= M∗.
(b) HomA(B,M) ∼= M∗.

Proof .

(a) Applying M ⊗A − to the short exact sequence of left A-modules 0 −→ E
i−→

A
p−→ B −→ 0 yields a commutative diagram with exact rows

M ⊗A E
M⊗i

f

M ⊗A A
M⊗p

f

M ⊗A B

f

0

0 ME M M
ME 0

where i and p are respectively the inclusion and the projection, f : M⊗AA −→
M is the well-known functorial isomorphism given by the multiplication map
m ⊗ a �→ ma (for m ∈ M , a ∈ A), f ′ : M ⊗A E −→ ME is the induced
morphism defined also by m⊗a �→ ma (for m ∈ M , a ∈ E) and f ′′ is obtained
by passing to cokernels. In particular, the surjectivity of p and the fact that f

is an isomorphism imply that f ′′ is surjective. On the other hand, ME is, by
definition, generated by all products ma with m ∈ M and a ∈ E. Therefore,
f ′ is also surjective. But then the snake lemma gives that f ′′ is injective and is
thus an isomorphism.

(b) Let p : AA −→ BA denote, as in (a), the canonical projection. There is a well-
known functorial isomorphism f : HomA(A,M) −→ M given by f : u �−→
u(1) for u ∈ HomA(A,M). We claim that the image of the composition of f

with HomA(p,M) : HomA(B,M) −→ HomA(A,M) lies in M∗. Indeed, if
ϕ ∈ HomA(B,M), then

f HomA(p,M)(ϕ) = f (ϕp) = ϕp(1).

For every a ∈ E we have

ϕp(1)a = ϕp(a) = 0

because E = Ker p. This shows that ϕp(1) ∈ M∗ as required, implying the
existence of a morphism f ′ : HomA(B,M) −→ M∗ making the following
square commutative



140 III Constructing almost split sequences

HomA(B, M)
HomA( p, M)

f

HomA(A, M)

f

M∗
j

M

where j is the inclusion. In particular, the injectivity of f and that of
HomA(p,M) imply that of f ′. There remains to show that f ′ is also surjective.
Let m ∈ M∗, then m ∈ M and mE = 0. Because m ∈ M , there exists ϕm ∈
HomA(A,M) such that ϕm(1) = m. But then ϕm(E) = ϕm(1)E = mE = 0.
Because E = Ker p, there exists ϕ′

m : B −→ M such that ϕ′
mp = ϕm.

Hence, f ′(ϕ′
m) = ϕ′

mp(1) = ϕm(1) = m. This shows that f ′ is surjective
and completes the proof.

��

III.4.2 The embedding of mod B inside mod A

Using the assumptions and notation of the previous subsection, we prove that
every B-module, which, when considered as an A-module annihilated by E, is A-
projective, must also be B-projective (and dually).

Lemma III.4.3. Let M be a B-module.

(a) If M is projective in mod A, then it is also projective in mod B.
(b) If M is injective in mod A, then it is also injective in mod B.

Proof . We only prove (a), because the proof of (b) is dual.
If f : L −→ L′ is an epimorphism in mod B, then it is also an epimor-

phism in mod A. Because M is projective, HomA(M, f ) : HomA(M,L) −→
HomA(M,L′) is surjective. Because mod B is a full subcategory of mod A, we have
HomA(M,N) = HomB(M,N) for every B-module N . Hence, HomB(M, f ) =
HomA(M, f ) is surjective. ��

We now see how, starting from a right minimal almost split morphism in mod A

ending in a B-module, we can construct the corresponding right minimal almost
split morphism in mod B ending in the same module.

Lemma III.4.4.

(a) Let N be an indecomposable B-module and g : M −→ N right minimal almost
split in mod A. Then its composition g∗ with the inclusion M∗ −→ M is right
almost split in mod B. In addition, if N is nonprojective, then g∗ is surjective.

(b) Let L be an indecomposable B-module and f : L −→ M left minimal almost
split in mod A. Then, its composition f ∗ with the projection M −→ M∗ is left
almost split in mod B. In addition, if L is noninjective, then f ∗ is injective.

Proof . We only prove (a), because the proof of (b) is dual.
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We have a commutative diagram in mod A

M∗

j
g∗

M
g

N

in which M∗ and N are B-modules.
First, we prove that g∗ is a radical morphism in mod B. If it is not, then it is a

retraction and there exists g′ : N −→ M∗ such that g∗g′ = 1N . But then gjg′ = 1N ;
thus, g is itself a retraction, a contradiction.

Let v : V −→ N be a radical morphism in mod B. Then, v is also radical in
mod A (for, otherwise, v would be a retraction in mod A and hence in mod B) and
there exists v′ : V −→ M such that v = gv′. But V is a B-module; hence, for every
x ∈ V we have v′(xE) = 0. Therefore, the image of v′ lies in M∗, providing a
morphism v′′ : V −→ M∗ such that v = gjv′′ = g∗v′′. This completes the proof
that g∗ is right almost split in mod B.

Because of Corollary II.2.22, the morphism g∗ is isomorphic to a morphism of
the form (g0, 0) : M0 ⊕ L −→ N with g0 : M0 −→ N right minimal almost split in
mod B. Clearly, if N is nonprojective in mod B, then g0 is surjective. Hence, so is
g∗. ��

In the situation of (a) above, if N is projective, then g0 is the (proper) inclusion
of a summand of the radical of N into N . In this case g∗ is not surjective.

Let N be an indecomposable nonprojective B-module. Because of Lemma III.4.3
above, it is also indecomposable nonprojective in mod A. Therefore, there exist two
almost split sequences ending with N , one in mod A and the other in mod B. We
explain the relation between them.

Proposition III.4.5. Let 0 −→ L
f−→ M

g−→ N −→ 0 be an almost split
sequence in mod A.

(a) Assume that N is an indecomposable nonprojective B-module, then there exists
a short exact sequence in mod B

0 −→ L∗
f∗−→ M∗

g∗−→ N −→ 0

that is isomorphic to the direct sum of an almost split sequence

0 −→ L0
f0−→ M0

g0−→ N −→ 0

in mod B with a sequence of the form 0 −→ X −→ X −→ 0 −→ 0.
(b) Assume that L is an indecomposable noninjective B-module. Then, there exists

a short exact sequence in mod B

0 −→ L
f ∗

−→ M∗ g∗
−→ N∗ −→ 0
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that is isomorphic to the direct sum of an almost split sequence

0 −→ L
f 0

−→ M0 g0

−→ N0 −→ 0

in mod B with a sequence of the form 0 −→ 0 −→ Y −→ Y −→ 0.

Proof . We only prove (a), because the proof of (b) is dual.
First, N∗ = N , because N itself is a B-module. Applying the functor

HomA(B,−) to the given almost split sequence in mod A yields a left exact
sequence

0 −→ L∗
f∗−→ M∗

g∗−→ N∗ = N,

where f∗ = HomA(B, f ) and g∗ = HomA(B, g). Because N is nonprojective in
mod B, Lemma III.4.4 yields that g∗ is surjective and right almost split. In particular,
it is not a retraction; thus, we have a nonsplit short exact sequence

0 −→ L∗
f∗−→ M∗

g∗−→ N −→ 0.

In addition, as seen in the proof of Lemma III.4.4, g∗ is isomorphic to a morphism
of the form (g0, 0) : M0 ⊕ X −→ N with g0 right minimal almost split in mod B.
This shows that the latter short exact sequence is actually isomorphic to a sequence
of the form

0 −→ L0 ⊕ X

(
f0 0
0 1X

)

−→ M0 ⊕ X
(g0,0)−→ N −→ 0.

In particular, it is isomorphic to the direct sum of an exact sequence of the form
0 −→ X −→ X −→ 0 −→ 0 and another of the form

0 −→ L0
f0−→ M0

g0−→ N −→ 0

with g0 right minimal almost split in mod B. Then, because of Theorem II.2.31, the
latter sequence is almost split in mod B. ��

It is possible to prove that the module X in (a) above is actually a projec-
tive B-module, whereas the module Y in (b) is an injective B-module. This is
Exercise III.4.1 below. Recall that we denote by τA and τB the Auslander–Reiten
translations in mod A and mod B respectively.

Corollary III.4.6.

(a) If N is an indecomposable nonprojective B-module, then τBN is isomorphic to
a submodule of τAN .
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(b) If L is an indecomposable noninjective A-module, then τ−1
B L is isomorphic to

a quotient of τ−1
A L.

Proof . We only prove (a), because the proof of (b) is dual.
Using the notations in the proof of Proposition III.4.5, the statement follows from

the inclusion morphisms

τBN ∼= L0 ↪→ L0 ⊕ X = L∗ ↪→ L = τAN.

��
Corollary III.4.7. Let M,N be indecomposable B-modules. If there exists an
irreducible morphism f : M −→ N in mod A, then this morphism remains
irreducible in mod B.

Proof . Because of Theorem II.2.24, there exists a right minimal almost split
morphism in mod A of the form (f, g) : M ⊕X −→ N . Now we have (M ⊕X)∗ ∼=
HomA(B,M⊕X) ∼= HomA(B,M)⊕HomA(B,X) ∼= M∗⊕X∗ ∼= M⊕X∗ because
M is a B-module. For the same reason, f∗ = f : M −→ N and it is a nonzero
morphism. Therefore, there exists a direct sum decomposition X∗ ∼= X0 ⊕ Y such
that (f, g)∗ : M ⊕ X∗ −→ N is of the form (f, g0, 0) : M ⊕ X0 ⊕ Y −→ N with
(f, g0) right minimal almost split in mod B. This implies the statement. ��
Example III.4.8. Let A be given by the quiver

αβ

γδ

2

1

3

4

bound by αβ = γ δ. Let E = Ae3A be the two-sided ideal of A generated by the
idempotent e3. As a vector space, E has the basis {e3, γ, δ, γ δ} whereas A has the
basis {e1, e2, e3, e4, α, β, γ, δ, αβ = γ δ}. Therefore, B = A/E is given by the
quiver

1 2 4

bound by αβ = 0. Indeed, this relation comes from the fact that in A we have
αβ = γ δ and γ δ ∈ E.
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We have previously computed in Example III.2.11 the almost split sequence
ending in S2 in mod A

Because S2 is also a simple B-module, the almost split sequence in
mod B ending with S2 is a direct summand of the short exact sequence

Because the functor (−)∗ is actually HomA(B,−), a direct calculation gives

Thus, the corresponding almost split sequence in mod B is

In this example, the module X of Proposition III.4.5(a) is equal to zero.

III.4.3 Split-by-nilpotent extensions

Again, let A be a finite dimensional k-algebra, E a two-sided ideal of A and B =
A/E. Given a B-module M , we ask whether one can relate the Auslander–Reiten
translates of the modules M ⊗A B and HomB(A,M) in mod A with those of M

itself in mod B. This problem is difficult in general, but there is one case where
computation is actually possible.

Let B be a finite dimensional algebra and E a B–B-bimodule, finite dimensional
over k. We wish to consider the case where elements of E may be multiplied
together. We say that E is equipped with an associative product if there exists a
morphism of B–B-bimodules E ⊗B E −→ E, denoted as x ⊗ y �−→ xy, for
x, y ∈ E, such that x(yz) = (xy)z for all x, y, z ∈ E.

Definition III.4.9. Let B be an algebra and E a B–B-bimodule equipped with an
associative product. The k-vector space

A = B ⊕ E = {(b, x) | b ∈ B, x ∈ E}

together with the multiplication defined by

(b, x)(b′, x′) = (bb′, bx′ + xb′ + xx′)
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for (b, x), (b′, x′) ∈ A is an algebra called a split extension of B by E. In addition,
if E is nilpotent as an ideal in A, then A is called a split-by-nilpotent extension.

In this case, there is a short exact sequence of k-vector spaces

0 −→ E
i−→ A

p

−−→←−−
q

B −→ 0

where the projection p : (b, x) �−→ b is an algebra morphism having as a section
the inclusion q : b �−→ (b, 0), which is also an algebra morphism. Thus, the above
sequence is split as a short exact sequence of B–B-bimodules, but not as a short
exact sequence of (left or right) A-modules.

The assumption that E is nilpotent amounts to saying that E ⊆ rad A. As an
easy consequence, rad B = (rad A)/E: indeed, (rad A)/E is nilpotent as an ideal in
B = A/E; in addition,

A/E

(rad A)/E
∼= A

rad A

is semisimple. This establishes our claim. Incidentally, the isomorphism A/ rad A ∼=
B/ rad B implies that the projection p : A −→ B induces a bijection between
the idempotents of A and those of B. In the sequel, we always assume that E is
nilpotent.

Example III.4.10. Let A be an elementary algebra. As seen in Subsection I.2.2,
A = A/ rad A ⊕ rad A. Therefore, A is a split extension of the semisimple algebra
A/ rad A by the nilpotent bimodule rad A.

Example III.4.11. Assume B = k and E = k2 equipped with the (obviously
associative) product

(b, c)(b′, c′) = (0, bb′)

for b, c, b′, c′ ∈ k. It is easy to prove that the split extension of B by E is isomorphic
to the truncated polynomial algebra A = k[t]/〈t3〉, that is, the algebra given by the
quiver

α

bound by α3 = 0.

Example III.4.12. Let A be given by the quiver
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1

2

3

4

β α

γδ

ρ

bound by αβ = 0, δγ = 0, ρ3 = 0. Let E = 〈α, ρ〉. Then, A is a split extension of
the algebra B given by the quiver

1

2

3

4

β

γδ

bound by δγ = 0.

As the previous examples show, if A is a split-by-nilpotent extension of B,
passing from A to B may be thought of as “dropping arrows” (according to certain
rules, which are not within the scope of these notes). On the other hand, the points
of the quiver (that is, the idempotents) remain the same, as mentioned above.

Let A be a split extension of B by the nilpotent bimodule E and M an A-module.
As seen in Subsection III.4.1, there exist a canonical epimorphism pM : M −→
M∗ and a canonical monomorphism jM : M∗ −→ M . We also recall that M∗ ∼=
M ⊗A B whereas M∗ ∼= HomA(B,M). We prove that pM and jM are respectively
superfluous and essential, in the sense of Example II.2.17.

Lemma III.4.13. Let M be an A-module. Then:

(a) The canonical epimorphism pM : M −→ M ⊗A B is superfluous.
(b) The canonical monomorphism jM : HomA(B,M) −→ M is essential.

Proof .

(a) It follows from Nakayama’s lemma that the canonical epimorphism f : M −→
M/M rad A is superfluous. Because E ⊆ rad A, there exists a canonical
epimorphism g : M/ME −→ M/M rad A such that f = gpM (here, we use
that, because of Lemma III.4.1, we have M/ME ∼= M ⊗A B). Let h : L −→ M

be such that pMh is surjective, then so is gpMh = f h. Now, f is superfluous.
Hence, h is surjective.

(b) To show that jM is essential, it suffices to prove that M∗ = Im jM intersects
every nonzero submodule of M , see Exercise II.2.3. Let L ⊆ M be a nonzero
submodule. Because E is nilpotent, there exists s ≥ 1 such that LEs−1 	= 0 but
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LEs = 0. Let l ∈ LEs−1 be a nonzero element. Then, lE = 0 yields l ∈ M∗.
This shows that M∗ ∩ L 	= 0.

��
Corollary III.4.14. Let M be an indecomposable B-module. Then,

(a) M ⊗B A is indecomposable in mod A.
(b) HomB(A,M) is indecomposable in mod A.

Proof . We only prove (a), because the proof of (b) is dual.
Assume M ⊗B A ∼= X1 ⊕ X2 in mod A. Then,

M ∼= M ⊗B A ⊗A B ∼= (X1 ⊗A B) ⊕ (X2 ⊗A B).

Because MB is indecomposable, we have either X1 ⊗A B = 0 or X2 ⊗A B = 0,
say the former. Because pX1 : X1 −→ X1 ⊗A B is superfluous, then X1 ⊗A B = 0
implies X1 = 0. Therefore, M ⊗B A is indecomposable. ��
Corollary III.4.15. Let M be a B-module. Then, there exist bijections between the
isoclasses of indecomposable summands of M in mod B and

(a) Those of M ⊗B A in mod A, given by N �→ N ⊗B A.
(b) Those of HomB(A,M) in mod A, given by N �→ HomB(A,N).

Proof . We only prove (a), because the proof of (b) is dual.
In view of Corollary III.4.14, it suffices to prove that N1 ∼= N2 if and only if

N1 ⊗B A ∼= N2 ⊗B A. Indeed, if N1 ∼= N2, then clearly N1 ⊗B A ∼= N2 ⊗B A.
Conversely, if N1 ⊗B A ∼= N2 ⊗B A, then N1 ⊗B A ⊗A B ∼= N2 ⊗B A ⊗A B and
the result follows from Lemma III.4.1. ��

Applying Corollary III.4.15 to BB and B⊗B A ∼= AA, we get a bijection between
the isoclasses of indecomposable projective B- and A-modules given by PB �→
P ⊗B A. Dually, there is a bijection between the isoclasses of indecomposable
injective B- and A-modules, given by IB �→ HomB(A, I).

We now look at the correspondence between projective covers (injective
envelopes) in mod B and mod A.

Lemma III.4.16. Let M be a B-module.

(a) If f : P −→ M is a projective cover in mod B, then

f ⊗B A : P ⊗B A −→ M ⊗B A

is a projective cover in mod A.
(b) If g : M −→ I is an injective envelope in mod B, then

HomB(A, g) : HomB(A,M) −→ HomB(A, I)

is an injective envelope in mod A.
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Proof .

(a) Viewing P and M as A-modules, we have a commutative diagram of A-modules
and epimorphisms

P ⊗B A
f ⊗BA

pP⊗BA

M ⊗B A

pM⊗BA

P
f

M

where the vertical morphisms are those of Lemma III.4.13(a). Because P ⊗B A

is projective and f ⊗B A is an epimorphism, it suffices to prove that f ⊗B A

is superfluous. Let h : X −→ P ⊗B A be such that (f ⊗B A)h is surjective,
then so is fpP⊗BAh = pM⊗BA(f ⊗B A)h. Because both f and pP⊗BA are
superfluous, h is surjective.

(b) The morphism Dg : DI −→ DM is a projective cover in mod Bop. Applying
(a) yields that A ⊗B Dg : A ⊗B DI −→ A ⊗B DM is a projective cover in
mod Aop. The result then follows from the commutative diagram

A ⊗B DI
A⊗BDg

∼=

A ⊗B DM

∼=

DHomB(A, I)
DHomB(A,g)

DHomB(A, M)

where the vertical maps are functorial isomorphisms.
��

Corollary III.4.17. Let M be a B-module.

(a) If P1
p1−→ P0

p0−→ M −→ 0 is a projective presentation in mod B, then so is

P1 ⊗B A
p1⊗BA−→ P0 ⊗B A

p0⊗BA−→ M ⊗B A −→ 0 in mod A. In addition, if the
first presentation is minimal, then so is the second.

(b) If 0 −→ M
jo−→ I0

j1−→ I1 is an injective copresentation in mod B, then so

is 0 −→ HomB(A,M)
HomB(A,jo)−→ HomB(A, I0)

HomB(A,j1)−→ HomB(A, I1) in
mod A. In addition, if the first copresentation is minimal, then so is the second.

Proof . We only prove (a), because the proof of (b) is dual.
The first statement is obvious. Assume that the first presentation is minimal.

Because of Lemma III.4.16, p0 ⊗B A : P0 ⊗B A −→ M ⊗B A is a projective
cover in mod A. Also, because p1 : P1 −→ p1(P1) is a projective cover in mod B,
then p1 ⊗B A : P1 ⊗B A −→ (p1 ⊗B A)(P1 ⊗B A) ∼= Ker(p0 ⊗B A) is a projective
cover in mod A. ��

We are now able to state and prove the result announced at the beginning of this
subsection.
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Proposition III.4.18. Let M be a B-module. Then,

(a) τA(M ⊗B A) ∼= HomB(A, τBM).
(b) τ−1

A HomB(A,M) ∼= (τ−1
B M) ⊗B A.

Proof . We only prove (a), because the proof of (b) is dual.
If e ∈ B is a primitive idempotent and P = eB, then we have functorial

isomorphisms

HomA(P ⊗B A,A) = HomA(eB ⊗B A,A) ∼= HomA(eA,A) ∼= Ae ∼= A ⊗B Be
∼= A ⊗B HomB(eB,B) = A ⊗B HomB(P,B).

Therefore, for every projective B-module P , we have a functorial isomorphism

ϕ : HomA(P ⊗B A,A) ∼= A ⊗B HomB(P,B).

Let P1
p1−→ P0

p0−→ M −→ 0 be a minimal projective presentation of M in mod B.
Because of Corollary III.4.17,

P1 ⊗B A
p1⊗BA−→ P0 ⊗B A

p0⊗BA−→ M ⊗B A −→ 0

is a minimal projective presentation of M ⊗B A in mod A. Applying HomA(−, A)

yields the upper row in the commutative diagram with exact rows

We deduce that Tr(M ⊗B A) ∼= A ⊗B Tr M in mod Aop and so we get, in mod A,

τA(M⊗B A) = D Tr(M⊗B A) ∼= D(A⊗B Tr M) ∼= HomB(A, D Tr M) = HomB(A, τBM).

��
Example III.4.19. Let B be given by the quiver

γ
α

β
3

2

1

4
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bound by αγ = 0, and A by the quiver

γ
α

δ

β
3

2

1

4

bound by αγ = 0 and δαβδα = 0. It is easily seen that A is a split extension of the
algebra B by the B–B-bimodule E generated by the arrow δ. In addition, one has

whereas

from which we deduce

Indeed, writing A as a B-module amounts to deleting the arrow δ in the indecom-
posable projective A-modules, thus getting the direct sum decomposition

Writing AB = BB ⊕ EB , we get EB as required. Similarly, one has

whereas
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so that a calculation similar to the one above yields

Now, in mod B, the simple projective S4 = 4 is a radical summand of P3 = 3
2 4

and of no other indecomposable projective module. Therefore, we have an almost
split sequence in mod B.

and, in particular, τB

(
3
2

)
= 4. We wish to compute 3

2 ⊗B A and τA

(
3
2 ⊗B A

)
.

For this purpose, we consider the almost split sequence above as a minimal

projective presentation of M = 3
2 in mod B

We apply the right exact functor − ⊗B A, obtaining an exact sequence

Now, P4 ⊗B A and P3 ⊗B A are the indecomposable projective A-modules
corresponding to the points 4 and 3 respectively. We thus get

and therefore 3
2 ⊗B A ∼=

3
2
1
3
2
1

.
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To compute the Auslander–Reiten translate in mod A of the module 3
2 ⊗B A, we

recall that τB(3
2 ) = 4. Applying Proposition III.4.18, we need to find HomB(A, 4).

For this purpose we consider the minimal injective copresentation of 4

in mod B, to which we apply the left exact functor HomB(A,−) obtaining an exact
sequence

Now

from where we get

Exercises for Section III.4

Exercise III.4.1. Assume B = A/E, and 0 −→ L −→ M −→ N −→ 0 is an
almost split sequence in mod A. Prove that:

(a) If N is an indecomposable nonprojective B-module, then the short exact
sequence 0 −→ L∗ −→ M∗ −→ N −→ 0 is the direct sum of an almost
split sequence 0 −→ L0 −→ M0 −→ N −→ 0 and a sequence of the form
0 −→ P −→ P −→ 0 −→ 0, where P is a projective B-module.

(b) If L is an indecomposable noninjective B-module, then the short exact sequence
0 −→ L −→ M∗ −→ N∗ −→ 0 is the direct sum of an almost split sequence
0 −→ L −→ M0 −→ N0 −→ 0 and a sequence of the form 0 −→ 0 −→
I −→ I −→ 0, where I is an injective B-module.

Exercise III.4.2. Let B = A/E. Prove that there exist an equivalence between
mod B and the full subcategory of mod A consisting of the modules M such that
ME = 0.

Exercise III.4.3. Let B = A/E. Prove the following facts.

(a) A module X is projective in mod A if and only if:
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(i) X ⊗A B is projective in mod B, and
(ii) X ⊗A B ⊗B A ∼= X in mod A.

In addition, X is indecomposable if and only if X ⊗A B is indecomposable too.
(b) A module Y is injective in mod A if and only if:

(i) HomA(BA, Y ) is injective in mod B, and
(ii) HomB(AB, HomA(BA, Y )) ∼= Y in mod A.

In addition, Y is indecomposable if and only if HomA(B, Y ) is indecomposable
too.

Exercise III.4.4. Let B = A/E. Prove that, for each A-module X, we have short
exact sequences

(a) 0 −→ TorA1 (X,B) −→ X ⊗A E −→ XE −→ 0,
(b) 0 −→ X/X∗ −→ HomA(E,X) −→ Ext1A(B,X) −→ 0.

Exercise III.4.5. Let A be a split extension of an algebra B by the nilpotent
bimodule E. Prove that, for a B-module M

(a) pd(M ⊗B A) ≤ 1 if and only if pd MB ≤ 1 and HomB(DE, τBM) = 0.
(b) id HomB(A,M) ≤ 1 if and only if id MB ≤ 1 and HomB(τ−1

B M,E) = 0.

Exercise III.4.6. Let A be a split extension of an algebra B by the nilpotent
bimodule E. Prove that, for a B-module M

(a) pd(M ⊗B A) ≤ 1 and Ext1A(M ⊗B A,M ⊗B A) = 0 if and only if pd MB ≤ 1,
Ext1B(M,M) = 0, HomB(DE, τBM) = 0 and HomB(M ⊗B E, τAM) = 0.

(b) id HomB(A,M) ≤ 1 and Ext1A(HomB(A,M), HomB(A,M)) = 0 if and only
if id MB ≤ 1, Ext1B(M,M) = 0, HomB(τ−1

B M, HomB(E,M))) = 0 and
HomB(τ−1

B M,E) = 0.

Exercise III.4.7. Let B be given by the quiver

2 3 4

1

αγ
β

and A by the quiver

2 3 4

1

αγ
β η
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bound by βη = 0, ηαβ = 0, ηαγ = 0. Prove that A is a split extension of B by a
nilpotent bimodule E such that E2 = 0. Compute the right and the left B-module
structures of E. Compute M ⊗B A, where

Exercise III.4.8. Let A be a split extension of an algebra B by a bimodule E. Prove
that:

(a) The quiver QA of A has the same points as the quiver QB of B.
(b) The set of arrows from x to y in QA equals the set of arrows from x to y in QB

plus

dimk ex

(
E

E. rad B + rad B.E + E2

)
ey

additional arrows.

Exercise III.4.9. A split extension by a bimodule E such that E2 = 0 is called
a trivial extension. Let A be a trivial extension of B by E, and C the category
consisting of the pairs (M, ϕM) where M is a B–B-bimodule and ϕM : M ⊗B

E −→ M is a morphism in mod B such that ϕM(ϕM ⊗ E) = 0 ; a morphism
f : (M, ϕM) −→ (N, ϕN) is a morphism f in mod B from M to N such that
f ϕM = ϕN(f ⊗ E). Prove that mod A is equivalent to C .

Exercise III.4.10. Let A =
(

C 0
M k

)
be the one-point extension of an algebra C by a

C-module M , see Exercise I.2.21. Prove that A is the split extension of B = C × k
by some bimodule E. Compute the right and the left B-module structures of E.

Exercise III.4.11. In each of the following examples, prove that A is the split
extension of B by some bimodule E. Compute the right and the left B-module
structures of E.

(a) 21 3
αβ

B

A βγ αβ γ = 0.

γ

1 32β α
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(b) B

αβ

γ

2

αγ = 0,
1 3 4

A
αβ

γ

2

αγ = 0, δαβ δα = 0.

δ

31 4

(c) B αβ = 0,21 3
αβ

A αβ = 0, γαγ = 0.
γ

21 3α
β

(d) B αβ γ = 0,4321
γ β α

A
αβ γ = 0, βγδ = 0,
γδ α = 0, δαβ = 0.4321

γ β α

δ

Exercise III.4.12. Let A be as in Exercise III.4.11(c). For each indecomposable
B-module M , compute M ⊗B A and τA(M ⊗B A).

Exercise III.4.13. Let A be as in Exercise III.4.11(d). Let M = 3
2 and N = 3

1 .

(a) Prove that the almost split sequence in mod B ending with M remains almost
split in mod A.

(b) Prove that the almost split sequence in mod B ending with N does not remain
almost split in mod A. In this case, compare the two sequences.



Chapter IV
The Auslander–Reiten quiver of an
algebra

Let A be a finite dimensional k-algebra. As seen in Corollary II.3.13, every inde-
composable A-module is the source, and the target, of an almost split morphism, and
thus fits into an almost split sequence. The knowledge of all almost split sequences
implies the knowledge of all indecomposable A-modules, up to isomorphism, and
all irreducible morphisms. We have seen several examples and some suggest the
possibility of constructing all almost split sequences over an algebra, using a
recursive procedure, see, for instance, Example III.2.11 or Example III.3.8. To carry
out this recursion efficiently, it is practical to arrange the results in the form of
a quiver. This is the Auslander–Reiten quiver of the algebra, which we define in
the present chapter. We give a construction procedure for the simplest Auslander–
Reiten quivers, and study the shape of some of their connected components. In the
third section, we show how the Auslander–Reiten quiver can be used for computing
radical morphisms, and in the fourth, we compute the Auslander–Reiten quiver of
the Kronecker algebra.

As usual, we assume throughout that A is a finite dimensional k-algebra, but here
in this chapter as well as in the rest of the book, we assume that the base field k is
algebraically closed. The reason is that, as we shall see, thanks to the assumption,
several statements take on a simpler form and in particular, almost split sequences
and irreducible morphisms are easier to visualise directly in the Auslander–Reiten
quiver.

IV.1 The Auslander–Reiten quiver

IV.1.1 The space of irreducible morphisms

We know that the morphisms occurring in almost split sequences are just the
irreducible morphisms between indecomposable modules. Now, if M,N are
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indecomposable A-modules, a morphism f : M −→ N is irreducible if and only if
it belongs to radA(M,N) \ rad2

A(M,N), see Lemma II.2.2. Therefore, the quotient
vector space radA(M,N)/ rad2

A(M,N) can be considered as a measure for the set
of irreducible morphisms from M to N . This leads to the following definition.

Definition IV.1.1. Let M,N be indecomposable A-modules. The space of irre-
ducible morphisms is the k-vector space

IrrA(M,N) = radA(M,N)

rad2
A(M,N)

.

Our first objective is to describe a basis of this space. Because each irreducible
morphism can be completed to a left, and also to a right, minimal almost split
morphism, it is reasonable to use the latter to construct the required basis.

We need some notation. Let M = ⊕t
i=1M

mi

i be an A-module, with the Mi

indecomposable and pairwise nonisomorphic (that is, Mi 	∼= Mj for i 	= j ). For each
i, with 1 ≤ i ≤ t , we denote by Mi1, . . . ,Mimi

the different copies of Mi occurring
in the above decomposition of M . In this notation, we have M = ⊕t

i=1(⊕mi

j=1Mij ),
and Mij � Mkl if and only if i 	= k. Then, a morphism f : L −→ M induces,
for each pair (i, j), a morphism fij : L −→ Mij obtained by composing f with
the projection M −→ Mij . Also, a morphism g : M −→ N induces morphisms
gij : Mij −→ N by composing the inclusion morphisms Mij −→ M with g.

Proposition IV.1.2. Let L,N be indecomposable and M as above.

(a) A morphism f : L −→ M is left minimal almost split if and only if

(i) for each i, the set of residual classes

{fi1 + rad2
A(L,Mi), . . . , fimi

+ rad2
A(L,Mi)}

is a basis of IrrA(L,Mi), and
(ii) if Irr(L,M ′) 	= 0 with M ′ indecomposable, then there exists i such that

M ′ ∼= Mi .

(b) A morphism g : M −→ N is right minimal almost split if and only if

(i) for each i, the set of residual classes

{gi1 + rad2
A(Mi,N), . . . , gimi

+ rad2
A(Mi,N)}

is a k-basis of IrrA(Mi,N), and
(ii) if Irr(M ′, N) 	= 0 with M ′ indecomposable, then there exists i such that

M ′ ∼= Mi .

Proof . We only prove (a) because the proof of (b) is dual.
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Necessity. Because of Corollary II.2.25, each fij is irreducible, so that fij ∈
radA(L,Mi) \ rad2

A(L,Mi). Because (ii) follows directly from Theorem II.2.24, it
remains to prove that the classes fij = fij + rad2

A(L,Mi) constitute a basis of
IrrA(L,Mi).

We first show their linear independence. Suppose
∑mi

j=1 λijfij = 0 in
IrrA(L,Mi), where the λij are scalars. Assume that there exists j such that λij 	= 0.
Then, the morphism λ = (λi1, . . . , λimi

) : M
mi

i −→ Mi is a retraction. Indeed, an
associated section is (0, . . . , 0, λ−1

ij , 0, . . . , 0)t : Mi −→ M
mi

i , where λ−1
ij occurs in

the coordinate j . Let fi = (fi1, . . . , fimi
)t : L −→ M

mi

i , then λfi = ∑mi

i=1 λijfij

is irreducible, because of Corollary II.2.25. But this contradicts the hypothesis that
it belongs to rad2

A(L,Mi). Therefore, λij = 0 for all j , and the fij are linearly
independent.

We next prove that the fij generate the k-vector space IrrA(L,Mi). Let h ∈
radA(L,Mi). Because f : L −→ M is left almost split, there exists u : M −→ Mi

such that h = uf . Decomposing M into its indecomposable summands, this equality
becomes

h =
t∑

l=1

ml∑
j=1

uljflj

where ulj : Mlj −→ Mi is the composition of u with the inclusion Mlj −→ M .
First, assume l 	= i. Then, Mlj 	= Mi and so ulj ∈ radA(Mlj ,Mi). Because flj ∈
radA(L,Mlj ), we have uljflj ∈ rad2

A(L,Mi). On the other hand, if l = i, then ulj

is an endomorphism of Mi . Because End Mi is local, and the field k is algebraically
closed, we have End Mi/ rad(End Mi) ∼= k. Therefore, there exist αij ∈ k and
u′

ij ∈ rad(End Mi) such that, for every j with 1 ≤ j ≤ mi ,

uij = αij 1Mi
+ u′

ij .

Because fij ∈ radA(L,Mi), we have u′
ij fij ∈ rad2

A(L,Mi). Passing to residual
classes, we have

h =
t∑

l=1

ml∑
j=1

uljflj =
mi∑

j=1

αijflj .

This completes the proof that the fij form a basis of IrrA(L,Mi) and thus the proof
of the necessity part.

Sufficiency. Let f ′ : L −→ M ′ be left minimal almost split and M ′ =
⊕s

j=1M
′
j

m′
j where the M ′

j are indecomposable and pairwise nonisomorphic.
Because of (ii), for each j , we have M ′

j
∼= Mi for some i. Because m′

j =
dimk IrrA(L,M ′

j ) = dimk IrrA(L,Mi) = mi , we get that M ′ ∼= M . On the other

hand, fij 	= 0 implies fij ∈ radA(L,Mi) \ rad2
A(L,Mi), that is, it is irreducible.
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Therefore, f itself is irreducible and so is radical (because L is indecomposable,
see Lemma II.2.2). Hence, there exists h : M ′ −→ M such that f = hf ′. Because
f ′ is not a section, h must be a retraction and in particular, an epimorphism. But
M ′ ∼= M; hence, h must be an isomorphism. ��

The hypothesis that k is algebraically closed was used essentially in the proof
of the necessity part to show that the induced morphisms generate the space of
irreducible morphisms. An immediate but useful consequence of this result is the
following corollary.

Corollary IV.1.3. Let 0 −→ L −→ ⊕t
i=1M

mi

i −→ N −→ 0 be an almost split
sequence with the Mi indecomposable and pairwise nonisomorphic. Then, for each
i, we have

dimk IrrA(L,Mi) = mi = dimk IrrA(Mi,N).

Proof . This follows from parts (i) of both (a) and (b) of Proposition IV.1.2. ��
We warn the reader that this corollary does not hold true if the base field k is not

algebraically closed.

Example IV.1.4. Let A be the Kronecker algebra with quiver

1 2
α

β

Every irreducible morphism starting from the simple projective module P1 has as
a target a projective module, hence must be a morphism from P1 to P2 and therefore
the inclusion of P1 as a direct summand of rad P2. Because rad P2 = P 2

1 , there exist
exactly two linearly independent irreducible morphisms from P1 to P2, which are
two embeddings f1, f2 of P1 into rad P2. Therefore, a basis of IrrA(P1, P2) is given
by the residual classes f1, f2 of f1, f2 respectively, modulo rad2

A(P1, P2). Now,
rad2

A(P1, P2) = 0. For, assume that f = α1f1+α2f2 ∈ rad2
A(P1, P2), with α1, α2 ∈

k. Then, there exist a module M and radical morphisms h : P1 −→ M, g : M −→
P2 such that f = gh. Because g is radical, it is not surjective; hence, it factors
through rad P2 = P 2

1 , that is, there exists a morphism g′ : M −→ P 2
1 such that f

is the composition of g′h with the inclusion P 2
1 −→ P2. But P1 is simple; hence,

g′h : P1 −→ P 2
1 is injective, and every monomorphism P1 −→ P 2

1 is a section.
Therefore, h itself is a section; thus, it is not a radical morphism, a contradiction. In
this example, we have IrrA(P1, P2) ∼= radA(P1, P2) = HomA(P1, P2) spanned by
{f1, f2}. The almost split sequence starting with P1 is given by

0 −→ P1

(
f1
f2

)

−→ P 2
2 −→ N −→ 0.
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An easy calculation yields that N = P 2
2 /P1 is the indecomposable module

represented as follows

1 1

2

β

1

2

α βα

compare with Example II.4.3.

IV.1.2 Defining the Auslander–Reiten quiver

We define our main object of study in this chapter.

Definition IV.1.5. The Auslander–Reiten quiver Γ (mod A) of the algebra A is
defined as follows

(a) The points of Γ (mod A) are the isoclasses of indecomposable A-modules. For
an indecomposable A-module M , we denote simply its isoclass by M , thus
identifying them.

(b) For points M,N , the arrows are in bijection with the vectors of a basis of the
k-vector space IrrA(M,N). In particular, the number of these arrows equals
dimk IrrA(M,N).

Remark IV.1.6.

(a) Let M,N be indecomposable A-modules. There exists an arrow from M to N

in Γ (mod A) if and only if there exists an irreducible morphism from M to N ,
that is, if and only if IrrA(M,N) 	= 0.

(b) Because there are no irreducible morphisms from an indecomposable module
to itself, the Auslander–Reiten quiver has no loops.

(c) Let N be an indecomposable nonprojective A-module (so that τN exists) and
let M be indecomposable. It follows from Corollary IV.1.3 above that we have
m arrows from M to N in Γ (mod A) if and only if we have m arrows from τN

to M .
(d) Assume that we have an almost split sequence

0 −→ L
f−→ ⊕t

i=1M
mi

i

g−→ N −→ 0

with the Mi indecomposable and pairwise nonisomorphic. It follows from (c)
that it induces in Γ (mod A) a so-called mesh
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M1

L N

Mt

α 11

α 1 m1

αtmt

α t 1

β11

β1 m1

βt1

βtmt

where the arrows αij : L −→ Mi (with 1 ≤ j ≤ mi) are in bijection with the
morphisms induced from the compositions of f with the projections M −→
Mi , and the βij : Mi −→ N are in bijection with the compositions of g with the
inclusions Mi −→ M .

If N is indecomposable projective, then the right minimal almost split
morphism ending at N is the inclusion g : rad N −→ N . Setting rad N =
⊕t

i=1M
mi

i with the Mi indecomposable and pairwise nonisomorphic, we see
that g induces a “half-mesh”

M1

N

Mt

β11

β1 m1

βt1

βtmt

with the βij as before. Dually, if L is indecomposable injective and L/ soc L =
⊕t

i=1M
mi

i with the Mi indecomposable and pairwise nonisomorphic, the left
minimal almost split projection morphism f : L −→ L/ soc L induces a “half-
mesh”

M1

L

Mt

α 11

α1m1

αt mt

α t1
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(e) The situation described in (d) above shows that the Auslander–Reiten quiver has
a remarkable combinatorial structure. Every point, and every arrow, occurs in
a mesh or in a half-mesh; therefore, Γ (mod A) is the union of these meshes or
half-meshes. In particular, every point of Γ (mod A) is the source, and the target,
of at most finitely many arrows, a situation expressed by saying that Γ (mod A)

is locally finite, see Definition IV.1.17 below. In general, an Auslander–Reiten
quiver has infinitely many connected components. But the local finiteness of
the quiver implies that each of these components has at most countably many
points and countably many arrows. In particular, Γ (mod A) is a finite quiver if
and only if A is a representation-finite algebra. We prove later in Chapter VI
that, if an Auslander–Reiten quiver admits one finite connected component,
then this component is the totality of the quiver and therefore the algebra is
representation-finite. This is a theorem due to Auslander, which we admit for
the time being.

Before giving examples, we should mention that, in the important special case of
a representation-finite algebra, the Auslander–Reiten quiver has no multiple arrows.

Proposition IV.1.7. Let A be a representation-finite algebra and M,N indecom-
posable A-modules. Then

dimk IrrA(M,N) ≤ 1.

Proof . Assume that there exist indecomposable A-modules M,N such that
dimk IrrA(M,N) ≥ 2. Because every irreducible morphism is either a
monomorphism or an epimorphism, we must have dimkM 	= dimkN . Without
loss of generality, we assume that dimkM > dimkN . In particular, this implies that
N is not projective. Therefore, there exists an almost split sequence:

0 −→ τN −→ M2 ⊕ X −→ N −→ 0.

But then,

dimkτN = 2dimkM + dimkX − dimkN ≥ 2dimkM − dimkN > dimkM

due to our hypothesis that dimkM > dimkN . In addition, Corollary IV.1.3 yields

dimk IrrA(τN,M) = dimk IrrA(M,N) ≥ 2.

We may therefore repeat the procedure, replacing N by M and M by τN .
Inductively, we get that none of the modules τ iN or τ iM is projective and we have

dimkN < dimkM < dimkτN < dimkτM < . . . < dimkτ iN < dimkτ iM . . .

In particular, all these indecomposable modules are nonisomorphic. This contradicts
the assumption that A is representation-finite. ��
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Example IV.1.8. In the previous section, we proved that the Kronecker algebra A

1 2
α

β

has an almost split sequence of the form

0 −→ P1 −→ P 2
2 −→ τ−1P1 −→ 0

with τ−1P1 = 1 1 1
2 2

. This yields a mesh of the form

P2

P1 τ − 1P1

Because we have multiple arrows, the previous proposition says that A is
representation-infinite, a fact already seen in Example II.4.3.

IV.1.3 Examples and construction procedures

In general, constructing an Auslander–Reiten quiver can be extremely difficult:
indeed, its construction presupposes the knowledge of all (isoclasses of) inde-
composable modules and all irreducible morphisms between them. We have this
knowledge in the case of Nakayama algebras, which we illustrate in two examples.

Example IV.1.9. Let A be given by the quiver

2 3γ β1 α 4

bound by αβγ = 0. Applying Proposition III.3.4, we get all almost split sequences
in mod A

0 −→ 3 −→ 4
3 −→ 4 −→ 0 0 −→ 2 −→ 3

2 −→ 3 −→ 0

0 −→ 1 −→ 2
1 −→ 2 −→ 0 0 −→ 2

1 −→ 3
2
1

⊕2 −→ 3
2 −→ 0
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0 −→ 3
2 −→ 4

3
2

⊕3 −→ 4
3 −→ 0.

This gives rise to five meshes, which we draw below

1 2

2
1

2 3

3
2

3 4

4
3

2

3
2
1

2
1

3
2

3

4
3
2

3
2

4
3

It is customary, when drawing (a mesh of) the Auslander–Reiten quiver, to
put translates on the same horizontal line and to join them with a dashed line.
Assembling the meshes above in the obvious way, we get the Auslander–Reiten
quiver

1 2 3 4

2
1

3
2

4
3

3
2
1

4
3
2

Observe that

3
2
1

and
4
3
2

,

though lying on the same horizontal line, are not joined by a dashed line: indeed,
both are projective–injective and are not translates of each other.
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Example IV.1.10. Let A be as in Example III.3.6, that is, A is given by the quiver

1

2

3γ

α β

bound by αβγ = 0. We had computed all the almost split sequences in mod A:

0 −→ 2 −→ 1
2 −→ 1 −→ 0 0 −→ 1 −→ 3

1 −→ 3 −→ 0

0 −→ 3 −→ 2
3 −→ 2 −→ 0 0 −→ 2

3 −→ 1
2
3

⊕2 −→ 1
2 −→ 0

0 −→ 3
1 −→ 2

3
1

⊕3 −→ 2
3 −→ 0 0 −→ 1

2 −→ 3
1
2

⊕1 −→ 3
1 −→ 0

0 −→ 1
2
3

−→ 1
2 ⊕

3
1
2
3

−→ 3
1
2

−→ 0 0 −→ 3
1
2

−→ 3
1 ⊕

2
3
1
2

−→ 2
3
1

−→ 0

0 −→
3
1
2
3

−→ 3
1
2

⊕
2
3
1
2
3

−→
2
3
1
2

−→ 0

This gives rise to the following nine meshes

2 1

1
2

1 3

3
1

3 2

2
3

2

2
1

3

2
3

1
2

2
3
1

3

3
1

2
3

3
1
2

1

3
1

1
2
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3
2

1
2

3
1

1
3

2
3
2

1

1
3

2
3

1
2

3
1
2

1
2
3

1
3
2

2
3

3
1
2

1
3

2
3

2
3
1
2

where again the dashed lines denote the Auslander–Reiten translations. Assembling
these meshes, we get the Auslander–Reiten quiver

2
3

2

1
2
3

1
2

1

3
1
2

1
3

2
3

3
2

1

3
1

2
3
1
2

3 2

2
3
1

2
3

2
3

where one has to identify the two copies of the arrow 2
3 −→ 2 so that Γ (mod A)

lies on a cylinder.

We show a simple technique, known as knitting, which consists of using in a
systematic manner the following already proven facts and their duals.

1. The sources of Γ (mod A) are the simple projective modules, see Lemma III.2.8.
2. Every arrow in Γ (mod A) starting in a simple projective ends in a projective, see

Lemma III.2.10.
3. Every arrow in Γ (mod A) ending in a projective starts at an indecomposable

direct summand of its radical, see Example II.2.21 and Theorem II.2.24.
4. If an indecomposable module L is not injective and one knows the left minimal

almost split morphism f : L −→ M , then τ−1L ∼= Coker f , and, for every
indecomposable module X, we have n arrows L −→ X if and only if there exist
n arrows X −→ τ−1L, see Lemma III.2.9 and Corollary IV.1.3.

The knitting technique works perfectly well for all finite acyclic Auslander–
Reiten quivers. The technique can be written as a formal algorithm, but we prefer to
illustrate it using examples.
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Example IV.1.11. Let A be the path algebra of the quiver

The indecomposable projectives are

One sees immediately that rad P2 = P1 ⊕P3 whereas rad P4 = P3. Because of facts
1, 2 and 3 above, we have a full subquiver of Γ (mod A) of the form

1
2

1 3
3

4
3

Because all projectives are already present, we systematically apply fact 4, that
is, we compute cokernels successively until we reach the injectives. Because of fact

2, the left minimal almost split morphism starting at 1 is the inclusion 1 −→ 2
1 3 .

Therefore, τ−1(1) is the cokernel term in the almost split sequence

Similarly, τ−1(3) is the cokernel term in the almost split sequence

Thus, we get the meshes

1 2
3

2
1 3

3 2 4
31

4
3

We claim that the morphism 2
1 3 −→ 2

3 ⊕ 2 4
1 3 is left minimal almost split.

Indeed, if 2
1 3 −→ M is irreducible with M indecomposable, then either M
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is projective and 2
1 3 is an indecomposable summand of its radical, or we have

an irreducible morphism τM −→ 2
1 3 . Now, all the projectives have already

appeared; thus, M is not projective and we are in the second case. However, the

only irreducible morphisms of target 2
1 3 and of indecomposable source are the

inclusions 1 −→ 2
1 3 and 3 −→ 2

1 3 . Therefore, either M ∼= τ−1(1) = 2
3 or

M ∼= τ−1(3) = 2 4
1 3 . This establishes our claim.

Consequently, τ−1
(

2
1 3

)
is the cokernel term in the almost split sequence

Similarly, τ−1
(

4
3

)
is the cokernel term in the almost split sequence

0 −→ 4
3 −→ 2 4

1 3 −→ 2
1 −→ 0.

Thus, we get two new meshes

1 2
3

2
1 3

2 4
3

2 2 4
1 3

4
3

2
1

We repeat the procedure, finding two more meshes

1 2
3 4

2
1 3

2 4
3

3 2 4
1 3 2

4
3

2
1
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Now I1 = 2
1 , I2 = 2, I3 = 2 4

3 and I4 = 4. We have reached all the injectives
and thus finished knitting a connected component of Γ (mod A).

Because of Auslander’s theorem, see Remark IV.1.6(e) above, this component is
the whole Auslander–Reiten quiver.

Example IV.1.12. Let A be given by the quiver

2 3γ

β

1 δ 5α

4

bound by αγ δ = 0, βγ = 0. The indecomposable projectives are

P1 = 1 P2 = 2
1 P3 = 3

2
1

P4 = 4
3 P5 = 5

3
2

.

An acyclic quiver, such as the quiver of A, always has a sink; thus, A has at least
one simple projective module. Here, P1 = 1 is the only simple projective. Every
arrow of source P1 admits a projective as a target, and the target admits P1 as a
direct summand of its radical. This yields a unique arrow starting with P1, namely
the inclusion P1 −→ P2, which is thus left minimal almost split. Because P1 is not
injective, we get an almost split sequence

Let us search for the indecomposable modules X such that there exists an irreducible

morphism 2
1 −→ X. Either such an X is projective, and 2

1 is a direct summand of

its radical, or there exists an irreducible morphism τX −→ 2
1 . In the first case,

X ∼= P3 = 3
2
1

, and in the second X ∼= τ−1(1) = 2; hence, the almost split sequence

These two almost split sequences allow us to start the construction
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1 2

2
1

3
2

3
2
1

The module P3 = 3
2
1

= I1 is projective–injective. On the other hand, the

morphism 2 −→ 3
2 is left minimal almost split, so we have an almost split sequence

On the other hand, rad P5 = 3
2 and rad P4 = 3, from which we deduce the following

full subquiver of Γ (mod A)

1 2 3

4
3

2
1

3
2

2
3

1

5
3
2

1 2 3

4
3

2
1

3
2

2
3

1

5
3
2

All projectives have now appeared. Therefore, the construction proceeds by
constructing cokernels recursively until we reach the injectives.

This yields the whole Auslander–Reiten quiver

1 2 3 4 5
3

4
3 5

42
1

3
2

3
2
1

5
3
2

5
3
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Example IV.1.13. Let A be given by the quiver

bound by αβ = γ δ and λμ = βν. Here,

The knitting procedure gives easily Γ (mod A).

1

2
1

3
1

2 3
1

3

4
2 3
1

2
4
3 3

5
1

5
3 2

4
3
5

2 3
4 5
1

4
2 3

23
5
1

2 3
5

1

1
2 3
4 5
6

4
3

4 5
3

4
2

2 3
4 5
6

2 3
4 5
6

4

5

2
4 5

6
3

4 5
6

4 5
6 6

5
6

4
6

4

Example IV.1.14. Sometimes, the knowledge of one or more projective–injectives
is very helpful, because one may apply Proposition III.3.2. Let A be given by the
quiver

αβ

γδ

2

1

3

4μ
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bound by αβ = γ δ, γμ = 0 and μβ = 0. Here we have

Because P4 = I1 is projective–injective, we have an almost split sequence

hence the mesh

2 3
1

4
2 3
1

4
2 3

3

2

On the other hand, 2 is a direct summand of rad P3 = 2 ⊕ 1. The other summand
1 is also equal to rad P2 so we have a full subquiver of Γ (mod A)

2 3
1

3

2 3
1

4

2

2 3
4

1 2
3

1

1
2

We now have all projectives. We may continue knitting and deduce Γ (mod A)
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2 3
1

3

2 3
1

4

2

2 3
4

2
4

23 1
4 3

2 1
3

1

1
2

2 1
3 2

3
2

4
3

4

3

2 3
1

4

2

2 3
1

3 4
23 2 1

4 3 2

2 1
4 3 2

4 3
2 1

1
3

3 2
4 3

where one has to identify along the vertical dashed lines in such a way that the upper
part of Γ (mod A) lies on a Möbius strip.

Example IV.1.15. The previous example shows that even if the Auslander–Reiten
quiver is not acyclic, it is sometimes possible to use the knitting procedure together
perhaps with other ingredients to construct the quiver. We give another example of
this type.

Let A be given by the quiver

1 3

2

γ

α β

bound by βα = 0. Here

Although P1 = rad P2, the radical of P3 has two indecomposable summands P1
and S2 = 2, the latter being neither projective nor injective. We compute τ−1S2. We
have a minimal injective copresentation of S2:

0 −→ S2 −→ I2
j−→ I3 −→ 0

and, because of Lemma III.1.8, τ−1S2 = Coker ν−1j . Applying ν−1, we get
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P2
ν−1j−→ P3 −→ τ−1S2 −→ 0.

Because P2 = 2
1 and P3 = 3

2 1 , the morphism ν−1j maps the simple top of P2 to

the isomorphic summand of the socle of P3. Hence, τ−1S2 = Coker ν−1j = 3
1 and

we have an almost split sequence

Thus, we have the following full subquiver of Γ (mod A)

1

2

3
2 1

2
1

3
1

in which all projectives are present. Knitting gives Γ (mod A)

1

2

3
1 2

2
1

2
1
3
2

3
1

2 3
1

2

3

3
2

where one identifies along the vertical dotted lines.

For the next example, we recall from Subsection I.1.4 the definition of dimension
vector: if S1, . . . , Sn form a complete set of representatives of the isoclasses of
simple A-modules, and M is an indecomposable A-module, the integer μi(M)

denotes the number of composition factors of M that are isomorphic to Si for
each i with 1 ≤ i ≤ n. The dimension vector of M is then defined as dim M =
(μ1(M), . . . , μn(M)).

Example IV.1.16. Let A be the Kronecker algebra with quiver
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1 2
α

β

The knitting procedure, starting from the indecomposable projectives P1 = 1

and P2 = 2
1 1 gives a connected component of Γ (mod A)

M0 = 1

2
1 1M1 =

M2 = 1 1 1
2 2

M3 = 1 1 1 1
2 2 2

M4 = 1 1 1 1 1
2 2 2 2

M5

The modules Mi are precisely those constructed in Example II.4.3.
This component is infinite. To prove this fact, it is convenient to use the

dimension vectors of the modules occurring in the component.
Indeed, an immediate induction shows that, for every indecomposable module

Mt in this component with t ≥ 0, we have dim Mt = (t + 1, t). Dually, knitting
backwards from the indecomposable injectives yields another infinite connected
component

N 3 = 1 1 1
2 2 2

N 4 = 1 1 1 1
2 2 2 2

N 5
2

2 N 2 = 1 1
2 2 2

N 2 = 1
2 2

N 0 = 2

For every indecomposable Ns in this component, we have dimNs = (s, s + 1).
In particular, these two components are disjoint.

IV.1.4 The combinatorial structure of the Auslander–Reiten
quiver

The particular combinatorial structure of Auslander–Reiten quivers sometimes
allows statements to be neatly formulated in graphical terms that may otherwise
appear technical. We describe this structure in more detail.

Given a quiver Q = (Q0,Q1) and a point x ∈ Q0, we denote the set of arrows
entering x by
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x− = {α ∈ Q1 : t (α) = x}

and the set of arrows leaving x by

x+ = {α ∈ Q1 : s(α) = x}.

We have used informally in Subsection IV.1.2 the expression locally finite quiver.
We give a formal definition of local finiteness.

Definition IV.1.17. A quiver Q = (Q0,Q1) is called locally finite if, for each
x ∈ Q0, the sets x+ and x− are finite.

In particular, in a locally finite quiver, every point has finitely many neighbours.
For instance, every finite quiver is locally finite. Also, every connected com-

ponent of an Auslander–Reiten quiver is locally finite, because every almost split
sequence has at most finitely many indecomposable middle terms. We now define
the notion of translation quiver.

Definition IV.1.18. A translation quiver is a pair (Γ, τ ) where Γ = (Γ0, Γ1) is a
locally finite quiver without loops and τ : Γ0 \Γ ′

0 −→ Γ0 \Γ ′′
0 is a bijection defined

between two subsets of Γ0 such that, for any x ∈ Γ0 \Γ ′
0, and any direct predecessor

y of x, there is a bijection from the set of arrows from y to x to the set of arrows
from τx to y.

The partially defined bijection τ is called the translation. The set Γ ′
0 of points on

which τ is not defined is called the set of projective points, and the set Γ ′′
0 of points

on which τ−1 is not defined is called the set of injective points. A full translation
subquiver (Ω,ω) of (Γ, τ ) is a pair such that Ω is a full subquiver of Γ and, if
x ∈ Ω0 is such that τx ∈ Ω0, then ωx = τx. If there is no ambiguity, we denote a
translation quiver (Γ, τ ) simply as Γ .

Given a nonprojective point x in a translation quiver Γ , the full translation
subquiver having as points x, τx and all direct predecessors of x has the following
shape:

y1

τx x

yt

α11

α1m1

α tmt

α t1

β11

β1m1

βt1

βtmt

and is called a mesh. The following lemma is now obvious.



178 IV The Auslander–Reiten quiver of an algebra

Lemma IV.1.19. The Auslander–Reiten quiver of a finite dimensional algebra,
equipped with the Auslander–Reiten translation τ has a natural translation quiver
structure. ��

Of course, there exist translation quivers that are not Auslander–Reiten quivers.
We give examples below.

Example IV.1.20. Let Q = (Q0,Q1) be a finite, connected and acyclic quiver. We
define its repetitive quiver ZQ as follows. The set of points of ZQ is the set

(ZQ)0 = Z × Q0 = {(n, i) : n ∈ Z , i ∈ Q0}.

For each arrow α : i −→ j in Q and each n ∈ Z , there exist two arrows:

(n, α) : (n, i) −→ (n, j) and (n, α′) : (n + 1, j) −→ (n, i)

in ZQ, and all arrows in ZQ are of one of these forms. For a given n ∈ Z , the full
subquiver {n} × Q of ZQ with points {n} × Q0 = {(n, i) : i ∈ Q0} is isomorphic
to Q and therefore ZQ may be viewed as consisting of an infinity of copies of Q

indexed by n ∈ Z , together with additional arrows (n, α′) going from the copy
with index n + 1 to the copy with index n. The translation is defined for every
(n, i) ∈ (ZQ)0 by τ(n, i) = (n + 1, i). The translation is thus an automorphism of
ZQ.

Let, for instance, Q be the quiver

then ZQ is given by

(2, a)

(3, c)

(2, b)

(2, d)

(1, a)

(2, c) (1, c)

(1, b)

(1, d)

(0, a)

(0, d)

(0, b)

(0, c)

(−1, b)

(−1, a)

(−1, d)

(−2, a)

(−1, c)

· · ·

· · · · · ·

· · ·

Clearly, repetitive quivers are not Auslander–Reiten quivers: they contain neither
projectives nor injectives. However, repetitive quivers may occur as connected
components of the Auslander–Reiten quivers of some algebras.
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Translation quivers consist of meshes glued together. There are, therefore, two
types of paths in a translation quiver, those that factor through a mesh and those that
do not factor. This leads to the following definition.

Definition IV.1.21. A path x0 −→ x1 −→ . . . −→ xm in a translation quiver Γ is
called sectional if, for every i with 0 ≤ i ≤ m − 2, we have τxi+2 	= xi .

Sectional paths are easy to read off on a translation quiver. For instance, in the
example above, there is a sectional path

(2, c) −→ (1, b) −→ (0, a) −→ (0, d),

but we may see that no path from (2, c) to (−1, a) is sectional.
If there is a sectional path from x0 to xm in Γ , then x0 is said to be a sectional

predecessor of xm, and xm a sectional successor of x0.

Example IV.1.22. Let Q be the quiver A∞

1 2 3
· · ·

(infinitely many points and infinitely many arrows all oriented to the right). Then
ZQ has the following configuration:

. . . . . .

. . . . . .

. . . . . .

. . . . . .

......

.. . . . .

. . . . . .

. . . . . .

This repetitive quiver has infinite sectional paths: for each n ∈ Z , one can
construct the following infinite path, which is clearly sectional:

(n, 1) −→ (n, 2) −→ . . . −→ (n, i) −→ (n, i + 1) −→ . . .

Example IV.1.23. Let ZA∞ be as constructed above and m > 0 an integer. Identify
each point x ∈ (ZA∞)0 with τmx and each arrow x −→ y with the arrow τmx −→
τmy. This identification gives a translation quiver, which we call stable tube (of
rank m, if we need to be more precise). For m = 2, for instance, the quiver looks
like
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τ 2x x

where one has to identify along the vertical dotted lines giving an infinite cylinder,
as follows

This translation quiver also has infinite sectional paths.

Stable tubes also occur as components of the Auslander–Reiten quiver for some
algebras, see, for instance, Section IV.4.

Example IV.1.24. Let Q be a quiver. One can construct both NQ and (−N )Q in
the same fashion as we have done for ZQ. Let Q be the quiver
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then NQ

. . . . . .

. . . . . .

and (−NQ)

. . . . . .

. . . . . .

For NQ, each point of the form (0, x) for x ∈ Q0 is an injective point whereas,
for (−N )Q, such a point is projective.

In Example IV.1.16 above, the connected component of the Auslander–Reiten
quiver of the Kronecker algebra containing the projectives is of the form (−N )Qop,
whereas the component containing the injectives is of the form NQop, where Q is
the quiver of the Kronecker algebra.

IV.1.5 The use of Auslander–Reiten quivers

Why does one draw an Auslander–Reiten quiver? Certainly, it is an interesting
way to record and visualise the information we have about almost split sequences
and the way they fit together. This is already structural knowledge on the module
category. But there is more than that: the Auslander–Reiten quiver is also a
computational tool. For instance, the knitting procedure explained in Subsec-
tion IV.1.3, when applicable, gives a recursive way to construct indecomposable
modules and irreducible morphisms. If the connected component of the Auslander–
Reiten quiver one is knitting turns out to be finite, then, because of Auslander’s
theorem, see Remark IV.1.6(e), one gets in this way a complete set of isoclasses
of indecomposable modules. In addition, one can extract new information from the
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Auslander–Reiten quiver once it is constructed. Here are instances of homological
information that can be obtained.

(a) Computing morphisms. Because arrows in the Auslander–Reiten quiver repre-
sent irreducible morphisms, paths correspond to compositions of irreducible
morphisms. Thus, because of Corollary II.4.6, one can compute from the
Auslander–Reiten quiver all morphisms between indecomposable modules that
do not belong to the infinite radical. Indeed, any such morphism corresponds to
a linear combination of paths in the Auslander–Reiten quiver. This procedure is
especially efficient if one is dealing with a representation-finite algebra, because
in this case the infinite radical of the module category is zero, as we shall see in
Chapter VI, and therefore every nonzero morphism is a linear combination of
irreducible morphisms. Also, over a representation-finite algebra, the absence of
multiple arrows in the Auslander–Reiten quiver, see Proposition IV.1.7, implies
that arrows can be identified with basis vectors of the space of irreducible
morphisms.

On the other hand, the Auslander–Reiten quiver does not represent the
morphisms lying in the infinite radical: returning to Example II.4.3, we see that
the morphism S1 −→ M lying in the infinite radical is not shown as a path in
the quiver. This is sometimes expressed by saying that the Auslander–Reiten
quiver represents the quotient category mod A/ rad∞

A .
A nice application is the following: because of Proposition III.1.11, one can

recognise modules of small homological dimensions by means of morphisms:
indeed, for a module M , we have pdM ≤ 1 (or idM ≤ 1) if and only if
HomA(DA, τM) = 0 (or HomA(τ−1M,A) = 0 respectively).

(b) Computing extensions. Because of the Auslander–Reiten formulae, Theo-
rem III.2.4, extensions of the first order can be viewed as morphism sets: indeed,
let M,N be A-modules, then

Ext1A(M,N) ∼= DHomA(τ−1N,M) ∼= DHomA(N, τM).

Extensions of higher order can be reduced to extensions of the first order
using dimension shifting: let M be a module and 0 −→ L −→ P −→ M −→
0 a short exact sequence with P projective, then, for every n > 1, we have
ExtnA(M,−) ∼= Extn−1

A (L,−).
One can also get information on the tensor product and torsion groups

between modules. Indeed we recall well-known homological formulae: if M,N

are A-modules then we have, for every n ≥ 0, a functorial isomorphism

TorAn (M, DN) ∼= D ExtnA(M,N).

In particular,

M ⊗A DN ∼= D HomA(M,N).
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These will be proved in Proposition V.2.17 below.
In a given problem, it may not be necessary to know the whole of the

Auslander–Reiten quiver, but a small part of it may suffice to obtain the required
information. We illustrate these computations in an example.

Example IV.1.25. Let A be given by the quiver

αβ

γδ

2

3

4
λ1

5
μ

76 ε

bound by εα = 0, αλ = 0, γμ = 0, αβ = γ δ. Its Auslander–Reiten quiver
Γ (mod A) is given by

1

2

3

4
1 2

5
2 3

4 5
1 2 3

5
2

4
2

4 5
2 3

4 5
21

5
3

4 5
2

4
1

4

6
4 5

6
4 5
2

5 6
4

6
5

6

7
6

7
6
5

7

f 1 f 2

f 4 f 5 f 3
f 6 f 7

f 8 f 9

Suppose we wish to find

Because A is representation-finite, every nonzero morphism is a sum of compo-
sitions of irreducible morphisms (see the previous remarks), and each of these
compositions is a path
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in Γ (mod A). Now we have exactly four paths of this form, namely

where the irreducible morphisms f1, . . . , f9 are the obvious inclusions and projec-
tions. But we also have almost split sequences

so that

f2f1+f5f4 = (f2f5)

(
f1

f4

)
= 0 and f3f5+f7f6+f9f8 = (f3f7f9)

⎛
⎝

f5

f6

f8

⎞
⎠ = 0

because of the exactness of these sequences. Therefore,

is two-dimensional and one may take, for instance, {f3f2f1, f9f8f4} as a basis of
this vector space. Observe that the morphisms f3f2f1 and f9f8f4 have as their
respective images the simple modules 5 and 4. In addition, the morphism

f7f6f4 = −f3f5f4 − f9f8f4 = f3f2f1 − f9f8f4

factors through the projective–injective
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and thus both

are one-dimensional vector spaces, generated respectively by {f3f2f1} and

{f3f2f1}.
Assume that we wish to find

Applying the Auslander–Reiten formula yields

Indeed, no morphism

factors through an injective module, because no injective lies on a path

Now, it is easily seen that

is one-dimensional and spanned by a morphism with image 4
2 . Therefore,



186 IV The Auslander–Reiten quiver of an algebra

is one-dimensional. It is actually easy to see that there is a nonsplit short exact
sequence

with the obvious morphisms. The class of this sequence is a basis of the Ext1-space
under consideration. Similarly, we have

because

Suppose now we want to compute

Clearly, we have a short exact sequence

with a projective middle term. Dimension shifting and the Auslander–Reiten
formulae give

which is one-dimensional. It is easily seen that a basis for this extension space is
given by the class of the exact sequence
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Looking for the indecomposable modules M such that HomA(DA, τM) = 0, we
find all indecomposable modules M such that pd M ≤ 1. These are

Similarly, all indecomposable modules M such that id M ≤ 1 are

If one looks for pd 7, one can construct the following minimal projective resolution,
which gives pd 7 = 3:

Doing the same calculation for the other simple modules, one easily gets
gl. dim. A = 3.

Exercises for Section IV.1

Exercise IV.1.1. For each of the following bound quivers, compute the correspond-
ing Auslander–Reiten quiver.

(a) 1 2 3 4 5 6
ε δ γ β α αβγδ = 0, γδε = 0 

(b)

1 2

34

α

β

γ

δ αβ = 0, βγ = 0

(c)

1 2

34

α

β

γ

δ αβγ = 0
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(d) 1

2 3

4

56

αβγ = 0, βγδ = 0

γδϵ = 0, δϵλ = 0

ϵλα = 0, λαβ = 0

β

ϵ δ

γ

λ

α

(e) 76543

1

2

γ δ ε λ
α

β
δγβ = 0

(f) 3

4

52

1 β

δ γ

α
αβ = 0
γδ = 0

(g)
αβ = 0

γδ = 0
γβ = 0
αδ = 0

3

4

52

1 β

δ γ

α

(h) αβ = 03

4

52

1 β

δ γ

α

(i) 1 2 3 4 5 6

7

α β δ ε λ
γ

γδελ = 0,
βδελ = 0

(j) 1

2

3

4

β α

γδ

αβ = γδ

(k) αβ = 0
γδ = 01

2

3

4

β α

γδ
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(l) αβ = 01

2

3

4

β α

γδ

(m)
αβ = 0
γδ = 0
γε = 0

1

2

3

4

β α

γδ

5
ε

(n) 2 5
α

βγ = δε
αβ = 0
γλ = 0

1 6
λ

3

4

βγ

δε

(o) 1

2

3

5

β α

γ

δ

αβ = 0
γδ = 0
δε = 0

4
ε

(p)

γε = 0
βδ = 0
αβ = 05

4

3

1

2

αβ

γε

δ

(q)

3

2 5

74

6

1

α

βγ

λ
ε δ

μν

αβγλ = μν
βγ = δε

(r)

3

2 4

56

7

1 α

βγ

ε

δ

μ

βγ = νε
αν = λμ

λ

ν
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(s) 1 2
β α αβ = 0, α2 = 0

(t) 1

2 3 4

8 9

765

δ γ

α
β

λ
μν

ω

ε αβγ = 0
αλμ = 0
βγδε = λμνω

(u) 1 2 αβ = 03 4

α

β

δ γ

(v) 1 2 3
δ

γα

β

αβ = γδ
δα = 0
βγ = 0

(w) ε
αβ = γδ , βε = 0
δε = 0, εα = 0
εγ = 0

1

2

3

4

β α

γδ

(x) ε
αβ = γδ
δεα = 0
βεγ = 0

1

2

3

4

β α

γδ

(y) 1 2γ α
β

αβ = γ 2

γα = 0
βγ = 0

(z) 1 3
β

γ

λα = μβ = νγ, αμ = 0, αν = 0, βλ = 0,
βν = 0, γλ = 0, γμ = 0

2

4

α

μ

λ

ν

Exercise IV.1.2. Let A be the path algebra of the quiver
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3

4

52

1

(a) Construct the component of Γ (mod A) containing the indecomposable pro-
jective modules and show that this component contains no indecomposable
injective. Next, show that this component is infinite.

(b) Construct the component of Γ (mod A) containing the indecomposable injective
modules and show that this component contains no indecomposable projective.
Next, show that this component is infinite.

(c) Exhibit an indecomposable A-module belonging to neither of these compo-
nents, so that Γ (mod A) has at least three connected components.

Exercise IV.1.3. Let A be the matrix algebra

A =

⎛
⎜⎜⎝

k 0 0 0
k k 0 0
k 0 k 0
k 0 0 k

⎞
⎟⎟⎠ =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

a 0 0 0
b c 0 0
d 0 e 0
f 0 0 g

⎞
⎟⎟⎠ : a, b, . . . , g ∈ k

⎫⎪⎪⎬
⎪⎪⎭

with the ordinary matrix addition and multiplication. Let S1 be the only simple
projective A-module. Prove that dim(HomA(S1, τ

−1S1)) = 2.

Exercise IV.1.4. Let A be given by the quiver

γ
β
α

4 3 21ε
δ

bound by βα = 0, δε = 0 and αβγ = γ εδ.

(a) Compute the almost split sequences ending in the simple modules S2 and S3.
(b) Compute the almost split sequences that have projective–injective middle terms.
(c) Deduce the Auslander–Reiten quiver of A.

Exercise IV.1.5. Let A be a finite dimensional algebra. Prove that there is no arrow
in Γ (mod A) from an injective to a projective, but there may be arrows from a
projective to an injective.

Exercise IV.1.6. Let An be the algebra given by the quiver
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α1
1 32 n − 1 n

αnαn− 1

bound by αiαi+1 = 0 for all i. Compute, in terms of n, the extension group
ExtjAn

(Sn, S1) for all j such that 1 ≤ j < n.

Exercise IV.1.7. Let Q,Q′ be quivers that have the same tree as the underlying
graph. Prove that ZQ and ZQ′ are isomorphic quivers.

Exercise IV.1.8. Give an example showing that the result of Exercise IV.1.7 above
is no longer true if one does not assume that the underlying graph is a tree.

Exercise IV.1.9. Show that the following translation quiver is not an Auslander–
Reiten quiver

τb

τa

c

b

a

IV.2 Postprojective and preinjective components

IV.2.1 Definitions and characterisations

This section is devoted to the study of two types of connected components that
occur frequently in Auslander–Reiten quivers. These are the so-called postprojective
and preinjective components, the second being dual to the first. The reason for
looking at this type of component is that, if they exist, then they can always be con-
structed using the knitting algorithm. In particular, postprojective and preinjective
components are acyclic. Thus, we start by explaining what we mean by an acyclic
component.

Let A be an algebra. We recall from Definition II.4.7 that, if M,N are
indecomposable A-modules, then a radical path from M to N in ind A of length
t is a sequence

M = M0
f1−→ M1 −→ . . . −→ Mt−1

ft−→ Mt = N

where all Mi are indecomposable and all fi are radical morphisms. A cycle through
an indecomposable module M is a radical path from M to itself of length greater
than or equal to one.
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If M = M0
f1−→ M1 −→ . . . −→ Mt−1

ft−→ Mt = M is a cycle through M

with all fi irreducible morphisms (that is, a path of irreducible morphisms), then it
can be identified to a cycle in the quiver Γ (mod A). In this case, t ≥ 2, because
there are no irreducible morphisms from a module to itself. In addition, all the Mi

lie in the same connected component of Γ (mod A), so that one can speak of a cycle
in that component. A component Γ of Γ (mod A) is called acyclic if it contains no
cycle.

For examples of cycles in Γ (mod A), we refer to Examples IV.1.10, IV.1.14
and IV.1.15 above. All other components constructed in Subsection IV.1.3 are
acyclic. To motivate the next definition, we refer the reader to Example IV.1.9 above
showing the Auslander–Reiten quiver of the algebra given by the quiver

2 3γ β1 α 4

bound by αβγ = 0. The quiver is acyclic and can be represented as follows:

1 2 3 4

2
1

3
2

4
3

3
2
1

4
3
2

that is, every indecomposable module M can be written in the form τ−tP , where
t ≥ 0 and P is indecomposable projective, or, equivalently, in the form τ sI , where
s ≥ 0 and I is indecomposable injective. This leads us to the following definition.

Definition IV.2.1. An acyclic component Γ of Γ (mod A) is called postprojective
(or preinjective) provided that every indecomposable M in Γ can be written in the
form τ−tP , with t ≥ 0 and P an indecomposable projective (or in the form τ sI ,
with s ≥ 0 and I an indecomposable injective respectively). An indecomposable
module is called postprojective (or preinjective) if it belongs to a postprojective
component (or preinjective component respectively).

These concepts are dual to each other: applying the duality functor D to a
postprojective component yields a preinjective component in the module category
of the opposite algebra, and conversely.

The example preceding the definition shows that, given a representation-finite
algebra with acyclic Auslander–Reiten quiver, then this whole quiver is at the same
time a postprojective and a preinjective component.

We observe that M ∼= τ−tP holds if and only if τ tM ∼= P . Therefore, an acyclic
component is postprojective if and only if, for every M in that component, there
exists t ≥ 0 such that τ tM is indecomposable projective. Another observation
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is that, if M ∼= τ−tP lies in a postprojective component, where t ≥ 0 and P

is indecomposable projective, then t and P are unique. Indeed, if M ∼= τ−tP ∼=
τ−rP ′, then we may assume without loss of generality that t ≥ r and we get that
P ∼= τ t−rP ′ is projective, from which we deduce that t = r and P ∼= P ′. The dual
observations hold for preinjective components.

We say that the indecomposable A-modules M and N belong to the same τ -
orbit if there exists an integer t such that M ∼= τ tN . Thus, if M,N belong to the
same τ -orbit, then they must belong to the same component of Γ (mod A). Clearly,
belonging to the same τ -orbit is an equivalence relation. The equivalence classes
are the sets {τ tM : t ∈ Z ,M in ind A}, called the τ -orbits of Γ (mod A). Thus,
one can define postprojective components to be acyclic components in which every
indecomposable lies in the τ -orbit of an indecomposable projective. This implies
that the number of τ -orbits in a postprojective component is bounded by the number
of isoclasses of indecomposable projective modules. In particular, the number is
finite. As we now see, postprojective components of Auslander–Reiten quivers can
also be characterised as being those acyclic components in which every module has
only finitely many predecessors, or, equivalently, such that every path ending in a
module is finite. Dual remarks can be made for preinjective components.

Proposition IV.2.2. Let Γ be an acyclic component of Γ (mod A). Then,

(a) Γ is postprojective if and only if every module in it has finitely many
predecessors in Γ .

(b) Γ is preinjective if and only if every module in it has finitely many successors
in Γ .

Proof . We only prove (a) because the proof of (b) is dual.
Assume first that Γ is postprojective and that there exists a module M in Γ

that has infinitely many predecessors in Γ . Then, there exists an infinite path of
irreducible morphisms:

. . . −→ Mi −→ Mi−1 −→ . . . −→ M1 −→ M0 = M

with all Mi in Γ . The acyclicity of Γ implies that Mi 	∼= Mj for i 	= j . By
hypothesis, for each j > 0, there exists tj ≥ 0 such that τ tj Mj is indecomposable
projective. Because the infinitely many Mj distribute among the finitely many τ -
orbits of projectives in Γ , there must exist an indecomposable projective module P

such that the set J = {j : τ tj Mj = P } is infinite. Consider the function t : J −→ N

defined by j �→ tj . It cannot be strictly decreasing, because J is an infinite set.
Therefore, there exist i, j ∈ J such that we have both i < j and ti < tj . But then
τ ti Mi

∼= P ∼= τ tj Mj yields Mi
∼= τ tj −ti Mj . This relation implies the existence of

a path of irreducible morphisms Mi � Mj in Γ of length at least one. In addition,
i < j also states that there is a path of irreducible morphisms Mj � Mi in Γ of
length at least one. Combining these paths, we get a cycle in Γ , a contradiction.
This proves necessity.

Conversely, assume that Γ is not postprojective, but every indecomposable
module in Γ has only finitely many predecessors in Γ . Because Γ was assumed
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to be acyclic, but not postprojective, there exists an indecomposable module M in
Γ such that, for every n ≥ 0, τnM is not projective. Then, for each n ≥ 0, there
exists a path of irreducible morphisms:

τnM −→ ∗ −→ τn−1M −→ ∗ −→ . . . −→ τM −→ ∗ −→ M

in Γ , and this contradicts our hypothesis that M has only finitely many predecessors
in Γ . ��

For examples of infinite postprojective and preinjective components, we refer
the reader to Example IV.1.16, where we constructed these components for the
Kronecker algebra.

Other important properties of postprojective and preinjective components are
recorded in the following propositions. Observe that, in the same fashion as
for the radical in Subsection II.1.3, we can define a subfunctor rad∞

A (M,−) of
HomA(M,−) and a subfunctor rad∞

A (−,M) of HomA(−,M).

Proposition IV.2.3. Let Γ be a component of Γ (mod A) and M,N indecompos-
able modules. Assume that N belongs to Γ .

(a) If Γ is postprojective, then

(i) rad∞
A (−, N) = 0. In particular, N has only finitely many predecessors in

ind A.
(ii) If M is an indecomposable module such that radA(M,N) 	= 0, then there

exists a path of irreducible morphisms M � N in Γ .

(b) If Γ is preinjective, then

(i) rad∞
A (N,−) = 0. In particular, N has only finitely many successors in

ind A.
(ii) If M is an indecomposable module such that radA(N,M) 	= 0, then there

exists a path of irreducible morphisms N � M in Γ .

Proof . We prove only (a) because the proof of (b) is dual.

(i) Let f : M −→ N be a nonzero morphism in rad∞
A (M,N), where M is an

indecomposable module. Because of Proposition II.4.9, there exist for every
i ≥ 0, a path of irreducible morphisms

Ni
gi−→ Ni−1 −→ . . . −→ N1

g1−→ N0 = N

and a morphism fi ∈rad∞
A (M,Ni) such that g1 . . . gifi 	= 0. The acyclicity of

Γ guarantees that the Ni are distinct. But this contradicts the fact that, because
of Proposition IV.2.2, N has only finitely many predecessors in Γ . Therefore,
rad∞

A (M,N) = 0. The second statement follows directly.
(ii) This follows from Corollary II.4.8(b) using item (i).

��
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Proposition IV.2.4. Let Γ be a postprojective or preinjective component
of Γ (mod A) and M an indecomposable in Γ . Then, End M ∼= k and
Ext1A(M,M) = 0.

Proof . Suppose End M 	∼= k. Because End M is local, we infer that radA(M,M) =
rad(End M) 	= 0. Thus, there exists a nonzero radical morphism M −→ M .
Because of Proposition IV.2.3, this means that there exists a cycle through M lying
in Γ , a contradiction to its acyclicity.

Assume Ext1A(M,M) 	= 0. Because of the Auslander–Reiten formula

Ext1A(M,M) = DHomA(M, τM)

we deduce the existence of a nonzero morphism M −→ τM , and hence of a path
of irreducible morphisms M � τM in Γ . Now, this path gives rise to a cycle
M � τM −→ ∗ −→ M lying in Γ , and this is again a contradiction. ��

IV.2.2 Postprojective and preinjective components for path
algebras

Let Q be a finite, connected and acyclic quiver. Because of Proposition I.2.28,
the path algebra kQ is hereditary. We now prove that kQ always admits exactly
one postprojective component containing all indecomposable projectives and one
preinjective component containing all indecomposable injectives. Recall that, to
each point x in Q, we can assign an indecomposable projective kQ-module Px ,
an indecomposable injective kQ-module Ix and a simple kQ-module Sx such that
Px/ rad Px

∼= Sx
∼= soc Ix .

We need the following lemma.

Lemma IV.2.5. If A = kQ, then:

(a) The predecessors of points in Γ (mod A) corresponding to indecomposable
projective A-modules also correspond to indecomposable projective modules.

(b) The successors of points in Γ (mod A) corresponding to indecomposable
injective A-modules also correspond to indecomposable injective modules.

Proof . We prove only (a), because the proof of (b) is dual.
Assume that P is indecomposable projective and that f : M −→ P is

irreducible. Because of Theorem II.2.24 and Example II.2.21, f is the inclusion of a
direct summand of rad P into P . But then M is isomorphic to a submodule of P and
hence is projective, because A = kQ is hereditary. This proves that every immediate
predecessor of P is projective. The statement follows from an easy induction. ��
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It follows from the preceding lemma that the full subquiver of Γ (mod A)

consisting of the indecomposable projectives is connected and so lies in a unique
component of Γ (mod A). Dually, the full subquiver of Γ (mod A) consisting of
the indecomposable injectives is connected and so lies in a unique component of
Γ (mod A).

Lemma IV.2.6. If A = kQ, then the full subquiver of Γ (mod A) consisting of the
indecomposable projective (or injective) A-modules is connected and isomorphic to
Qop.

Proof . We give the proof for the projectives, the proof for the injectives being
similar.

We know that the full subquiver of Γ (mod A) consisting of the projectives is
connected. To prove that the subquiver is isomorphic to Qop, it suffices to prove
that, for any points x, y in Q, we have

IrrA(Py, Px) ∼= ex

(
rad A

rad2 A

)
ey.

We have Px = exA, Py = eyA, and hence functorial isomorphisms

radA(Py, Px) = radA(eyA, exA) ∼= HomA(eyA, rad(exA))
∼= rad(exA)ey

∼= ex(rad A)ey.

Passing to the radical square, we have similarly

rad2
A(Py, Px) = rad(eyA, rad(exA)).

Because A = kQ is hereditary, rad(exA) is projective (decomposable in general)
so radA(eyA, rad(exA)) consists of those morphisms that are not sections, that is,
those whose image lies in rad(rad(exA)) = rad2(exA). Hence,

rad2
A(Py, Px) ∼= HomA(eyA, rad2(exA))

∼= rad2(exA)ey
∼= ex(rad2 A)ey.

Passing to the quotients, we get

IrrA(Py, Px) ∼= radA(Py, Px)

rad2
A(Py, Px)

∼= ex(rad A)ey

ex(rad2 A)ey

∼= ex

(
rad A

rad2 A

)
ey ,

as required. ��
Proposition IV.2.7. Let Q be a finite, connected and acyclic quiver and A =
kQ. Then Γ (mod kQ) admits a unique postprojective component containing all
indecomposable projectives and a unique preinjective component containing all
indecomposable injectives.
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Proof . Because of Lemma IV.2.6, there is a full connected subquiver of Γ (mod A)

isomorphic to Qop and consisting of all indecomposable projectives. Let Γ be the
unique connected component of Γ (mod A) containing this subquiver.

We claim that every indecomposable module in Γ is of the form τ−tPx with
t ≥ 0 and x ∈ Q0. If this is not the case, then there exists a module M that is not in
the τ -orbit of a projective. Without loss of generality, we may assume that there exist
a module L ∼= τ−nP and an irreducible morphism L −→ M or M −→ L. Assume
the former; then, the irreducible morphism τ−nP −→ M induces an irreducible
morphism P −→ τnM (by applying τn). By hypothesis, M does not lie in the τ -
orbit of a projective, and so, in particular, τnM is nonzero, and nonprojective. But
then we have an irreducible morphism τn+1M −→ P and Lemma IV.2.5 implies
that τn+1M is projective, a contradiction to our assumption on M .

It remains to prove that Γ is acyclic. Indeed, suppose that

M = M0
f1−→ M1 −→ . . . −→ Mm−1

fm−→ Mm = M

is a cycle (of irreducible morphisms) in Γ . Because of our claim above, for each i,
there exist an mi ≥ 0 and an xi ∈ Q0 such that Mi = τ−ti Pxi

. Let t = min{ti : 1 ≤
i ≤ m}. Then we have a cycle

τ tM = τ tM0
f1−→ τ tM1 −→ . . . −→ τ tMm−1

fm−→ τ tMm = τ tM

in Γ . In addition, this cycle contains a projective module. Because of Lemma IV.2.5,
all the τ tMi are projective; thus, we get a cycle of indecomposable projective
modules in Γ . However, the full subquiver of Γ consisting of the indecomposable
projectives is isomorphic to Qop, because of Lemma IV.2.6. The acyclicity of Qop

then yields a contradiction.
The proof is similar for the preinjective components. ��

Example IV.2.8. Let Q be the quiver

1

2

3

4

The indecomposable projective kQ-modules are

whereas the indecomposable injective kQ-modules are
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The full subquiver containing the indecomposable projectives is

1

3

2 4
1 2 3

Using the knitting procedure, we construct the postprojective component of
Γ (mod kQ)

1

2

3

4
1 2 3

4
2 3

4
1 3

4
1 2

4 4
1 2 3

4
1

4
2

4
3

4

Because we reach the injectives, this is the whole Auslander–Reiten quiver (thus,
kQ is representation-finite). Alternatively, one could construct the quiver starting
from the injectives, that is, with the full connected subquiver

4
1

4
2

4
3

4

and knit backwards.

Example IV.2.9. Let Q be the quiver
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1

2

3

4

5

The indecomposable projective kQ-modules are

Using the knitting procedure one gets the beginning of the postprojective component
of Γ (mod kQ)

1

2

3

4

5
1 2 3 4

5
2 3 4

5
1 3 4

5
1 2 4

5
1 2 3

55 5
11 223344

211 34

12 234

12 334

12 344

5 5

5 5

5 5

5 5

222111 333444
5 55 55

This component is infinite and never reaches an injective. To see this, it is enough
to show (by induction, for instance) that dimk(τ−nP5) = 5+6n and dimk(τ−nPi) =
1+3n, for each n ≥ 1 and i ∈ {1, . . . , 4}. Dualising the procedure, we can construct
the preinjective component, which is infinite and does not contain any projective.

55 5
2 3 411

55 5
2 3 421

55 5
3 3 421

55 5
3 4 421

555 5 5
2211 3 3 4 4

5 5

5 5

5 5

5 5

2 3 4

1 3 4

1 2 4

1 2 3

5 5 5
1 2 3 4

5
1

5
2

5
3

5
4

5

Example IV.2.10. Let A be the Kronecker algebra with quiver

1 2
α

β
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As we have seen, Γ (mod A) contains an infinite postprojective component
containing all indecomposable projectives, and an infinite preinjective component
containing all indecomposable injectives. One could ask whether these two are
the only components of Γ (mod A). The answer is negative. Indeed, consider the

indecomposable module M = 2
1 of Examples II.4.3 and III.3.11. It lies in neither

the postprojective nor the preinjective component of Γ (mod A). Indeed, as seen
in Example IV.1.16 above, the dimension of every indecomposable module lying
in one of these two components is odd, whereas dimkM = 2. Now, we have a
projective cover morphism p : P2 −→ M . Because P2 and M belong to different
components, it follows from Corollary II.4.5 that p ∈ rad∞

A (P2,M). In particular,
rad∞

A (P2,M) 	= 0.
Dually, the epimorphism q : M −→ I2 with kernel S1 lies in rad∞

A (M, I2). Now
the composition qp : P2 −→ I2 is easily seen to equal the projection of P2 onto
P2/ rad P2 ∼= S2 = I2. Therefore, qp ∈ (rad∞

A (P2, I2))
2 is nonzero. This shows

that not only do we have rad∞
A (P2, I2) 	= 0 but also (rad∞

A (P2, I2))
2 	= 0.

IV.2.3 Indecomposables determined by their composition
factors

It is a standard question in representation theory to ask which indecomposable
modules over a given algebra are uniquely determined by their composition factors.
More precisely, let M,N be indecomposable modules over an algebra A. Assume
that M and N have exactly the same composition factors: does this condition imply
that M ∼= N? In fact, we defined in Subsection I.1.4 a numerical invariant, called the
dimension vector, which counts the composition factors of a module. Our problem
may be reformulated as follows: assume that M,N are indecomposable A-modules
such that dim M = dim N : do we then have M ∼= N? This is not true in general, as
the following example shows.

Example IV.2.11. Let A be the k-algebra given by the quiver

1 3

2

γ

α β

bound by βα = 0.

The indecomposable projective P3 = 2
1 3 and the indecomposable injective

I1 = 2 3
1 have the same composition factors but are not isomorphic.
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There are, however, some situations where the answer to our question is
positive. This is the case, for instance, when the indecomposable modules lie in
a postprojective (or preinjective) component.

Theorem IV.2.12. Let Γ be a postprojective (or preinjective) component of
Γ (mod A). If M,N are indecomposable modules in Γ such that dimM = dimN ,
then M ∼= N .

Proof . Up to duality, we may assume that Γ is postprojective.
We assume that M 	∼= N and let M −→ ⊕r

i=1Ei , N −→ ⊕s
j=1Fj be left minimal

almost split, where each of the Ei, Fj is indecomposable. We consider the sets E
and F of predecessors of the Ei and the Fj in Γ , namely

E = {K ∈ Γ : there is a path of irreducible morphisms K � Ei, for some i}

F = {L ∈ Γ : there is a path of irreducible morphisms L � Fj , for some j}

Because Γ is a postprojective component, both sets E and F are finite, see
Proposition IV.2.2. In addition, E and F are closed under predecessors, that is,
if K ∈ E (or L ∈ F ) and there is a path of irreducible morphisms K ′ � K (or
L′ � L respectively), then K ′ ∈ E (or L′ ∈ F respectively).

We divide our proof into several steps.
We first claim that τ−1M /∈ E and τ−1N /∈ F . Indeed, assume that τ−1M ∈ E .

Then there exist i0 and a path of irreducible morphisms τ−1M � Ei0 . However, we
have an almost split sequence

0 −→ M −→ ⊕r
i=1Ei −→ τ−1M −→ 0.

Hence, we get a cycle τ−1M � Ei0 −→ τ−1M in Γ , a contradiction to its
acyclicity. The proof is the same for τ−1N /∈ F . We have established our first
claim.

We next claim that either τ−1N /∈ E or τ−1N /∈ F . For, assume that this is
not the case, then both τ−1N ∈ E and τ−1N ∈ F . Thus, there exist i, j and
paths of irreducible morphisms τ−1N � Ei and τ−1M � Fj . Using the previous
almost split sequence and the corresponding one for N , we get a cycle of irreducible
morphisms

τ−1M � Fj −→ τ−1N � Ei −→ τ−1M

again a contradiction to the acyclicity of Γ . This establishes our second claim.
Because of this second claim, we may assume without loss of generality that

τ−1N /∈ E .
Now we claim that, for every X ∈ E , we have

dimk(Hom(X,M)) = dimk(Hom(X,N)).
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We prove the statement by induction. We define h(X), for an indecomposable
module X in Γ to be the maximal length of a path in Γ from a projective to X.

If h(X) = 0, then X is projective and the statement follows from our hypothesis
that dim M = dim N and Lemma I.1.19. Assume h(X) = n. From our hypothesis,
we may assume that X is not projective. Hence, there exists an almost split sequence:

(∗) 0 −→ τX −→ ⊕t
k=1Yi −→ X −→ 0

with the Yi indecomposable. Clearly, X ∈ E implies τX, Yk ∈ E for all k. In
addition, h(τX) < n and h(Yk) < n, for all k. Furthermore, τX is isomorphic
neither to M nor to N because neither τ−1N nor τ−1M belongs to E , see our first
claim.

We claim that Ext1A(X,M) = 0. Indeed, the Auslander–Reiten formula
Ext1A(X,M) ∼= DHomA(τ−1M,X) states that if this is not the case, then
there exists a nonzero morphism τ−1M −→ X that gives rise to a cycle
τ−1M � X � Ei −→ τ−1M in Γ , a contradiction. Therefore, applying
HomA(−,M) to the almost split sequence (∗) yields

0 −→ HomA(X,M) −→ ⊕t
k=1 HomA(Yk,M) −→ HomA(τX,M) −→ 0.

Similarly, we get a short exact sequence

0 −→ HomA(X,N) −→ ⊕t
k=1 HomA(Yk,N) −→ HomA(τX,N) −→ 0.

Because h(Yk) < n for all k and h(τX) < n, the induction hypothesis gives that

dimk HomA(X,M) = ∑t
k=1 dimkHomA(Yk,M) − dimkHomA(τX,M)

= ∑t
k=1 dimk HomA(Yk,N) − dimk HomA(τX,N)

= dimk HomA(X,N).

This completes the proof of our claim.
Because M ∈ E , the previous claim gives that HomA(M,N) contains a nonzero

morphism f . Because we assumed M 	∼= N , the morphism f cannot be an
isomorphism and so must factor through the left minimal almost split morphism
M −→ ⊕r

i=1Ei . Therefore, there exists i such that HomA(Ei,N) 	= 0. Applying
our last claim again yields HomA(Ei,M) 	= 0, leading to a cycle M � Ei � M , a
contradiction that completes the proof. ��

As an easy application, if A is a representation-finite algebra whose Auslander–
Reiten quiver is acyclic, then the indecomposable A-modules are uniquely deter-
mined by their dimension vectors.
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Exercises for Section IV.2

Exercise IV.2.1. Construct the postprojective and preinjective components for each
algebra given by the following bound quivers

(a)

β α

γδ
1

3

2

4

(b)

β α

γδ

λμ

bound by αβ = γδ
1

3

4

2

5

6

(c)

β1 α1

1

2

3

4

5β2

β3

α2

α3

bound by α1 β1 + α2 β2 + α3 β3 = 0

(d)

β α

γδ

λ

νρ

μ
αβ = γδ , λμ = νρ

1

2

4

3

5

6

7

(e)

β α

γδ
2

5

4

6

λ1

μ
3

αβ = γδ
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(f) 1 αβ = γδ, γν = λμ

2

3

4

5

7

6
γ

β

α

λ
μ

v

δ
ε

Exercise IV.2.2. Let A be the algebra given by the quiver

β
4321

δ

γ α

bound by αβ = 0, βγ = 0. Prove that there exists one indecomposable projective
in the preinjective component, and that there exists one indecomposable projective
that belongs neither to the postprojective nor to the preinjective component.

Exercise IV.2.3. Let A = kQ, where Q is the quiver

1

2

3

4

5

Prove that the indecomposable module P5/(S3 ⊕ S4) belongs neither to the
postprojective nor to the preinjective component.

Exercise IV.2.4. If Γ is a postprojective or preinjective component, and M lies in
Γ , prove that ExtiA(M,M) = 0 for all i ≥ 1.

Exercise IV.2.5. Let A = kQ be a hereditary algebra. Prove that the following
conditions are equivalent:

(a) A is representation-finite.
(b) The postprojective component of Γ (mod A) contains injectives.
(c) The preinjective component of Γ (mod A) contains projectives.
(d) The postprojective and the preinjective components coincide.

Exercise IV.2.6. Let A be a representation-finite algebra with an acyclic
Auslander–Reiten quiver. Prove that gl. dim. A < ∞.
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Exercise IV.2.7. Let A be a representation-finite algebra and Px, Py indecompos-
able projective modules such that dim Px = dim Py . Prove that, if Px � Py , then
there is a cycle in Γ (mod A) passing through Px and Py .

Exercise IV.2.8.

(a) Let Γ be a postprojective component of Γ (mod A). Prove that, for every
indecomposable module M in Γ , there exists a path of irreducible morphisms
between indecomposable modules

P = L0
f1−→ L1 −→ . . .

ft−→ Lt = M

with P projective and ft . . . f1 	= 0.
(b) Let Γ be a preinjective component of Γ (mod A). Prove that, for every

indecomposable module M in Γ , there exists a path of irreducible morphisms
between indecomposable modules

M = N0
g1−→ N1 −→ . . .

gt−→ Nt = I

with I injective and gt . . . g1 	= 0.

Exercise IV.2.9. Let A be a representation-finite algebra. Assume that there exists
an indecomposable module M such that HomA(P,M) 	= 0 for all indecomposable
projective A-modules P and that M does not lie on any cycle in Γ (mod A). Prove
that:

(a) If L is such that there exists a path L � M in Γ (mod A), then pd L ≤ 1.
(b) If N is such that there exists a path M � N in Γ (mod A), then id N ≤ 1.

Deduce that pd M ≤ 1 and id M ≤ 1.

IV.3 The depth of a morphism

IV.3.1 The depth

Let A be an algebra, and M,N indecomposable modules. As seen in Lemma II.2.2,
an irreducible morphism f : M −→ N lies in radA(M,N) \ rad2

A(M,N). We are
now interested in the composition of irreducible morphisms in ind A. Indeed, let

M = M0
f1−→ M1 −→ . . .

ft−→ Mt = N

be a path of irreducible morphisms between indecomposable modules, we certainly
have ft . . . f1 ∈ radt

A(M,N). But it is not clear whether ft . . . f1 does not also
belong to a higher power of the radical, or even whether it is nonzero (actually,
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if ft . . . f1 = 0, then ft . . . f1 ∈ rad∞
A (M,N)). It is useful to define a numerical

invariant expressing to which highest power of the radical a morphism belongs. For
this purpose, we recall from Subsection II.4.1 that, given modules M,N , there exists
a sequence of vector subspaces:

HomA(M,N) = rad0
A(M,N) ⊇ radA(M,N) ⊇ rad2

A(M,N) ⊇ . . . ⊇ rad∞
A (M,N).

Thus, given any morphism f : M −→ N not lying in the infinite radical, there exists
a unique integer d ≥ 0 such that f ∈ radd

A(M,N) \ radd+1
A (M,N).

Definition IV.3.1. Let A be an algebra, M,N modules (not necessarily indecom-
posable) and f : M −→ N a morphism. We say that the depth of f is infinite
if f ∈ rad∞

A (M,N), and otherwise is the unique natural number d such that
f ∈ radd

A(M,N) \ radd+1
A (M,N). We denote the depth of f by dp(f ).

Thus, the zero morphism always has infinite depth. Let M,N be indecomposable
modules. Then

(a) The morphisms from M to N of depth zero are exactly the isomorphisms.
(b) The morphisms from M to N of depth one are exactly the irreducible.
(c) If M,N lie in distinct components of the Auslander–Reiten quiver of A, then,

because of Corollary II.4.8, every morphism from M to N has infinite depth.
(d) If f : M −→ N has depth d, then, because of Corollary II.4.8, there is a path

of irreducible morphisms of length d from M to N .

Example IV.3.2. Let A be given by the quiver

α
1 2β

bound by αβ = 0 and α2 = 0. Its Auslander–Reiten quiver is as follows:

1

2

1
1 2

1
2

1

1
1

where one identifies the two copies of S1 = 1. Consider the composition
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mapping the simple top S1 of P1 to the isomorphic direct summand of its socle. We
claim that dp(f ) = 3. Indeed, f is the composition of three irreducible morphisms
and so lies in rad3

A(P1, P1). On the other hand, there is no nonzero path from P1 to
P1 of length at least four. Indeed, the almost split sequence

gives that any such path is of the form f m for some m ≥ 2, then f 2 = 0 implies the
statement. Thus, f ∈ rad3

A(P1, P1) \ rad4(P1, P1) and so dp(f ) = 3.

IV.3.2 The depth of a sectional path

As we have done for translation quivers, we define sectional paths for the module
category (compare with Definition IV.1.21). We say that a path of irreducible
morphisms

M = M0
f1−→ M1 −→ . . .

ft−→ Mt = N

between indecomposable modules of length t ≥ 1 is sectional if, for every i with
1 < i ≤ t , we have τMi 	∼= Mi−2 (that is, the path factors through no mesh of the
Auslander–Reiten quiver). Our objective in this subsection is to compute the depth
of the composition ft . . . f1 and, in particular, to see whether the composition is
nonzero.

We start with an example that illustrates the typical behaviour of such a
composition.

Example IV.3.3. Let A be given by the quiver

1 3

2

γ

α β

bound by βα = 0. The Auslander–Reiten quiver Γ (mod A) is as follows
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1

2

3
1 2

2
1

2
1
3
2

3
1

2 3
1

2

3

3
2

f

h4 h1

h2h3

g

where one identifies the two copies of the simple S2 = 2, see Example IV.1.15. The
following path is sectional

and is nonzero, with image S2. It is the composition of six irreducible morphisms;
therefore, dp(gh4h3h2h1f ) ≥ 6.

Lemma IV.3.4. Let

M = M0
f1−→ M1 −→ . . . −→ Mt−1

ft−→ Mt = N

be a sectional path. If there exist morphisms g : M −→ L and f ′
t : L −→ N such

that (ft , f
′
t ) : Mt−1 ⊕L −→ N is right minimal almost split, then f ′

t g +ft . . . f1 /∈
radt+1

A (M,N).

Proof . The proof is done by induction on t ≥ 1. Assume t = 1 and that there exist
f1 : M −→ N irreducible, g : M −→ L and f ′

1 : L −→ N such that (f1, f
′
1) : M ⊕

L −→ N is right minimal almost split. The morphism
(

1
g

)
: M −→ M ⊕ L is a

section, because (1 0 )
(

1
g

)
= 1. Then, f ′

1g+f1 = (
f1 f ′

1

) (
1
g

)
is the composition of

the right minimal almost split, and therefore irreducible, morphism (f1 f ′
1) with a

section. Thus, it is irreducible because of Corollary II.2.25. In particular, f ′
1g+f1 /∈

rad2
A(M,N).
Assume that t ≥ 2 and the statement holds true for all sectional paths of length

t − 1. If the statement does not hold true for the path

M = M0
f1−→ M1 −→ . . . −→ Mt−1

ft−→ Mt = N,

then there exist morphisms g : M −→ L and f ′
t : L −→ N such that

(ft f ′
t ) : Mt−1 ⊕ L −→ N is right minimal almost split and also f ′

t g + ft . . . f1

belongs to radt+1
A (M,N).
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Because f ′
t g+ft . . . f1 is a radical morphism and (ft f ′

t ) is right minimal almost

split, there exists
(

h
h′
)

: M −→ Mt−1 ⊕ L such that

fth + f ′
t h

′ = (
ft f ′

t

) (
h
h′
)

= f ′
t g + ft . . . f1.

In addition, the fact that f ′
t g + ft . . . f1 ∈ radt+1

A (M,N) implies that
(

h
h′
)

∈
radt

A(M,Mt−1 ⊕ L). The previous equality reads

ft (h − ft−1 . . . f1) + f ′
t (h

′ − g) = 0

and therefore the morphism

(
h−ft−1...f1

h′−g

)
: M −→ Mt−1 ⊕ L

factors through the kernel K of (ft f ′
t ) that is, there exists k : M −→ K such that

the following diagram with an exact row is commutative.

Thus, h − ft−1 . . . f1 = jk or, equivalently, h = jk + ft−1 . . . f1. Now, the
morphism (j ft−1) : K ⊕Mt−2 −→ Mt−1 is irreducible. Indeed, we have two cases
to consider: if N is projective, then K = 0 and clearly (0 ft−1) : 0⊕Mt−1 −→ Mt−1
is irreducible, whereas, if N is not projective, then the above left exact sequence is
almost split because (ft f ′

t ) is right minimal almost split. Hence, j is irreducible
and so is ft−1; therefore, (j ft−1) is irreducible because of Theorem II.2.24.

Applying Theorem II.2.24 again, there exist a right minimal almost split
morphism (j l ft−1) : K ⊕ K ′ ⊕ Mt−2 −→ Mt−1 and a morphism

(
k
0

ft−2...f1

)
: M −→ K ⊕ K ′ ⊕ Mt−2

(if t = 2, then Mt−2 = M0 = M and we take ft−2 . . . f1 to be the identity 1M ) such
that

(j l ft−1)

(
k
0

ft−2...f1

)
= jk + ft−1ft−2 . . . f1 = h,
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which lies in radt
A(M,Mt−1). Then the induction hypothesis gives a contradiction.

This completes the proof. ��
This lemma allows us to prove that the composition of morphisms lying on a

sectional path is always nonzero. In addition, its depth equals the length of the path.

Theorem IV.3.5. Let M = M0
f1−→ M1 −→ . . . −→ Mt−1

ft−→ Mt = N be a
sectional path, then dp(ft . . . f1) = t . In particular, ft . . . f1 	= 0.

Proof . Indeed, it is easy to see that ft . . . f1 ∈ radt
A(M,N). Suppose that

ft . . . f1 ∈ radt+1
A (M,N). Because ft is irreducible, Theorem II.2.24 gives

f ′
t : L −→ N such that (ft , f

′
t ) : Mt−1 ⊕ L −→ N is right minimal almost split.

Taking g : M −→ L equal to zero, we get a contradiction to the previous lemma
and the result is established.

In addition, if ft . . . f1 = 0, then the composition belongs to the infinite radical
and so it would have infinite depth, a contradiction. ��

The next result is due to Bautista and Smalø.

Theorem IV.3.6. Let M0
f1−→ M1 −→ . . . −→ Mt−1

ft−→ Mt be a path of
irreducible morphisms between indecomposable modules. If ft = f1, then this path
is not sectional.

Proof . Indeed, assume that the path is sectional and consider the cyclic subpath

M = M0
f1−→ M1 −→ . . .

ft−1−→ Mt−1 = M.

If we compose this cycle with itself m times, then we still get a sectional path,
because f1 : M −→ M1 and ft : Mt−1 −→ Mt are the same. Writing f =
ft−1 . . . f1, Theorem IV.3.5 above says that f m 	= 0 for all m. However, f ∈
radA(M,M) = rad(End M); hence, f is nilpotent, a contradiction. ��

The previous theorem is sometimes expressed by saying that “there are no
sectional cycles”. But one has to be careful: what the theorem really says is that
there are no sectional “cycles” where the first morphism and the last coincide. We
show this in an example.

Example IV.3.7. Let A be the algebra of Example IV.3.3 and consider the following
sectional path

The path starts and ends at the same module; therefore, it is a cycle in the module
category. However, if we add, as in the previous theorem, the morphism h4 either at
the beginning or h1 at the end, then the new path is no longer sectional.
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IV.3.3 Composition of two irreducible morphisms

It is not true in general that the depth of a composition of irreducible morphisms
equals the length of the corresponding path. As an example, we study here the
shortest nontrivial paths of irreducible morphisms, namely those of length two.
Assume that

L
f−→ M

g−→ N

is a path of irreducible morphisms between indecomposable modules. Because f, g

are irreducible, we have gf ∈ rad2(L,N). Because of Theorem IV.3.5, if τN 	∼= L

then gf 	= 0 and dp(gf ) = 2. In particular, gf /∈ rad3
A(L,N). If, however, the path

is not sectional, then it is reasonable to ask when do we have gf = 0 and, even
if gf 	= 0, do we have dp(gf ) ≥ 3? We start with an example showing that this
situation may occur.

Example IV.3.8. Let A be the algebra of Example IV.1.15, that is the one given by
the quiver

1 3

2

γ

α β

bound by βα = 0. Because

is an almost split sequence, we have gf = 0. Consider the morphism h = h4h3h2h1
of Example IV.3.7. As seen before, h 	= 0. Therefore, define

We claim that f ′ is irreducible. Indeed, it is easy to see that h2 = 0 and therefore

(1 + h)(1 − h) = 1 = (1 − h)(1 + h),

that is, (1 + h) is invertible. Applying Corollary II.2.25, we deduce that f ′ = (1 +
h)f is irreducible, because f is. In addition, gf = 0 implies that

gf ′ = g(f + hf ) = gf + ghf = ghf.
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But we have seen in Example IV.3.3 that ghf is the composition of six irreducible
morphisms lying on a sectional path. Therefore, dp(ghf ) = 6, because of

Theorem IV.3.5. Then, gf ′ also has depth 6. In particular, gf ′ ∈ rad3
A

(
2
1 , 3

2

)
.

Lemma IV.3.9. Let f : L −→ M and g : M −→ N be irreducible morphisms
between indecomposables. If dp(gf ) ≥ 3, then there exist almost split sequences:

0 −→ L
h−→ M

g−→ N −→ 0 and 0 −→ L
f−→ M

h′−→ N −→ 0.

Proof . Because gf ∈ rad3
A(L,N), we infer from Theorem IV.3.5 that the path

L
f−→ M

g−→ N is not sectional and so τN ∼= L.
We claim that g is right minimal almost split. If this is not the case, then, because

of Theorem II.2.24, there exists an irreducible morphism g′ : M ′ −→ N such that
(g g′) : M ⊕ M ′ −→ N is right minimal almost split.

Because of Theorem II.2.31, there exists an almost split sequence:

0 −→ L

(
k
k′
)

−→ M ⊕ M ′ (g g′)−→ N −→ 0.

Because gf ∈ rad3
A(L,N), there exists a factorisation gf = vw where w ∈

rad2
A(L,X) and v ∈ radA(X,N) for some module X. It follows from the definition

of almost split sequences and the fact that v is radical that there exists
(

u
u′
)

: X −→
M ⊕ M ′ such that

v = (g g′)
(

u
u′
)

= gu + gu′.

Now,

(g g′)
(

uw−f

u′w

)
= guw − gf + g′u′w = (gu + g′u′)w − gf = vw − gf = 0.

Hence,
(

uw−f

u′w

)
factors through

(
k
k′
)

, that is, there exists l : L −→ L such that

(
uw−f

u′w

)
=
(

k
k′
)

l

or equivalently

(
uw
u′w

)
=
(

f +kl

k′l

)
.

Because w ∈ rad2
A(L,X) we have dp(uw) ≥ 2 so that dp(f + kl) ≥ 2 that is, f +

kl ∈ rad2
A(L,M). Because f and k are irreducible, this implies that l is not a radical
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morphism. Therefore, l : L −→ L is an isomorphism. Then, k′l is irreducible,
again because of Corollary II.2.25. But k′l = u′w and dp(u′w) ≥ 2 so we get a
contradiction. This establishes our claim.

Because of Theorem II.2.31, we deduce the existence of an almost split sequence

0 −→ L
h−→ M

g−→ N −→ 0. Dualising the argument, one gets the other almost
split sequence. ��

We deduce necessary and sufficient conditions for the composition of two
irreducible morphisms to be nonzero and lie in the radical cube of the module
category (that is, have depth at least three).

Theorem IV.3.10. Let L,M,N be indecomposable modules. The following condi-
tions are equivalent:

(a) There exist irreducible morphisms h : L −→ M and h′ : M −→ N such that
the composite h′h is nonzero and lies in rad3

A(L,N);

(b) There exist an almost split sequence 0 −→ L
f−→ M

g−→ N −→ 0 and a
morphism ϕ ∈ rad2

A(M,M) such that gϕf 	= 0;

(c) There exists an almost split sequence 0 −→ L
f−→ M

g−→ N −→ 0 and
radA(L,N) 	= 0.

Proof . (a) implies (b). Because of the above lemma, there exists an almost split
sequence:

0 −→ L
f−→ M

g−→ N −→ 0.

Using that rad3(L,N) 	= 0, we have a path

L
f−→ M

l−→ X
k−→ N

where f and l are irreducible and k ∈ radA(X,N) is such that klf 	= 0. Clearly,
M 	∼= X because there exists no irreducible morphism from M to M . Now, k : X −→
N is a radical morphism; hence, there exists v : X −→ M , making the following
diagram commute

Because M 	∼= X, the morphism v is also radical. The morphism l being irreducible,
we have ϕ = vl ∈ rad2

A(M,M) and also

gϕf = gvlf = klf 	= 0.
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This completes the proof of this implication.
(b) implies (c). Indeed, g, f irreducible and ϕ ∈ rad2

A(M,M) imply gϕf ∈
rad4

A(L,N) ⊆ radA(L,N). Then, gϕf 	= 0 gives radA(L,N) 	= 0.
(c) implies (a). Let u : L −→ N be a nonzero radical morphism. Then, there

exists v : L −→ M such that u = gv:

Assume first that v is irreducible. Because of Proposition IV.1.2, the residual class
f + rad2

A(L,M) is a k-basis for

IrrA(L,M) = radA(L,M)

rad2
A(L,M)

.

Thus, there exist λ ∈ k and v′ ∈ rad2(L,M) such that v = λf + v′. Then, we have

0 	= u = gv = g(λf + v′) = gv′.

Because gv′ ∈ rad3
A(L,N), we get rad3

A(L,N) 	= 0, as required.
Assume now that v is not irreducible. Because v is radical, there exists

w : M −→ M such that wf = v

The morphism w ∈ End M is not an isomorphism, because otherwise v would be
irreducible. Consider h = f + wf : L −→ M . Because w is a nonisomorphism, it
is nilpotent. Let m ≥ 0 be such that wm = 0. Then

(1 + w)(1 − w + w2 − . . . + (−1)m−1wm−1) = 1

says that 1 + w is invertible, so h = (1 + w)f is irreducible, because of
Corollary II.2.25. Setting h′ = g and using that gf = 0, we get

h′h = g(f + wf ) = gf + gwf = gv = u 	= 0.

This completes the proof. ��
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Exercises for Section IV.3

Exercise IV.3.1. Prove that the equivalent conditions of Theorem IV.3.10 are
equivalent to the further conditions:

(a) There exist an almost split sequence

0 −→ L
f−→ M

g−→ N −→ 0

and nonisomorphisms ϕ1 : L −→ X and ϕ2 : X −→ N such that X is an
indecomposable module not isomorphic to M and ϕ2ϕ1 	= 0.

(b) There exist an almost split sequence

0 −→ L
f−→ M

g−→ N −→ 0

and rad4
A(L,N) 	= 0.

Exercise IV.3.2. Compute the depth of each nontrivial path in the module category
of the algebra of:

(a) Example IV.3.2.
(b) Example IV.3.3.

IV.4 Modules over the Kronecker algebra

IV.4.1 Representing Kronecker modules

The objective of this section is to construct the Auslander–Reiten quiver of the
Kronecker algebra, namely the path algebra of the Kronecker quiver K2

α

β
1 2

see I.2.6. Throughout this section, we set A = kK2. As seen in Example IV.1.16,
the quiver Γ (mod A) has an infinite postprojective component P of the form

M0 = 1

2
1 1M1 =

M2 = 1 1 1
2 2

M3 = 1 1 1 1
2 2 2

M4 = 1 1 1 1 1
2 2 2 2

M5
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and an infinite preinjective component Q of the form

N3 = 1 1 1
2 2 2

N4 = 1 1 1 1
2 2 2 2

N5
2

2 N2 = 1 1
2 2 2

N2 = 1
2 2

N0 = 2

To study representation-infinite algebras, one needs new techniques not discussed
so far. Indeed, if we want to compute all the indecomposable modules over a
representation-finite algebra, it suffices (though this is not always easy) to construct
a finite component of the Auslander–Reiten quiver and then apply Auslander’s
theorem, see Remark IV.1.6(e). For representation-infinite algebras, we must thus
devise techniques that allow us to check whether or not we have obtained all
isoclasses of indecomposable modules. These techniques are beyond the scope of
this book. For the Kronecker algebra, we use an ad hoc method with elementary,
but tedious, linear algebra. In particular, we prove that indecomposable A-modules
lying neither in P nor in Q must belong to tubes in the sense of Example IV.1.23.

Our first step is to define a category that we call category of representations of
K2 and we denote as rep K2. To motivate the introduction of this category, consider

the indecomposable projective module P2 = M1 = 2
1 1 . The top of the module is

the one-dimensional vector space P2e2 = S2 and its radical is P2e1 = S1 ⊕ S1,
which is two-dimensional. Because of Lemma I.2.15, P2e1 admits as a basis {α, β}
and α = e2αe1, β = e2βe1 belong to the two indecomposable summands of P2e1
respectively. This amounts to saying that P2 consists of two vector spaces P2e2 and
P2e1 and two k-linear maps from P2e2 to P2e1 explaining how the basis of P2e2
maps into P2e1.

We let the objects of rep K2 be quadruples (E2, E1, f, g), where E2, E1 are k-
vector spaces and f, g : E2 −→ E1 are k-linear maps. Such a quadruple is called a
representation of K2 and is depicted as follows:

The maps f, g are called the structural maps of the representation.

A morphism from ( E2

f
��

g

�� E1 ) to ( E′
2

f ′
��

g′
�� E′

1 ) is a pair (u, v) of

k-linear maps u : E2 −→ E′
2, v : E1 −→ E′

1 such that vf = f ′u and vg = g′u,
that is, u, v are compatible with the structural maps.
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The composition of morphisms in rep K2 is defined componentwise: if (u, v) :

( E2

f
��

g

�� E1 ) −→ ( E′
2

f ′
��

g′
�� E′

1 ) and (u′, v′) : ( E′
2

f ′
��

g′
�� E′

1 ) −→

( E′′
2

f ′′
��

g′′
�� E′′

1 ), then (u′, v′)(u, v) = (u′u, v′v).

We prove that the category of representations of the Kronecker quiver is
equivalent to the module category of the quiver’s path algebra. This is not specific
to the quiver K2. One can define, in the same way, representations of an arbitrary
acyclic quiver and this category of representations is equivalent to the module
category over the path algebra, see Exercises I.2.22 and I.2.20. In this book, we
only need this result in the context of the Kronecker quiver.

Lemma IV.4.1. We have an equivalence of categories mod A ∼= rep K2.

Proof . We first construct a k-functor F : mod A −→ rep K2. Let M be an A-
module. Recall from Subsection I.2.6 that

A =
{(

a 0
(b, c) d

)
: a, b, c, d ∈ k

}

has e1 =
(

1 0
0 0

)
and e2 =

(
0 0
0 1

)
forming a complete set of primitive orthogonal

idempotents. Set E1 = Me1, E2 = Me2: these are finite dimensional vector spaces
because so is M . The structural maps f, g are defined by

f (x) = x

(
0 0

(1, 0) 0

)
and g(x) = x

(
0 0

(0, 1) 0

)

for x ∈ E2. The matrix equalities

(
0 0

(1, 0) 0

)(
1 0
0 0

)
=
(

0 0
(1, 0) 0

)
and

(
0 0

(0, 1) 0

)(
0 0
0 1

)
=
(

0 0
(0, 1) 0

)

show that f (x), g(x) ∈ E1. Clearly, f, g are k-linear. Let ϕ : M −→ N be a
morphism of A-modules. Then set F(ϕ) = (u, v) where u : Me1 −→ Ne1, v :
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Me2 −→ Ne2 are the restrictions of ϕ to Me1 and Me2 respectively. It is easily
checked that F is indeed a k-functor.

We next construct G : rep K2 −→ mod A. Let ( E2

f
��

g

�� E1 ) be a

representation of K2. Then the vector space M = E2 ⊕ E1 becomes a right A-
module if one defines multiplication as follows:

(
x

y

)(
a 0

(b, c) d

)
=
(

xa

f (x)b + g(x)c + yd

)

for x ∈ E2, y ∈ E1, a, b, c, d ∈ k. Let G( E2

f
��

g

�� E1 ) = M . A morphism

(u, v) : ( E2

f
��

g

�� E1 ) −→ ( E′
2

f ′
��

g′
�� E′

1 ) in rep K2 induces a k-linear

map
(

u 0
0 v

)
: E2 ⊕ E1 −→ E′

2 ⊕ E′
1. It is A-linear because

[(
u 0
0 v

)(
x

y

)](
a 0

(b, c) d

)
=
(

u(x)

v(y)

)(
a 0

(b, c) d

)

=
(

u(xa)

f ′u(x)b + g′u(x)c + v(y)d

)

=
(

u(xa)

vf (x)b + vg(x)c + v(y)d

)

=
(

u 0
0 v

)[(
x

y

)(
a 0

(b, c) d

)]
.

We set G(u, v) =
(

u 0
0 v

)
. The rest of the proof is the verification that G is a

k-functor, quasi-inverse to F . ��
Because of this lemma, the problem of studying the module category of the

Kronecker algebra reduces to that of studying the category rep K2. It is useful
to reformulate some statements in this latter context. For instance, if (u, v) :
( E2

��
�� E1 ) −→ ( E′

2
��
�� E′

1 ) and (u′, v′) : ( E′
2

��
�� E′

1 ) −→

( E′′
2

��
�� E′′

1 ) are morphisms, then the sequence of representations

0 −→ ( E2
��
�� E1 )

(u,v)−−−→ ( E′
2

��
�� E′

1 )
(u′,v′)−−−→ ( E′′

2
��
�� E′′

1 ) −→ 0
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is exact if and only if the sequences of vector spaces 0 −→ E2
u−→ E′

2
u′−→ E′′

2 −→ 0

and 0 −→ E1
v−→ E′

1
v′−→ E′′

1 −→ 0 are both exact. In particular, the structural maps

of ( E2
��
�� E1 ) are (isomorphic to) the restrictions of the structural maps of

( E′
2

��
�� E′

1 ). Direct sums of representations occur in the usual way:

In the sequel, we consider this equivalence mod A ∼= rep K2 as an identification.
We show how to view indecomposable postprojective modules as representations.

Let P1 = 1, P2 = 2
1 1 be the indecomposable projective A-modules. Applying the

formula of Lemma IV.4.1 for F yields

In general, Mn = 2 2 · · ·2
1 1 · · ·1 1 is such that dimkMne2 = n, dimkMne1 = n + 1. Let

{u1, . . . , un} be a basis for Mne2, and let {v1, . . . , vn+1} be a basis for Mne1. Then,
f (ui) = vi , g(ui) = vi+1, for each i such that 1 ≤ i ≤ n, owing to the definitions
of f, g in Lemma IV.4.1 above. Diagrammatically, the actions of f, g are depicted
as

v1

u1

v2 v3

u2

vn vn +1

un
f f fg g g· · ·

In other words, we recover the picture for Mn = 2 2 · · ·2
1 1 · · ·1 1 obtained in

Example II.4.3.

For instance, taking M2 = 2 2
1 1 1, and letting {u1, u2}, {v1, v2, v3} be the

canonical bases in M2e2,M2e1 respectively, we get that f, g are respectively given
by the matrices

⎛
⎝

1 0
0 1
0 0

⎞
⎠ and

⎛
⎝

0 0
1 0
0 1

⎞
⎠ .
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Both f, g are injective: each of them maps a basis of E2 to a linearly independent
set in E1.

The situation with preinjective modules is dual and we leave it to the reader as
an exercise.

We now construct an infinite family of representations of K2 that are neither
postprojective nor preinjective. Let n ≥ 1, λ ∈ k, and Jn(λ) be the n × n-Jordan
block

Jn(λ) =

⎛
⎜⎜⎜⎜⎜⎝

λ 0 0 · · · 0
1 λ 0 · · · 0
0 1 λ · · · 0
...

...
...

. . .
...

0 0 0 · · · λ

⎞
⎟⎟⎟⎟⎟⎠

.

Denoting by In the n × n-identity matrix, we set

Thus, if n = 1, we have H 1
λ = ( k

1
��

λ

�� k ). In general, if we denote by

{u1, . . . , un} the canonical basis for both coordinate spaces kn, we get f (ui) = ui

for all i, whereas g(ui) = λui + ui+1 for all i 	= n, and g(un) = λun.
This corresponds to the picture

u1

u 2u 1

u2

un

un

· · ·

In particular, the module H 2
0 is the module H of Example III.3.11.

Lemma IV.4.2. For every n, λ, the representation Hn
λ is indecomposable.

Proof . Because representations are modules, as seen in Lemma IV.4.1, it suffices
to prove that End Hn

λ is a local algebra. An endomorphism of Hn
λ is a pair (U, V )

of n × n-matrices compatible with the structural matrices In, Jn(λ). Compatibility
with In gives U = V , whereas compatibility with Jn(λ) is expressed by the equality
UJn(λ) = Jn(λ)U . Let U = [aij ]i,j where aij ∈ k for all i, j . Comparing the
products UJn(λ) and Jn(λ)U yields aij = 0 if i < j , aii = ajj and aij = ai+1,j+1
if i > j . Thus, End Hn

λ is isomorphic to the matrix algebra
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R =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

a1 0 0 · · · 0
a2 a1 0 · · · 0
a3 a2 a1 · · · 0
...

...
...

. . .
...

an · · · · · · · · · a1

⎞
⎟⎟⎟⎟⎟⎠

| ai ∈ k for 1 ≤ i ≤ n

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

equipped with the ordinary matrix operations. Now, let

I =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
a2 0 0 · · · 0
a3 a2 0 · · · 0
...

...
...

. . .
...

an · · · · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎠

| ai ∈ k for 2 ≤ i ≤ n

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

Then, I is an ideal of R, we have In = 0 and R/I ∼= k. Because of Theorem I.1.7,
I = rad R. In addition, I is a maximal two-sided ideal in R. Therefore, R is local
and Hn

λ is indecomposable. ��
Corollary IV.4.3.

(a) The indecomposable representations Hn
λ are neither postprojective nor prein-

jective ;
(b) End H 1

λ = k ;
(c) Hn

λ
∼= Hm

μ if and only if n = m and λ = μ.

Proof .

(a) As seen in Example IV.1.16, the k-dimension of an indecomposable postpro-
jective or preinjective module is always odd, whereas dimkHn

λ = 2n for every
λ.

(b) This follows from the proof of the lemma.
(c) An isomorphism Hn

λ −→ Hm
μ is given by a pair of invertible matrices (U, V )

compatible with the structural matrices. Then, n = m and compatibility with
the identity matrix gives U = V . Compatibility with the Jordan blocks yields
UJn(λ) = Jn(μ)U . Because U is invertible, Jn(λ) = U−1Jn(μ)U . Uniqueness
of the Jordan form gives λ = μ.

��
Dually, the representations

are indecomposable for every n, λ and neither postprojective nor preinjective. We
shall see later that, except for one particular case, Kn

λ can be reduced to Hn
λ .
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The representations Hn
λ and Kn

λ and the corresponding modules are called
regular.

IV.4.2 Modules over the Kronecker algebra

The objective of this subsection is to prove that every indecomposable module over
the Kronecker algebra is isomorphic to a postprojective, or a preinjective or a regular
module. We follow here the proof of Burgermeister, which uses only elementary
linear algebra.

As a first reduction, we observe that a representation ( E2

f
��

g

�� E1 ) is

indecomposable if and only if its dual ( DE1

Df
��

Dg

�� DE2 ) is as well. Thus, we

may, without loss of generality, assume that dimkE2 ≤ dimkE1.

From now on, we denote by M a representation ( E2

f
��

g

�� E1 ) of K2 such

that, additionally, dimkE2 ≤ dimkE1.

Lemma IV.4.4. Assume that M = ( E2

f
��

g

�� E1 ) is indecomposable and not

simple. Then:

(a) Ker f ∩ Ker g = 0;
(b) Im f + Im g = E1.

Proof .

(a) Assume that F = Ker f ∩ Ker g is nonzero. Then, M has a direct summand

of the form ( F
��
�� 0 ). Because M is indecomposable, we have M =

( F
��
�� 0 ) and dimkF = 1. But then M ∼= ( k ��

�� 0 ) ∼= S2, a
contradiction.

(b) Assume that Im f + Im g � E1 and F are such that E1 = F ⊕ (Im f +
Im g). Then ( 0 ��

�� F ) is a direct summand of M . Again, we get M ∼=
( 0 ��

�� k ) ∼= S1, another contradiction.
��

Lemma IV.4.5. Let n = dimkE2, n + m = dimkE1, for m ≥ 0, d = dimk Ker f ,
d ′ = dimk Ker g, and set W = Im f ∩ Im g, V = f −1(W) ∩ g−1(W). Then:
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(a) dimkW = n − d − d ′ − m;
(b) dimkV ≥ n − d − d ′ − 2m;

(c) ( V
��
�� W ) is a subrepresentation of M .

Proof .

(a) Because Im f + Im g = E1, we have

dimkW = dimk(Im f ) + dimk(Im g) − dimkE1

= dimkE2 − dimk(Ker f ) + dimkE2 − dimk(Ker g) − dimkE1

= n − d + n − d ′ − n − m

= n − d − d ′ − m.

(b) dimkf −1(W) = dimkW +dimk Ker f = n−d ′−m. Similarly, dimkg−1(W) =
n − d − m. Therefore,

dimkV = dimkf −1(W) + dimkg−1(W) − dimk(f −1(W) + g−1(W))

≥ (2n − d − d ′ − 2m) − n

= n − d − d ′ − 2m.

(c) This is obvious.
��

In view of Lemma IV.4.5 above, let r ≥ 0 be such that dimkV = n − d − d ′ −
2m + r . We need more notation. Let K = Ker f ∩ V , K ′ = Ker g ∩ V and L,L′ be
such that Ker f = L ⊕ K , Ker g = L′ ⊕ K ′. Finally, set k = dimkK , k′ = dimkK ′.

Lemma IV.4.6.

(a) The sum V + L is direct. If H is such that f −1(W) = V ⊕ L ⊕ H , then
dimkH = k + m − r;

(b) The sum V + L′ is direct. If H ′ is such that g−1(W) = V ⊕ L′ ⊕ H ′, then
dimkH ′ = k′ + m − r;

(c) The sum (V ⊕ L ⊕ H) + (L′ ⊕ H ′) is direct and its dimension is n − r .

Proof .

(a) Assume x ∈ V ∩ L, then x ∈ V and x ∈ L ⊆ Ker f so that x ∈ K . Because
L ∩ K = 0, we get x = 0. Therefore, V ∩ L = 0 and the sum V + L is direct.
Let H be such that f −1(W) = V ⊕ L ⊕ H . Then

dimkH = dimkf −1(W) − dimkL − dimkV

= (n − d ′ − m) − (d − k) − (n − d − d ′ − 2m + r)

= k + m − r.

(b) This is similar to (a).
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(c) Let x ∈ (V ⊕ L ⊕ H) ∩ (L′ ⊕ H ′). Then, x ∈ f −1(W) ∩ g−1(W) = V .
But V ∩ (L′ ⊕ H ′) = 0. Hence, x = 0 and the sum is direct. Its dimension is
(n−d −d ′ −2m+r)+ (d −k)+ (d ′ −k′)+ (k+m−r)+ (k′ +m−r) = n−r .

��
Lemma IV.4.7. Let X be such that E2 = V ⊕ L ⊕ H ⊕ L′ ⊕ H ′ ⊕ X and Y =
f (X) + g(X) ⊆ E1. Then we have

(a) Im f = W + f (L′) + f (H ′) + f (X);
(b) Im g = W + g(L) + g(H) + g(X);
(c) We have isomorphisms L′ ∼= f (L′), H ′ ∼= f (H ′), L ∼= g(L) and H ∼= g(H).

In addition, E1 = W ⊕ g(L) ⊕ g(H) ⊕ f (L′) ⊕ f (H ′) ⊕ Y .

Proof .

(a) Because f (L) = 0, we have f (V ) + f (H) = ff −1(W) ⊆ W . Therefore,

Im f = f (V ) + f (H) + f (L′) + f (H ′) + f (X)

⊆ W + f (L′) + f (H ′) + f (X)

⊆ Im f

so that Im f = W + f (L′) + f (H ′) + f (X).
(b) This is similar to (a).
(c) Because of Lemma IV.4.4(b), we have

E1 = Im f + Im g = W + f (L′) + f (H ′) + g(L) + g(H) + Y.

The dimension of E1 does not exceed the sum s of the dimensions of the
subspaces on the right-hand side. Because of Lemma IV.4.6(c), we have
dimkX = r; therefore, dimkf (X) ≤ dimkX = r and similarly dimkg(X) ≤ r .
Thus, we have

n + m ≤ s

≤ (n − d − d ′ − m) + (d − k)+(d−k′)+(k+m−r)+(k′+m−r)+2r

= n + m

where we have used Lemma IV.4.6(a) and (b). This implies that s = n + m

and we have the stated isomorphisms L′ ∼= f (L′), H ′ ∼= f (H ′), L ∼= g(L),
H ∼= g(H). In addition, E = W ⊕ g(L) ⊕ g(H) ⊕ f (L′) ⊕ f (H ′) ⊕ Y .

��
Corollary IV.4.8. M is isomorphic to one of the four subrepresentations

(a) M = ( L
��
�� g(L) ) ∼= K1

0 = ( k
0

��

1

�� k );
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(b) M = ( L′ ��
�� f (L′) ) ∼= H 1

0 = ( k
1

��

0

�� k );

(c) M = ( X
��
�� Y ) ∼= M2 = ( k

(
1
0

)

��

(
0
1

) �� k2 );

(d) M = ( V ⊕ H ⊕ H ′ ��
�� W ⊕ f (H ′) ⊕ g(H) ).

Proof . Because M was assumed to be indecomposable, it follows from the
direct decompositions of E2, E1 and the isomorphisms of Lemma IV.4.7 that

M is isomorphic to one of the four subrepresentations ( L
��
�� g(L) ),

( L′ ��
�� f (L′) ), ( X

��
�� Y ) and ( V ⊕ H ⊕ H ′ ��

�� W ⊕f (H ′)⊕g(H) ),

and the others vanish. In addition:

(a) If M = ( L
��
�� g(L) ) then, because f (L) = 0, then M is indecompos-

able if and only if dimkL = 1. The statement follows.
(b) This is similar to (a).
(c) Because dimk Y = 2r (see proof of Lemma IV.4.7(c)), M is indecomposable

if and only if dimkX = 1, dimkY = 2 and Y = f (X) ⊕ g(X). It is then
isomorphic to M2.

(d) Follows from the previous arguments.
��

We already know that K1
0 , H 1

0 and M2 are indecomposable. Thus, it remains to
consider case (d). In this case, we have X = Y = L = L′ = 0; therefore, d = k,
d ′ = k′, r = 0 and

dimk V = n − d − d ′ − 2m

dimk W = n − d − d ′ − m

dimk H = k + m = d + m

dimk H ′ = k′ + m = d ′ + m.

Also, K ⊆ f −1(W) = V ⊕ H and K ∩ H = 0 imply that K ⊆ V . Similarly,
K ′ ⊆ V . The following picture shows how the maps f and g act

V

g(H)W

H

f(H ′)

H ′⊕

⊕

f ∼=g ∼=

⊕

⊕

f g gf
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Lemma IV.4.9. The subrepresentation ( V
��
�� W ) is indecomposable.

Proof . Assume that ( V
��
�� W ) ∼= ( V1

��
�� W1 )⊕( V2

��
�� W2 )

is a nontrivial direct sum decomposition. Let W ′
1,W

′
2 be such that W1 =

f (V1) ⊕ W ′
1,W1 = f (V2) ⊕ W ′

2. Because f −1(W ′
1) ∩ f −1(W ′

2) ∩ H ⊆
f −1(W1) ∩ f −1(W2) = f −1(W1 ∩ W2) = 0, we may choose a direct
sum decomposition H = U1 ⊕ U2 so that f (U1) = W ′

1 ⊆ W1 and
f (U2) = W ′

2 ⊆ W2. Similarly, we choose a decomposition H ′ = U ′
1 ⊕ U ′

2
such that g(U ′

1) ⊆ W1 and g(U ′
2) ⊆ W2. We then get a nontrivial direct

sum decomposition M ∼= ( V1 ⊕ U1 ⊕ U ′
1

��
�� W1 ⊕ g(U1) ⊕ f (U ′

1) ) ⊕

( V2 ⊕ U2 ⊕ U ′
2

��
�� W2 ⊕ g(U2) ⊕ f (U ′

2) ). This contradicts the indecom-

posability of M . ��
We are ready to complete the proof of the classification theorem, saying

that every indecomposable module over the Kronecker algebra is postprojective,
preinjective or regular.

Theorem IV.4.10. Let M = ( E2
��
�� E1 ) be an indecomposable represen-

tation of K2 and n = dimk E2.

(a) If dimk E1 = n, then M ∼= Hn
λ for some λ ∈ k or M ∼= Kn

0 ;
(b) If dimk E1 > n, then M ∼= Mn;
(c) If dimk E1 < n, then M ∼= Nn.

Proof .

(a) If dimk E1 = n = dimk E2, then m = 0. We claim that one of f, g is an
isomorphism. This is proved by induction on n. If n = 1, this is trivial so let
n > 1. If d = d ′ = 0, then f, g are injective, and hence isomorphisms because
dimk E1 = dimk E2. If one of d, d ′ is positive, then we have dimk V =
dimk W < n. The induction hypothesis says that, in the indecomposable

subrepresentation ( V
��
�� W ) of Lemma IV.4.9, the restriction of one of

f and g, say f , to V is an isomorphism. But then f −1(W) = V implies H = 0.
Therefore, f : V ⊕ H ′ −→ W ⊕ f (H ′) is an isomorphism. This establishes
our claim.

As a consequence, M is isomorphic to a representation of the form

( E
1

��

g

�� E ) or ( E

f
��

1

�� E ), say the former. Consider E as a

module over the polynomial algebra k[t] by setting t · x = g(x) for x ∈ E.
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The indecomposability of the representation ( E
1

��

g

�� E ) implies the

indecomposability of the k[t]-module E. The structure theorem of modules
over a principal ideal domain implies that there exist an irreducible polynomial
p and s ≥ 0 such that E ∼= k[t]/ < ps >. Because k is algebraically closed,
g can be represented in some basis by a Jordan block Jn(λ). Thus, M ∼= Hn

λ .

Similarly, M ∼= ( E

f
��

1

�� E ) implies M ∼= Kn
λ for some λ. Now, if λ 	= 0,

then Jn(λ) is invertible and so is f . Therefore, M ∼= ( E
1

��

f −1

�� E ) and we

are reduced to the case before.
(b) Assume m ≥ 1. We prove that if m ≥ 2, then M is decomposable. This

is done by induction on n. If n = 1, this is trivial. If n > 1, consider

( V
��
�� W ). We have dimkW = n−d −d ′ −m = m+dimk V . Because

of the induction hypothesis, ( V
��
�� W ) is decomposable, a contradiction

to Lemma IV.4.9.
This implies m = 1. We prove by induction on n that M ∼= Mn. If n = 1,

then M ∼= M1 = P2. Assume n = 2, then dimkV = n − d − d ′ − 2 ≥ 0
implies d = d ′ = 0 and V = 0. Therefore, dimkW = n − d − d ′ − 1 = 1,
dimkH = d + 1 = 1 and dimkH ′ = d ′ + 1 = 1. In this case, M can be written
in the form

W = kf(H ′) = k

H = k

g(H) = k

f g

H ′ = k
g f

that is, M ∼= M2.

Suppose n > 2. We know that ( V
��
�� W ) is indecomposable. We

have t = dimkV = n − d − d ′ − 2 < n and dimkW = n − d − d ′ − 1 =
1 + dimkV . The induction hypothesis applied to (V

��
�� W ) yields that the

latter is isomorphic to Mt . In particular, f and g are injective (see the remark
after Lemma IV.4.1). Therefore, d = 0, d ′ = 0 and t = n − 2. But then M can
be written in the form
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kf(H ′) = k

H = k

g(H) = k

f g

H ′= k
g f

k

k

gf

k

· · ·

where the part between the dotted lines is the subrepresentation (V
��
�� W )

∼= Mt . This shows that M ∼= Mn.
(c) This is similar to (b).

��
This proof is not only long and tedious, but also very particular to the case of the

Kronecker algebra. There exist more general techniques, but, as mentioned at the
beginning of this section, we shall not cover them in this book.

IV.4.3 The Auslander–Reiten quiver of the Kronecker algebra

We already know that the Auslander–Reiten quiver of the Kronecker algebra admits
a postprojective component containing all indecomposables of the form Mn and a
preinjective component containing all indecomposables of the form Nn. But there
remain modules of the form Kn

0 or Hn
λ for some λ ∈ k. To treat both cases as

one, we set Kn
0 = Hn∞; thus, our modules are of the form Hn

λ with λ ∈ k ∪ {∞}.
Alternatively, we may think of λ as ranging over the projective line over k. We recall
that, because of Proposition I.2.28, the Kronecker algebra is hereditary.

Lemma IV.4.11. For each n ≥ 2, there exist a monomorphism jn : Hn−1
λ −→ Hn

λ

and an epimorphism pn : Hn
λ −→ Hn−1

λ such that we have short exact sequences

0 −→ Hn−1
λ

jn−→ Hn
λ

p′
n−→ H 1

λ −→ 0

0 −→ H 1
λ

j ′
n−→ Hn

λ

pn−→ Hn−1
λ −→ 0

where j ′
n = jn . . . j2 and p′

n = p2 . . . pn.

Proof . Indeed, let jn =
((

0
In−1

)
,
(

0
In−1

))
where each of the coordinate n×(n−1)-

matrices has a first row consisting of zeros and In−1 is the identity (n−1)× (n−1)-
matrix. It is easily seen that jn : Hn−1

λ −→ Hn
λ is a morphism of representations and

actually a monomorphism. Similarly, pn = ((In−1, 0), (In−1, 0)) : Hn
λ −→ Hn−1

λ

is an epimorphism of representations. The rest is a straightforward calculation. ��
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One can visualise the maps pn and jn, using the picture before Lemma IV.4.2.
Indeed, letting n = 3, we have

and
j3 p3

On the left, the module H 2
λ embeds as a submodule of H 3

λ by means of j3, and
the quotient is isomorphic to H 1

λ , whereas on the right, we see that p3 maps H 3
λ

epimorphically onto H 2
λ , with its kernel isomorphic to H 1

λ .

Lemma IV.4.12. If HomA(Hm
μ ,Hn

λ ) 	= 0, then λ = μ. In particular, if Hm
μ and

Hn
λ belong to the same component of the Auslander–Reiten quiver, then λ = μ.

Proof . Assume HomA(Hm
μ ,Hn

λ ) 	= 0 with λ 	= μ. We first claim that we may
assume m = n. If m < n then, because of Lemma IV.4.11, we have epimorphisms

Hn
μ

pn−→ . . .
pm+1−−−→ Hm

μ

so pm+1 . . . pn is an epimorphism. Hence, if f : Hm
μ −→ Hn

λ is nonzero, neither is
fpm+1 . . . pn : Hn

μ −→ Hn
λ . We treat the case m > n similarly, using the jn instead

of the pn. This establishes our claim.
Assume that f : Hn

μ −→ Hn
λ is nonzero and let f be represented by the matrices

U,V which are compatible with the structural matrices. Compatibility with the
identity matrices yields U = V . Therefore, U = [aij ] satisfies UJn(μ) = Jn(λ)U .
Equating the last columns, we get

μ

⎛
⎜⎜⎜⎜⎝

a1n

a2n

...

ann

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

0
a1n

...

an−1,n

⎞
⎟⎟⎟⎟⎠

+ λ

⎛
⎜⎜⎜⎜⎝

a1n

a2n

...

ann

⎞
⎟⎟⎟⎟⎠

.

Using that λ 	= μ, we get ain = 0 for all i. Equating the (n − 1)-st columns and
using that ain = 0 for all i, we get similarly ai,n−1 = 0 for all i. Descending
induction gives aij = 0 for all i, j , that is, U = 0, a contradiction. This proves the
first statement.

If Hn
λ and Hm

μ belong to the same component, then there is a sequence of the form
L0 = Hn

λ ,L1, . . . , Lt = Hm
μ where the Li are indecomposable and for each i, we

have an irreducible morphism Li −→ Li+1 or Li+1 −→ Li . Applying repeatedly
the first statement, we get λ = μ. ��

This implies that the indecomposable regular modules occur in a family of
connected components (Tλ)λ of the Auslander–Reiten quiver, where each Tλ

contains all Hn
λ , with n ≥ 1 (and no Hm

μ for μ 	= λ). We now compute the almost
split sequences inside each Tλ.



IV.4 Modules over the Kronecker algebra 231

Theorem IV.4.13. For every n ≥ 1 and λ ∈ k ∪ {∞}, there is an almost split
sequence of the form

0 −→ Hn
λ

(
jn+1
pn

)

−−−−→ Hn+1
λ ⊕ Hn−1

λ

(−pn+1 jn )−−−−−−−→ Hn
λ −→ 0

(where we agree that H 0
λ = 0), and also all Hn

λ with n ≥ 1 belong to a tube of rank
1 in Γ (mod A).

Proof . We use induction on n. If n = 1, then, because of Lemma IV.4.11, there is a
short exact sequence

0 −→ H 1
λ

j2−→ H 2
λ

p2−→ H 1
λ −→ 0.

It is not split because H 2
λ is indecomposable. Now, the short exact sequences 0 −→

P1 −→ P2 −→ H 1
λ −→ 0 and 0 −→ H 1

λ −→ I1 −→ I2 −→ 0 imply that τH 1
λ =

H 1
λ , because νP1 = I1, νP2 = I2. Because of Corollary IV.4.3(b), End H 1

λ
∼= k.

Because of Exercise III.2.6, the sequence is almost split.
Assume n > 1. The induction hypothesis says that there is an almost split

sequence

0 −→ Hn−1
λ

(
jn

pn−1

)

−−−−→ Hn
λ ⊕ Hn−2

λ

(−pn jn−1 )−−−−−−−→ Hn−1
λ −→ 0.

A straightforward computation involving the explicit forms of the maps j, p, given
in the proof of Lemma IV.4.11 shows that the square

commutes. Hence, we have a short exact sequence

0 −→ Hn
λ

(
jn+1
pn

)

−−−−→ Hn+1
λ ⊕ Hn−1

λ

(−pn+1 jn )−−−−−−−→ Hn
λ −→ 0.

We claim that the sequence is almost split.
First, the short exact sequences 0 −→ P n

1 −→ P n
2 −→ Hn

λ −→ 0 and
0 −→ τHn

λ −→ In
1 −→ In

2 −→ 0 show that the dimension vector dim (τHn
λ ) =

n dim I1 − n dim I2 = n dim P2 − n dim P1 = dim Hn
λ = (n, n). Because of the

classification theorem IV.4.10, there exists μ ∈ k ∪ {∞} such that τHn
λ

∼= Hn
μ. On

the other hand, τHn
λ lies in the same Auslander–Reiten component as Hn

λ . Applying
Lemma IV.4.12, we get μ = λ. This proves that τHn

λ
∼= Hn

λ .
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Because of the induction hypothesis, pn and jn are irreducible. We claim that
pn+1, jn+1 are irreducible too. If not, then, because of Lemma II.2.2(b), one of
them belongs to the radical square. But then pn+1jn+1 ∈ rad3

A(Hn
λ ,Hn

λ ). The
commutativity of the above square gives jnpn ∈ rad3

a(H
n
λ ,Hn

λ ). Because of
Lemma IV.3.9, jn is a proper epimorphism and pn a proper monomorphism, a
contradiction. This shows that pn+1, jn+1 are irreducible. Therefore, the last short
exact sequence is almost split.

Knitting together all these almost split sequences, we get a component of the
form

H1
λ

H3
λ

H2
λ

H1
λ

H3
λ

H4
λ

where we identify along the vertical dotted lines to form a cylinder. This is indeed a
tube of rank 1. ��

We are now ready to describe the Auslander–Reiten quiver of the Kronecker
algebra. We need a notation. Let C ,D be connected components of Γ (mod A). We
write HomA(C ,D) = 0 if for all M in C and N in D , we have HomA(M,N) = 0.

Corollary IV.4.14. The Auslander–Reiten quiver Γ (mod A) consists of a unique
postprojective component P , a unique preinjective component Q and an infinite
family (Tλ)λ∈k∪{∞} of tubes of rank one. In addition:

(a) HomA(Tλ,Tμ) = 0 whenever λ 	= μ;
(b) HomA(Tλ,P) = 0 and HomA(Q,Tλ) = 0 for every λ;
(c) For every λ ∈ k ∪ {∞}, H in Tλ, Mi in P and Nj in Q, we have

HomA(Mi,H) 	= 0 and HomA(H,Nj ) 	= 0.

Proof .

(a) This follows from Lemma IV.4.12.
(b) Assume that H in Tλ and Mi in P are such that HomA(H,Mi) 	= 0. Let f :

H −→ Mi be a nonzero morphism. Because H,Mi lie in distinct components,
f is a radical morphism. If i > 1, there is a right minimal almost split morphism
M2

i−1 −→ Mi through which f factors. Hence, HomA(H,Mi−1) 	= 0.
Descending induction yields HomA(H,M1) 	= 0. But M1 is simple projec-
tive, and we get a contradiction. Therefore, HomA(Tλ,P) = 0. Similarly,
HomA(Q,Tλ) = 0.
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(c) Let H lie in Tλ and Mi in P . Then, there exist l ≥ 0 and k ∈ {1, 2} such that
Mi

∼= τ−lPk . Because H lies in Tλ, we have τH ∼= H ; hence, τ−lH ∼= H .
Therefore, HomA(Mi,H) ∼= HomA(τ−lPk, τ

−lH) ∼= HomA(Pk,H), because
of Exercise III.2.3(e). The latter equals Hek = Ek and is seen to be nonzero for
every H in Tλ and k ∈ {1, 2}. The last statement is proved similarly.

��
One may visualise Γ (mod A) as follows

where maps go globally from left to right, taking into account that there is no map
from one tube to another, because of Lemma IV.4.12.

Exercises for Section IV.4

Exercise IV.4.1. Prove directly that rep K2 is an abelian category, without using
Lemma IV.4.1.

Exercise IV.4.2. Prove that the finite dimensional k-algebra

R =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

a1 0 · · · 0

a2 a1
. . .

...
...

. . .
. . . 0

an · · · a2 a1

⎞
⎟⎟⎟⎟⎠

| ai ∈ k

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

with the ordinary matrix operations, is isomorphic to k[t]/ 〈tn〉.
Exercise IV.4.3. Let A be the Kronecker algebra, S1 its unique simple projective,
S2 its unique simple injective and λ ∈ k ∪ {∞}.
(a) Let M be any indecomposable postprojective module. Prove that there exist E

in Tλ and a nonsplit short exact sequence:

0 −→ M −→ E −→ S2 −→ 0.
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(b) Let N be any indecomposable preinjective module. Prove that there exist F in
Tλ and a nonsplit short exact sequence:

0 −→ S1 −→ F −→ N −→ 0.

Exercise IV.4.4. Let A be the Kronecker algebra. Prove that every morphism from
the postprojective to the preinjective component factors through any tube, that is,
if M,N are respectively an indecomposable postprojective and an indecomposable
preinjective module, f : M −→ N is a nonzero morphism and λ ∈ k ∪ {∞}, prove
that there exists X in Tλ such that f factors through X.



Chapter V
Endomorphism algebras

One of the constant lines of thinking in representation theory is the comparison
between the module categories of a given algebra and the endomorphism algebra of
some “well-chosen” module. For instance, the classical Morita theorem asserts that,
given a progenerator P of the module category of an algebra A, that is, a projective
module P that is also a generator of mod A, the categories mod A and mod(End P)

are equivalent. This implies that, from the point of view of representation theory,
we may assume that the algebras we deal with are basic, something we have done
consistently. If one takes the endomorphism algebra of a module that is not a
progenerator, then these modules categories are not equivalent, but nevertheless
several features from one may pass to the other. This approach, initiated with the
projectivisation procedure, much used by Auslander and his school, culminated in
the now very important tilting theory. The aim of this chapter is to present these
topics.

V.1 Projectivisation

V.1.1 The evaluation functor

Let A be an algebra. In Chapter II, we have seen how to translate certain statements
about modules into functorial language, that is, to pass from mod A to the category
Fun A of contravariant functors from mod A to mod k. As we saw, this has the
advantage of reducing several problems about arbitrary A-modules to problems
about projective functors, which are easier to handle. Now, if instead of projective
functors, we have projective modules (over a different algebra), then the problem
may become even simpler.

Accordingly, in this subsection, we start from an algebra A, an A-module T , and
set B = EndA(T ). We recall that add T denotes the k-linear full subcategory of

© Springer Nature Switzerland AG 2020
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mod A consisting of the direct sums of summands of T . As we shall see, the functor
HomA(T ,−) maps modules in add T to projective B-modules. Thus, summands of
T become, via this functor, projective modules. For this reason, the technique we
are going to see is called “projectivisation”: it reduces some questions about T to
questions about projective B-modules.

It is convenient to start with the functor category Fun A of contravariant functors
from mod A to mod k. As in Subsection II.3.1, we denote, for objects F,G of Fun A,
by Hom(F,G), the space of functorial morphisms from F to G. We define the
evaluation functor E : Fun A −→ mod B as follows: for every object F in Fun A,
we set

E (F ) = F(T )

and, for every morphism ϕ : F −→ G in Fun A,

E (ϕ) = ϕT : F(T ) −→ G(T ).

That is, functors and functorial morphisms are evaluated on the fixed object T .
To prove that the evaluation E maps Fun A to mod B, we must endow the vector
space F(T ) with a B-module structure. Let x ∈ F(T ) and b ∈ B. Thus, b is an
endomorphism of T , which implies that F(b) is an endomorphism of F(T ). We set

xb = F(b)(x).

We show that this is a B-module structure. Let b, b′ ∈ B. Then F(bb′) = F(b′)F (b)

because F is contravariant. Therefore, for every x ∈ F(T ),

x(bb′) = F(bb′)(x) = F(b′)F (b)(x) = F(b′)(xb) = (xb)b′.

Thus, E (F ) is indeed a B-module. In addition, for every functorial morphism
ϕ : F −→ G, the morphism E (ϕ) is B-linear, because

E (ϕ)(xb) = ϕT (xb) = ϕT F (b)(x) = G(b)ϕT (x) = ϕT (x)b = E (ϕ)(x)b

for every x ∈ F(T ), b ∈ B. This shows that the evaluation is a well-defined functor
from Fun A to mod B.

We prove that E induces an equivalence between mod B and a certain full
subcategory of Fun A, which is yet to be determined. To do this, we consider
the full subcategory proj B of mod B consisting of the projective B-modules. The
following lemma says that proj B is equivalent to the full subcategory P(T ) of
Fun A consisting of all functors of the form HomA(−, T0), with T0 in add T .

We notice that, if T0 lies in add T , then HomA(T , T0) = E HomA(−, T0) lies in
add HomA(T , T ) = add BB , that is, is a projective B-module. Thus, E maps P(T )

into proj B.
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Lemma V.1.1. Let A be an algebra, T an A-module and B = EndA(T ). Then,

(a) For every T0 in add T , and every F in Fun A, we have an isomorphism
Hom(HomA(−, T0), F ) ∼= HomB(E HomA(−, T0),E F).

(b) E induces an equivalence between P(T ) and proj B.

Proof .

(a) Because we deal with k-linear functors, it suffices to prove the statement when
T0 = T . Because of Yoneda’s lemma II.3.1, we have Hom(HomA(−, T ), F ) ∼=
F(T ) as B-modules. On the other hand,

HomB(E HomA(−, T ),E F) ∼= HomB(HomA(T , T ), F (T ))

= HomB(B, F (T ))
∼= F(T )B

.

This establishes the claim.
(b) Let P0 be an indecomposable projective B-module. There exists a primitive

idempotent e0 in B such that P0 = e0B = e0 HomA(T , T ) ∼= HomA(T , e0T ).
That is, there exists an indecomposable summand T0 = e0T of TA such that
P0 = HomA(T , T0). This shows that E : P(T ) −→ proj B is a well-defined
and dense functor. Because of (a), it is also full and faithful. The proof is
complete.

��
Because (a) in the above lemma offers only a restricted version of full faithful-

ness, we cannot expect that the equivalence E : P(T ) −→ proj B would extend to
an equivalence from the whole of Fun A to mod B. We may however expect to find a
full subcategory of Fun A that would be equivalent to mod B. Let pres P(T ) denote
the full subcategory of Fun A consisting of all functors F that admit a projective
presentation of the form

HomA(−, T1) −→ HomA(−, T0) −→ F −→ 0

with T0, T1 lying in add T , that is, HomA(−, T0), HomA(−, T1) lying in P(T ),
such functors F are said to be P(T )-presented. We prove that the full subcategory
pres P(T ) of Fun A is equivalent to mod B.

Theorem V.1.2 (Projectivisation Theorem). Let A be an algebra, T a module and
B = EndA(T ). Then the evaluation functor induces an equivalence of categories
E : pres P(T ) −→ mod B.

Proof . Clearly, E : pres P(T ) −→ mod B is a well-defined functor, because it is
the composition of the inclusion functor pres P(T ) ↪→ Fun A with the evaluation
E : Fun A −→ mod B.

We first prove that E is dense. Let X be a B-module and consider a projective
presentation



238 V Endomorphism algebras

P1
p−→ P0 −→ X −→ 0

in mod B. Because of Lemma V.1.1(b), there exists a morphism f : T1 −→ T0 with
T0, T1 in add T such that HomA(T , f ) = E (f ) = p. Let F = Coker HomA(−, f ).
We have an exact sequence

HomA(−, T1)
HomA(−,f )−→ HomA(−, T0) −→ F −→ 0

in Fun A. Because T0, T1 ∈ add T , we infer that F lies in pres P(T ). Evaluating
the previous sequence on T and comparing with the original projective presentation
yield a commutative diagram in mod B with exact rows

HomA(T,T 1) HomA(T,T 0) F (T ) 0

0XP0P1

HomA(T,f )

∼= ∼=
p

Consequently, X ∼= F(T ) = E (F ). This proves density.
To show that E is full and faithful, let F,G be objects in pres P(T ). We have an

exact sequence in Fun A

HomA(−, T1) −→ HomA(−, T0) −→ F −→ 0.

with T0, T1 in add M . Applying to this sequence the functor Hom(−,G) yields an
exact sequence

0 −→ Hom(F,G) −→ Hom(HomA(−, T0),G) −→ Hom(HomA(−, T1),G).

Evaluating functors on T , and applying Lemma V.1.1(a), we get a commutative
diagram with exact rows

0 HomB(F (T ), G(T )) HomB(HomA(T, T0), G(T )) HomB(HomA(T, T1), G(T ))

0 Hom(F,G) Hom(HomA(−, T0), G) Hom(HomA(−, T1), G)

∼= ∼=

The statement follows. ��
In the proof of full faithfulness above, we used that F lies in pres P(T ), but not

that G lies in it. This is thanks to the statement of Lemma V.1.1(a).
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We have proved that the evaluation functor E induces horizontal equivalences in
the commutative diagram

(T ) proj B

pres (T ) mod B.

where the vertical arrows represent the inclusion functors.
Clearly, a similar statement holds if one uses covariant functors instead of

contravariant ones.
Another question arises: to which functors in pres P(T ) do injective B-modules

correspond? Let inj B denote the full subcategory of mod B consisting of the
injective B-modules and W the full subcategory of Fun A consisting of all functors
of the form D HomA(T0,−) with T0 in add M .

Corollary V.1.3. The equivalence E : pres P(T ) −→ mod B restricts to an
equivalence W ∼= inj B.

Proof . Let I0 be an indecomposable injective B-module and e0 the corresponding
primitive idempotent in B. Then,

I0 = D(Be0) = D(HomA(T , T )e0) ∼= D HomA(e0T , T ).

Thus, setting T0 = e0T , we get I0 ∼= E D HomA(T0,−). Let G : mod B −→
pres P(T ) be a quasi-inverse of E , whose existence is granted by Theorem V.1.2.
Then we have G I0 ∼= D HomA(T0,−). In particular, D HomA(T0,−) belongs to
pres P(T ). This shows that the evaluation functor E : W −→ inj B is well-defined
and dense.

It is full and faithful because of Yoneda’s lemma II.3.1 and Lemma V.1.1(a) (in
both its contravariant and covariant versions), which imply that

HomB(E D HomA(T0,−),E D HomA(T1,−))

∼= HomB(D HomA(T0, T ), D HomA(T1, T ))

∼= HomB(HomA(T1, T ), HomA(T0, T ))

∼= Hom(HomA(T1,−), HomA(T0,−))

∼= Hom(D HomA(T0,−), D HomA(T1,−))

where T1, T0 lie in add T . This completes the proof. ��
So far, we have been dealing with functors. It is time to give a module theoretic

interpretation of the projectivisation procedure. For this purpose, we observe what
happens when one evaluates a Hom-functor HomA(−, U) : mod A −→ mod k,
where U is any A-module. Then,
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E HomA(−, U) = HomA(T ,U) = HomA(T ,−)(U).

Now, T has a canonical left B-module structure given by bt = b(t) for t ∈ T

and b ∈ B = End(T ). This structure induces a right B-module structure on
HomA(T ,U) as follows: for b ∈ B and f : T −→ U , we have

(f b)(t) = f (bt) = (f ◦ b)(t) = HomA(b, T )(f )(t)

for each t ∈ T . This is exactly the B-module structure on E HomA(−, U) defined
at the beginning of the subsection. We may thus specialise Lemma V.1.1 and
Theorem V.1.2 to this context. We define pres T to be the full subcategory of mod A

consisting of all modules UA such that there exists an exact sequence

T1 −→ T0 −→ U −→ 0

with T0, T1 in add T . Such modules are called T -presented and the sequence is a
T -presentation.

Corollary V.1.4. Let A be an algebra, T a module and B = EndA(T ). Then

(a) For every T0 in add T and U in mod A, there is an isomorphism
HomA(T0, U) ∼= HomB(HomA(T , T0), HomA(T ,U)) given by f �→
HomA(T , f ).

(b) The functor HomA(T ,−) induces an equivalence between add T and proj B.
(c) The functor D HomA(−, T ) induces an equivalence between the full subcate-

gory of pres T consisting of modules of the form D HomA(T0, T ) with T0 in
add T , and inj B.

Proof .

(a) Because of Yoneda’s lemma II.3.1 and Lemma V.1.1(a), we have

HomA(T0, U) ∼= Hom(HomA(−, T0), HomA(−, U))

∼= HomB(E HomA(−, T0),E HomA(−, U))

∼= HomB(HomA(T , T0), HomA(T ,U))

the isomorphism being given by

f �→ HomA(−, f ) �→ E HomA(−, f ) = HomA(T , f ).

(b) As seen in the proof of Lemma V.1.1(b), every indecomposable projective B-
module is of the form P0 = HomA(T , T0), where T0 is an indecomposable
summand of T . This proves that E : add T −→ proj B is well-defined and
dense. Full faithfulness follows from (a).

(c) The proof is similar to that of (b) and left as an exercise.
��
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Summing up, the functor HomA(T ,−) : mod A −→ mod B sends objects
in add T to projective B-modules whereas the functor D HomA(−, T ) sends the
objects in add T to injective B-modules.

V.1.2 Projectivising projectives

Let, as in Subsection V.1.1, A be an algebra, T an A-module and B = End T . We
recall that T admits a left B-module structure defined by setting bt = b(t), for
b ∈ B, t ∈ T . As a result, T becomes a B − A-bimodule: indeed, every b ∈ B is a
morphism in mod A from T to itself and so

b(ta) = b(t)a = (bt)a

for t ∈ T , a ∈ A. We have considered in Subsection V.1.1 the functor
HomA(T ,−) : mod A −→ mod B. It is reasonable to consider the tensor functor
− ⊗B T : mod B −→ mod A too, sending each right B-module X to X ⊗B T . The
latter has a right A-module structure defined by

(x ⊗ t)a = x ⊗ (ta)

for x ∈ X, t ∈ T , a ∈ A. We prove that X ⊗B T is T -presented.

Lemma V.1.5. The image of the tensor functor − ⊗B T : mod B −→ mod A lies
in pres T .

Proof . Indeed, an arbitrary B-module X admits a projective presentation of the
form

P1 −→ P0 −→ X −→ 0

with P0, P1 projective B-modules. Applying the right exact functor − ⊗B T yields
an exact sequence in mod A

P1 ⊗B T −→ P0 ⊗B T −→ X ⊗B T −→ 0.

Because B ⊗B TA
∼= TA and P1, P0 lie in add T , we have that P1 ⊗B T and P0 ⊗B T

lie in add T . Therefore, X ⊗B T is T -presented. ��
This lemma shows the existence of a functor − ⊗B T : mod B −→ pres T . We

ask under which conditions this functor is a quasi-inverse to the restriction to pres T

of the functor HomA(T ,−) : mod A −→ mod B. For this purpose, we recall the
well-known adjunction isomorphism

HomA(X ⊗B T ,M) ∼= HomB(X, HomA(T ,M))
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bifunctorial in the B-module X and the A-module M . The existence of this
isomorphism entails the existence of the functorial morphisms

εM : HomA(T ,M) ⊗B T −→ M

f ⊗ t �→ f (t)

for t ∈ T , f : T −→ M and

δX : X −→ HomA(T ,X ⊗B T )

x �→ (t �→ x ⊗ t)

for t ∈ T , x ∈ X. These morphisms are respectively called the counit and the
unit of the adjunction. Using these morphisms, we can reprove Corollary V.1.4(b)
by showing that − ⊗B T restricted to proj B is a quasi-inverse of the restriction of
HomA(T ,−) to add T .

Lemma V.1.6.

(a) Let T0 be in add T , then εT0 is an isomorphism.
(b) Let P0 be in proj B, then δP0 is an isomorphism.

Proof . We only prove (a), because the proof of (b) is similar.
Because we deal with k-linear functors, it suffices to prove the statement when

T0 = T . But in this case, the counit

εT : HomA(T , T ) ⊗B T = B ⊗B T −→ T

is the morphism b ⊗ t �→ b(t) = bt (for b ∈ B, t ∈ T ), which defines the left
B-module structure of T . Therefore, it is an isomorphism of A-modules. ��

We now assume that T is a projective A-module. In this case, there exists an
idempotent e ∈ A such that T = eA. Then, B = End T ∼= eAe.

Proposition V.1.7. Let e ∈ A be an idempotent, T = eA and B = eAe. Then the
restriction to pres T of the functor HomA(T ,−) and the functor − ⊗B T induce
quasi-inverse equivalences between pres T and mod B.

Proof . It suffices to prove that, for each T -presented A-module M and each B-
module X, the morphisms εM and δX are isomorphisms. Let M be in pres T . Then,
there exist T0, T1 in add T and an exact sequence

T1 −→ T0 −→ M −→ 0.

Because T is projective, HomA(T ,−) is exact. Thus, we get an exact sequence

HomA(T , T1) −→ HomA(T , T0) −→ HomA(T ,M) −→ 0.

Applying the right exact functor − ⊗B T and comparing with the first sequence
above yields a commutative diagram with exact rows
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HomA(T T1) B T HomA(T T0) B T HomA(T M)⊗B T 0

T1 T0 M 0

εT1 εT0 εM

⊗⊗, , ,

Because of Lemma V.1.6, εT1 and εT0 are isomorphisms. Hence, so is εM .
Similarly, if X is a B-module, then there exists a projective presentation

P1 −→ P0 −→ X −→ 0

in mod B. Applying first the right exact functor − ⊗B T and then the exact functor
HomA(T ,−) yields a commutative diagram with exact rows

HomA(T,P1 ⊗B T ) HomA(T,P0 ⊗B T ) HomA(T,X ⊗B T ) 0

P1 P0 X 0

δP1 δP0 δX

Again, Lemma V.1.6 says that δP0 , δP1 are isomorphisms. Hence, so is δX. ��
Assuming that T is projective is certainly a strong assumption, but if one reads

carefully the proof of the proposition, one sees that what is really needed is that T

satisfies the following condition: for any A-module M such that there is an exact
sequence T1 −→ T0 −→ M −→ 0 with T1, T0 in add T , the induced sequence

HomA(T , T1) −→ HomA(T , T0) −→ HomA(T ,M) −→ 0

in mod B is also exact. This remark will be used in the coming developments.

Example V.1.8. Let A be given by the quiver

αβ

γδ

2

1

3

4

bound by αβ = γ δ. Let e = e1 + e2 + e4. Then T = P1 ⊕ P2 ⊕ P4 while B = eAe

is the hereditary algebra given by the quiver

1 2 4
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where the point i corresponds to the indecomposable projective A-module Pi ,
for i ∈ {1, 2, 4}. Then, pres T contains exactly as indecomposable objects the
indecomposable A-modules whose minimal projective presentation involves only
the projectives P1, P2 and P4. Looking at the Auslander–Reiten quiver of A:

1

2
1

3
1

2 3
1

4
2 3
1

4
2 3

3

2

4
2

4
3

4

one sees immediately that

presT = {1, 2
1 ,

4
2 3
1

,2, 4
2 3 , 4

3 }.

Rearranging these modules, one gets a quiver isomorphic to the Auslander–Reiten
quiver of mod B

1 2

2
1

4
2 3

4
2 3
1

4
3

Exercises for Section V.1

Exercise V.1.1. Let T be a projective A-module, and M an A-module in pres T .
Prove that pd M ≤ 1 implies pd HomA(T ,M) ≤ 1.

Exercise V.1.2. Let T be a progenerator of mod A and B = End T . Prove that
mod A ∼= mod B (this is the classical Morita theorem).

Exercise V.1.3. Let I be an injective A-module and B = End I . Prove that mod B

is equivalent to the full subcategory copres I of mod A consisting of all A-modules
M having an injective copresentation

0 −→ M −→ I0 −→ I1

with I0, I1 in add I .
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Exercise V.1.4. Let A be an algebra and T an A-module. Given an A-module
M , a morphism fM : TM −→ M with TM in add T is called a right add T -
approximation if, whenever f0 : T0 −→ M is a morphism with T0 in add T ,
there exists g : T0 −→ TM such that f0 = fMg.

(a) Prove that fM is a right add T -approximation if and only if the functorial
morphism HomA(−, fM) : HomA(−, TM)∣∣ add T

−→ HomA(−,M)∣∣ add T
is

an epimorphism.
(b) Let {f1, . . . , fd} be a generating set of the End T -module HomA(T ,M) and

f = [f1 . . . fd ] : T d −→ M . Prove that f is a right add T -approximation.
(c) With the notation of (b), prove that f is an epimorphism if and only if M is

generated by T .
(d) Prove that, for every module M , there always exists a right add T -

approximation, which is also right minimal.
(e) Let fM : TM −→ M,f ′

M : T ′
M −→ M be right add T -approximations that are

right minimal. Prove that there exists an isomorphism g : T ′
M −→ TM such that

f ′
M = fMg.

Exercise V.1.5. Let A be an algebra and T an A-module. One defines the left
add T -approximation of an A-module M dually to right add T -approximation.
State and prove the results corresponding to those of the previous exercise.

Exercise V.1.6. Let A be an algebra, C a full abelian subcategory of mod A and
T a generator of C , which is projective in C . Prove that HomA(T ,−) : C −→
mod(End T ) is an equivalence of categories.

Exercise V.1.7. Let A be an algebra, T an A-module and B = End TA. Prove that,
for every projective B-module P and every B-module X, the morphism g �−→ g⊗T

induces an isomorphism HomB(X, P ) ∼= HomA(X ⊗B T , P ⊗B T ).

Exercise V.1.8. Let A be an algebra, T an A-module and B = End TA. Prove that,
for every module M , the A-module HomA(T ,M)⊗B T is generated by TA. Deduce
that the morphism εM : HomA(T ,M) ⊗B T −→ M is surjective if and only if M

is generated by T .

Exercise V.1.9. Let A be an algebra, T an A-module and B = End TA. Prove
that the morphism x �−→ (f �→ f (x)) from M to HomBop (HomA(M, T ), T ) is
injective if and only if M is cogenerated by T .

Exercise V.1.10. For each of the bound quiver algebras A below and each of the
idempotents e indicated, compute eAe and show explicitly the equivalence between
pres(eA) and mod(eAe).

(a) 1 2
αβγ = 0 ;

3 4
γ β α

e = e1 + e2 + e4.
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(b)
αβ = γδ, δεα = 0, βεγ = 0 ;ε
e = e1 + e2 + e4.1

2

3

4

δ γ

αβ

(c)
αβ = γδ, λμ = βv ;

e = e1 + e2 + e3 + e6.3

4

5

6

δ γ

αβ
1

2

ν

λμ

V.2 Tilting theory

V.2.1 Tilting modules

Tilting theory is at present one of the most active areas of research in the represen-
tation theory of algebras, with applications in several other parts of mathematics.
Our purpose here is not to give an overview, but rather a short introduction. The
main idea of tilting theory is to projectivise a module that is “close enough” to
a progenerator of the module category, and then to compare the module category
of the original algebra with that of the endomorphism algebra of the projectivised
module.

Definition V.2.1. Let A be an algebra, an A-module T is called a partial tilting
module if it satisfies the following conditions:

(a) pd T ≤ 1; and
(b) Ext1A(T , T ) = 0.

In addition, it is a tilting module if it also satisfies the third condition:

(c) There is a short exact sequence of the form

0 −→ AA −→ T0 −→ T1 −→ 0

with T0, T1 in add T .

Thus, every projective module is a partial tilting module and every progenerator
is a tilting module. All three conditions above express in some way that tilting
modules are close to progenerators. In addition:

(a) Because of Proposition III.1.11, the first condition is equivalent to saying that
HomA(DA, τT ) = 0, that is, no injective maps nontrivially to τT . Because of
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Theorem III.2.4, the second condition in the presence of the first is equivalent
to saying that HomA(T , τT ) = 0, see Exercise III.2.3(a).

(b) To verify the third condition, it suffices to construct, for each indecomposable
projective A-module Px , a short exact sequence 0 −→ Px −→ T 0

x −→
T 1

x −→ 0, with T 0
x , T 1

x in add T . Indeed, the direct sum of such sequences
yields the required sequence for AA.

(c) Every tilting module T is faithful, that is, its annihilator Ann T = {a ∈
A : T a = 0} vanishes. Indeed, because of condition (c) of the definition, there
exists a monomorphism j : A −→ T0 with T0 in add T . Let a ∈ Ann T , then
j (a) = j (1)a ∈ T0a = 0. Because j is injective, we infer that a = 0.

We give an example of a tilting module.

Example V.2.2. Let A be given by the quiver

αβ

γδ

2

3

4

ε
1

5

bound by αβ = γ δ and αε = 0. Then, Γ (mod A) is

1

2

3
1 2

4
2

3 4
1 2

3
2

3 4
2

3
1

3

4

5
3 4
2

5
3 4

5
3

5
4

5

We claim that

T = 1⊕ 3 4
1 2 ⊕ 3

1 ⊕4⊕ 5
3 4
2

is a tilting module. The short exact sequences
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0 −→ 2 −→ 3
1 2 ⊕ 4

2 −→ 3 4
1 2 −→ 0,

0 −→ 2 −→ 3
1 2 −→ 3

1 −→ 0 and 0 −→ 2 −→ 4
2 −→ 4 −→ 0

and the projectivity of

P1 = 1 and P5 =
5

3 4
2

yield that pd T = 1. To prove that Ext1A(T , T ) = D HomA(T , τT ) = 0, we
need to show that, for any indecomposable summands Ti, Tj of T , we have
HomA(Ti, τTj ) = 0. Because the existence of a nonzero morphism Ti −→ τTj

implies the existence of a path from Ti to τTj in Γ (mod A), we see easily, for
instance, that

HomA

(
3
1 ,t

(
3
1

))
= HomA

(
3
1 , 4

2

)
= 0 and

HomA

(
3
1 ,t (4)

)
= HomA

(
3
1 , 3

2

)
= 0.

The other cases are done in the same manner. The third condition follows from the
fact that the projectives P1 and P5 are in add T , and from the short exact sequences

0 −→ 2 −→ 3 4
1 2 −→ 3

1 ⊕4 −→ 0,

0 −→ 3
1 2 −→ 3 4

1 2 −→ 4 −→ 0 and 0 −→ 4
2 −→ 3 4

1 2 −→ 3
1 −→ 0.

We justify now the name of partial tilting module by proving that every partial
tilting module can be completed to (that is, is a direct summand of) a tilting module.
We need a homological lemma.

Lemma V.2.3. Let T ,M be A-modules. Then, there exists a short exact sequence

0 −→ M −→ E −→ T0 −→ 0

with T0 in add T , such that the connecting morphism δ : HomA(T , T0) −→
Ext1A(T ,M) is surjective.
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Proof . If Ext1A(T ,M) = 0, there is nothing to prove. Otherwise, let {ξ1, . . . , ξd} be
a basis of the k-vector space Ext1A(T ,M), where each ξi is represented by a short
exact sequence

0 −→ M
fi−→ Ei

gi−→ T −→ 0.

Let c = (1, 1, . . . , 1) : Md −→ M be the codiagonal morphism. There exists a
commutative diagram with exact rows:

where ⊕fi , ⊕gi are the morphisms induced by passing to the direct sums, ui, vi, wi

are the respective inclusion morphisms into the ith coordinate space and E is the
amalgamated sum of the morphisms c and ⊕fi . Because cui = 1M , for every i, we
deduce another commutative diagram with exact rows

Let ξ be the element of Ext1A(T d,M) represented by the lower sequence. The
previous diagram says that ξi = Ext1A(wi,M)(ξ) for every i, that is, ξi lies in the
image of the connecting morphism δ. Because the ξi generate Ext1A(T ,M), we infer
that δ is surjective. ��

We state and prove the announced result, known as Bongartz’ lemma.

Proposition V.2.4. Let T be a partial tilting A-module. Then, there exists a module
E such that T ⊕ E is a tilting module.

Proof . Because of Lemma V.2.3 above, there exists a short exact sequence

(∗) 0 −→ A −→ E −→ T0 −→ 0

with T0 in add T such that the connecting morphism HomA(T , T0) −→ Ext1A(T ,A)

is surjective. Applying HomA(T ,−) to (∗) yields an exact cohomology sequence
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. . . −→ HomA(T , T0) −→ Ext1A(T ,A) −→ Ext1A(T ,E) −→ Ext1A(T , T0) = 0

where the last equality follows from the definition of a partial tilting module.
Surjectivity of the connecting morphism yields Ext1A(T ,E) = 0.

Applying successively the functors HomA(−, T ) and HomA(−, E) to the
sequence (∗), we get the exact sequences

0 = Ext1A(T0, T ) −→ Ext1A(E, T ) −→ Ext1A(A, T ) = 0 and

0 = Ext1A(T0, E) −→ Ext1A(E,E) −→ Ext1A(A,E) = 0.

Therefore, Ext1A(E, T ) = 0 = Ext1A(E,E), so that Ext1A(T ⊕ E, T ⊕ E) = 0.
Because pd T ≤ 1, the sequence (∗) yields pd E ≤ 1 and so pd(T ⊕ E) ≤ 1. The
third condition of the definition of a tilting module is satisfied because of the exact
sequence (∗). ��

V.2.2 A torsion pair in mod A

Because we want to projectivise tilting modules, it is useful, as in Subsection V.1.1
to consider the full subcategory pres T of mod A consisting of all A-modules M

such that there exists an exact sequence

T1 −→ T0 −→ M −→ 0

with T0, T1 in add T . Clearly, in this case, M is generated by T , that is, there exist
m > 0 and an epimorphism T m −→ M . The surprising fact is that the converse also
holds true. This will be proven in the proposition following the next two lemmata,
the first of which should be compared with Exercise V.1.4.

Lemma V.2.5. Let T ,M be A-modules, {f1, . . . , fd} a k-basis of HomA(T ,M)

and f = (f1, . . . , fd) : T d −→ M . Then:

(a) For every morphism g : T0 −→ M , with T0 in add T , there exists h : T0 −→ T d

such that g = f h.
(b) The morphism HomA(T , f ) : HomA(T , T d) −→ HomA(T ,M) is surjective.
(c) The morphism f is surjective if and only if M is generated by T .

Proof .

(a) It suffices to prove the statement when T0 = T . In this case, g is a linear
combination of the fi , that is, there exist λ1, . . . , λd ∈ k such that g =
∑d

i=1 λifi . But then g = f h with h =
⎛
⎝

λ1

...
λd

⎞
⎠:



V.2 Tilting theory 251

(b) This follows from (a).
(c) Clearly, if f is surjective, then M is generated by T . Conversely, assume M to

be generated by T . There exist T0 in add T and an epimorphism g : T0 −→ M .
Because of (a), g factors through f . But g is surjective. Hence, so is f .

��
We define the notion of trace of a subcategory C of mod A on a module M . This

is the submodule of M given by

tC M =
∑

{Im f | f : X −→ M for some object X in C }.

Thus, tC M is generated by the objects of C and, because of its definition, it is the
largest submodule of M to be generated by the objects of C . If, in particular, C =
add T for some module T , then we write tC M = tT M . Thus, if T is a module, then
tT M is the largest submodule of M generated by T .

Lemma V.2.6. Let T be a tilting A-module. Then, an A-module M is generated by
T if and only if Ext1A(T ,M) = 0.

Proof . Assume that M is generated by T . There exist T0 in add T and an
epimorphism T0 −→ M . Because pd T ≤ 1, this epimorphism induces an
epimorphism Ext1A(T , T0) −→ Ext1A(T ,M). Because Ext1A(T , T0) = 0, we get
Ext1A(T ,M) = 0. Conversely, let M be such that Ext1A(T ,M) = 0. Because we
have already proven that modules generated by T have no extension with T , we
have Ext1A(T , tT M) = 0. Also, because of the definition of the trace, we have
HomA(T , tT M) = HomA(T ,M). Therefore, applying HomA(T ,−) to the short
exact sequence

0 −→ tT M −→ M −→ M

tT M
−→ 0

yields HomA(T ,M/tT M) = 0. On the other hand, pd T ≤ 1 implies the existence
of an epimorphism Ext1A(T ,M) −→ Ext1A(T ,M/tT M). Because Ext1A(T ,M) = 0
by hypothesis, we get Ext1A(T ,M/tT M) = 0. Finally, applying HomA(−,M/tT M)

to the short exact sequence

0 −→ AA −→ T0 −→ T1 −→ 0

with T0, T1 in add T , whose existence is asserted in the definition of tilting module,
we get an exact sequence
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0 = HomA(T0,M/tT M) −→ HomA(A,M/tT M) −→ Ext1A(T1,M/tT M) = 0.

Thus, M/tT M ∼= HomA(A,M/tT M) = 0 and so, M = tT M is generated by T .
��

We next prove that the equivalent properties of Lemma V.2.6 characterise the
subcategory pres T .

Proposition V.2.7. Let T be a tilting A-module. Then, pres T coincides with the
full subcategory of mod A consisting of all A-modules generated by T .

Proof . Because every T -presented A-module is obviously generated by T , it
suffices to prove the reverse implication. Let M be generated by T and f : T d −→
M be as in Lemma V.2.5. Then, f is surjective and we have a short exact sequence

0 −→ L
j−→ T d f−→ M −→ 0

where L = Ker f . Applying HomA(T ,−), we get an exact sequence

0 −→ HomA(T ,L) −→ HomA(T , T d)
HomA(T ,f )−→ HomA(T ,M)

−→ Ext1A(T ,L) −→ 0

because Ext1A(T , T ) = 0. Because of Lemma V.2.5, HomA(T , f ) is surjective.
Therefore, Ext1A(T ,L) = 0. Because of Lemma V.2.6, L is generated by T and
thus, there exist m > 0 and an epimorphism p : T m −→ L. We deduce the required
presentation

T m jp−→ T d −→ M −→ 0.

��
As seen in the proof, the fact that M lies in pres T can be expressed equivalently

by stating that there exists a short exact sequence

0 −→ L −→ T0 −→ M −→ 0

with T0 in add T and L generated by T . We shall use this fact repeatedly in the
sequel.

The main consequence of the proposition is the existence of a torsion pair in
mod A. Torsion pairs in mod A say roughly how the morphisms go in this category.

Definition V.2.8. A torsion pair (T ,F ) in mod A is a pair of k-linear full
subcategories such that:

(a) HomA(M,N) = 0 for all M in T and N in F .
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(b) T and F are maximal for (a), that is:

(i) HomA(M,−)|F = 0 implies that M lies in T .
(ii) HomA(−, N)|T = 0 implies that N lies in F .

The class T is the torsion class, and the modules in it are torsion modules, whereas
the class F is the torsion-free class, and the modules in that class are torsion-free
modules.

Clearly, if (T ,F ) is a torsion pair, then T ∩ F = 0. We list a few properties
of torsion pairs.

Lemma V.2.9.

(a) Let T be a k-linear full subcategory of mod A. There exists a subcategory F
such that (T ,F ) is a torsion pair if and only if T is closed under quotients
and extensions.

(b) Let F be a k-linear full subcategory of mod A. There exists a subcategory T
such that (T ,F ) is a torsion pair if and only if F is closed under submodules
and extensions.

(c) Let (T ,F ) be a torsion pair in mod A. For each A-module M , there exists a
unique short exact sequence 0 −→ L −→ M −→ N −→ 0 such that L lies in
T and N lies in F .

Proof .

(a) Let 0 −→ L −→ M −→ N −→ 0 be a short exact sequence in mod A. Then
there exists a left exact sequence of functors

0 −→ HomA(N,−)|F −→ HomA(M,−)|F −→ HomA(L,−)|F .

Then L,N in T imply M in T , and M in T implies N in T . That is, T is
closed under quotients and extensions.

Conversely, assume that T satisfies this condition and consider the trace
tT M .

We claim that tT (M/tT M) = 0. Indeed, there exists a submodule L of M

containing tT M such that tT (M/tT M) = L/tT M . Because both L/tT M

and tT M lie in T , the short exact sequence

0 −→ tT M −→ L −→ L

tT M
−→ 0

gives L in T , because T is closed under extensions. Hence, L ⊆ tT M and so
tT (M/tT M) = 0, as required.

Let now F be the k-linear full subcategory of mod A defined by:

F = {M : tT M = 0}.
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In particular, for each A-module M , we have M/tT M ∈ F . We claim that
(T ,F ) is a torsion pair. Let f : M −→ N be a nonzero morphism with
M in T and N in F . The induced epimorphism tT M = M −→ Im f is
also nonzero. Hence, tT N 	= 0, a contradiction. Therefore, HomA(M,N) =
0. Assume HomA(M,−)|F = 0. In particular, HomA(M,M/tT M) = 0,
which implies M/tT M = 0 and thus M = tT M lies in T . Similarly,
HomA(−, N)|T = 0 implies that N lies in F .

(b) is dual to (a).
(c) We claim that the required sequence is

0 −→ tT M −→ M −→ M

tT M
−→ 0

as constructed in (a). Because tT M lies in T and M/tT M lies in F , we just
have to prove uniqueness. Let 0 −→ L −→ M −→ N −→ 0 be a short exact
sequence with L in T and N in F . Because tT M is the largest submodule of
M to lie in T , we have L ⊆ tT M . We get a commutative diagram with exact
rows

where f is deduced by passing to cokernels. The snake lemma gives that f is
surjective with kernel tT M/L. Because the kernel is a submodule of N , which
lies in F , then tT M/L also lies in F . On the other hand, tT M lies in T ;
therefore, tT M/L lies in T . Because T ∩ F = 0, we get tT M/L = 0, that
is, L = tT M . Consequently, N ∼= M/tT M .

��
The short exact sequence of (c) is called the canonical sequence for the module

M . An easy consequence of the existence of the canonical sequence is that every
simple A-module lies either in T or in F . We are now able to prove the wanted
corollary of Proposition V.2.7.

Corollary V.2.10. Let T be a tilting A-module. Then, T (T ) = pres T is a torsion
class and the corresponding torsion-free class is

F (T ) = {N : HomA(T ,N) = 0}.

Proof . Because pres T coincides with the class of modules generated by T , it is
closed under quotients. We now prove that it is closed under extensions. Applying
HomA(T ,−) to a short exact sequence 0 −→ L −→ M −→ N −→ 0 yields an
exact sequence
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Ext1A(T ,L) −→ Ext1A(T ,M) −→ Ext1A(T ,N).

If L,N lie in pres T , then Ext1A(T ,L) = 0 and Ext1A(T ,N) = 0 and so
Ext1A(T ,M) = 0. Therefore, T (T ) = pres T is a torsion class.

Let M be torsion-free. Because T is torsion, we have HomA(T ,M) = 0.
Therefore, M lies in F (T ). Conversely, let M lie in F (T ). For every L in F (T ),
there exist T0 in add T and an epimorphism T0 −→ L. Therefore, HomA(L,M) = 0
and so M is torsion-free. ��

It follows from Lemma V.2.6 and Corollary V.2.10 that all injective A-modules
lie in T (T ) because they annihilate the functor Ext1A(T ,−). Also, if P is a
projective module lying in T (T ), then it must belong to add T . Indeed, every
epimorphism from add T to P must split. In particular, every indecomposable
projective–injective A-module is a direct summand of every tilting A-module.

Corollary V.2.11. With the above notation, HomA(T ,−)|T (T ) is an exact functor.

Proof . Let 0 −→ L −→ M −→ N −→ 0 be a short exact sequence in T (T ).
Because Ext1A(T ,L) = 0, we deduce an exact sequence

0 −→ HomA(T ,L) −→ HomA(T ,M) −→ HomA(T ,N) −→ 0. ��
We have proved in Lemma V.1.6 that the morphism εM : HomA(T ,M) ⊗B

T −→ M given by f ⊗ t �−→ f (t) is an isomorphism whenever M lies in add T .
We now prove that, if T is tilting, then εM is an isomorphism for every M in pres T .

Corollary V.2.12. An A-module M lies in T (T ) if and only if the morphism εM :
HomA(T ,M) ⊗B T −→ M given by f ⊗ t �→ f (t) is an isomorphism.

Proof . Assume that εM is an isomorphism, then M ∼= HomA(T ,M) ⊗B T lies in
T (T ) because of Lemma V.1.5. Conversely, let M belong to T (T ). The proof of
this implication is similar to that of Proposition V.1.7. There exists an exact sequence

T1 −→ T0 −→ M −→ 0

with T0, T1 in add T . Applying Corollary V.2.11, we have an exact sequence

HomA(T , T1) −→ HomA(T , T0) −→ HomA(T ,M) −→ 0.

Applying − ⊗B T yields a commutative diagram with exact rows

HomA(T , T1) ⊗B T HomA(T , T0) ⊗B T HomA(T ,M) ⊗B T 0

T1 T0 M 0.

εT1 εT0 εM

Because of Lemma V.1.6, εT1 and εT0 are isomorphisms. Hence, so is εM . ��
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Example V.2.13. It is easy to compute in the Auslander–Reiten quiver of an algebra
the subcategories T (T ) and F (T ). For instance, in Example V.2.2,

1

2

3
1 2

4
2

3 4
1 2

3
2

3 4
2

3
1

3

4

5
3 4
2

5
3 4

5
3

5
4

5

T (T ) is illustrated by the hatched area and F (T ) by the dotted area.

One particular class of tilting modules is the class of so-called APR-tilting
modules where the letters A, P and R stand for Auslander, Platzeck and Reiten.

Lemma V.2.14. Let Sx be a simple projective noninjective module. Then:

(a) Tx = τ−1Sx ⊕ (
⊕

y 	=x Py) is a tilting module.
(b) F (Tx) = add Sx while T (Tx) = add(ind A \ {Sx}).
Proof .

(a) Because of Lemma III.2.10, there exists an almost split sequence 0 −→ Sx −→
P −→ τ−1Sx −→ 0 with P projective. This proves the first and third
conditions of the definition of a tilting module. In addition,

Ext1A(Tx, Tx) ∼= D HomA(Tx, τTx) ∼= D HomA(Tx, Sx) = 0

because the simple projective module Sx is not a summand of Tx .
(b) Let M be indecomposable. Then, M lies in T (Tx) if and only if Ext1A(Tx,M) =

0, that is, HomA(M, Sx) = 0 or equivalently, M 	∼= Sx . Similarly,
HomA(Tx, Sx) = 0 implies that Sx lies in F (Tx). Therefore, F (Tx) = add Sx .

��
Because of (b), every indecomposable A-module belongs either to T (Tx) or

to F (Tx). If a torsion pair (T ,F ) in mod A is such that every indecomposable
module lies either in T or in F , then the pair (T F ) is said to be split. Thus, an
APR-tilting module TA induces a split torsion pair (T (Tx),F (Tx)) in mod A.
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V.2.3 The main theorems

We now prove the two main results of tilting theory, called the reciprocity theorem
and the tilting theorem. We keep the notations above, that is, let A be an algebra, T

a tilting A-module and B = End TA. We first show that the functor HomA(T ,−) :
mod A −→ mod B preserves both the morphism spaces and the first extension
spaces between torsion modules.

Lemma V.2.15. Let M,N be A-modules lying in T (T ), then

(a) HomA(M,N) ∼= HomB(HomA(T ,M), HomA(T ,N)).
(b) Ext1A(M,N) ∼= Ext1B(HomA(T ,M), HomA(T ,N)).

Proof .

(a) Because M lies in T (T ), there is an exact sequence

T1 −→ T0 −→ M −→ 0

with T1, T0 in add T . Because of Corollary V.2.11, it induces an exact sequence

HomA(T , T1) −→ HomA(T , T0) −→ HomA(T ,M) −→ 0.

Applying HomB(−, HomA(T ,N)) yields a commutative diagram with exact
rows

0

0

HomB(HomA(T,M),HomA(T,N)) HomB(HomA(T,T0),HomA(T,N)) HomB(HomA(T,T1),HomA(T,N))

HomA(M,N) HomA(T0,N ) HomA(T1,N )

∼= ∼=

where the lower exact sequence comes from the application of HomA(−, N)

to the given T -presentation of M , and the vertical isomorphisms come from
Corollary V.1.4(a). The statement follows.

(b) Let T1
d1−→ T0

d0−→ M −→ 0 be exact with T0, T1 in add T . Because L = Im d1
is generated by T , an obvious induction yields a resolution

. . . −→ T2
d2−→ T1

d1−→ T0
d0−→ M −→ 0

with all Ti in add T . Because of Corollary V.2.11, we deduce an exact sequence

. . . −→ HomA(T , T2) −→ HomA(T , T1) −→ HomA(T , T0)

−→ HomA(T ,M) −→ 0

which is a projective resolution of HomA(T ,M) in mod B.
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Let d1 = jp be the canonical factorisation of d1 through its image L. The short
exact sequence

0 −→ L
j−→ T0

d0−→ M −→ 0

induces an exact sequence

0 −→ HomA(M,N) −→ HomA(T0, N)
HomA(j,N)−→ HomA(L,N)

−→ Ext1A(M,N) −→ Ext1A(T0, N) = 0

where Ext1A(T0, N) = 0 follows from the fact that N lies in T (T ). Therefore,
Ext1A(M,N) ∼= Coker HomA(j,N).

On the other hand, the exact sequence

T2
d2−→ T1

p−→ L −→ 0

induces an exact sequence

0 −→ HomA(L,N) −→ HomA(T1, N)
HomA(d2,N)−→ HomA(T2, N)

so that HomA(L,N) ∼= Ker HomA(d2, N).
By definition, Ext1B(HomA(T ,M), HomA(T ,N)) is the first cohomology group

of the complex on the upper row of the following commutative diagram

0

0

HomB(HomA(T,T0),HomA(T,N)) HomB(HomA(T,T1),HomA(T,N)) HomB(HomA(T,T2),HomA(T,N))

HomA(T0,N ) HomA(T1,N ) HomA(T2,N )
HomA(d1,N H) omA(d2,N )

∼= ∼=∼=

where the vertical isomorphisms follow from (a). Thus,

Ext1B(HomA(T ,M)), HomA(T ,N)) ∼= Ker HomA(d2, N)

Im HomA(d1, N)
∼= HomA(L,N)

Im HomA(d1, N)
.

Now, HomA(d1, N) = HomA(p,N) HomA(j,N). The injectivity of HomA(p,N)

implies Im HomA(d1, N) ∼= Im HomA(j,N). Then we get

Ext1B(HomA(T ,M), HomA(T ,N)) ∼= HomA(L,N)

Im HomA(j,N)

∼= Coker HomA(j,N)

∼= Ext1A(M,N).

��
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Before continuing, we need a pair of homological lemmata. The first one asserts
that duality interchanges homology and cohomology.

Lemma V.2.16. Let C• : . . . −→ Cn−1 dn−→ Cn dn+1−→ Cn+1 −→ . . . be a complex.
Then, for every n ≥ 0, we have a functorial isomorphism Hn(DC•) ∼= D Hn(C•).

Proof . We have, for every n ≥ 0, a short exact sequence

0 −→ Im dn −→ Ker dn+1 −→ Hn(C•) −→ 0

hence, an exact sequence

0 −→ D Hn(C•) −→ D(Ker dn+1) −→ D(Im dn) −→ 0.

Now,

D(Ker dn+1) ∼= CokerDdn+1 ∼= DCn

ImDdn+1 and

D(Im dn) ∼= Im Ddn ∼= DCn

Ker Ddn

thus, comparing the previous sequence with the sequence

0 −→ Ker Ddn

Im Ddn+1
−→ DCn

Im Ddn+1
−→ DCn

Ker Ddn
−→ 0

yields

D Hn(C•) ∼= Ker Ddn

Im Ddn+1
∼= Hn(DC•).

��
We deduce functorial isomorphisms whose existence was asserted in Subsec-

tion IV.1.5.

Proposition V.2.17. Let L,M be A-modules. We have functorial isomorphisms

(a) L ⊗A DM ∼= D HomA(L,M), and
(b) TorAn (L, DM) ∼= D ExtnA(L,M), for every n ≥ 0.

Proof .

(a) Follows from the adjunction formula. Indeed,

D(L ⊗A DM) = Homk(L ⊗A DM, k)

∼= HomA(L, Homk(DM, k))
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∼= HomA(L, D2M)

∼= HomA(L,M).

(b) Let P• be a projective resolution of L in mod A. Applying (a) above to each
Pi yields a functorial isomorphism Pi ⊗A DM ∼= D HomA(Pi,M). Thus, we
have an isomorphism of complexes P• ⊗A DM ∼= D HomA(P•,M). Hence, for
every n ≥ 0,

TorAn (L, DM) ∼= Hn(P• ⊗A DM)

∼= Hn(D HomA(P•,M))

∼= D Hn HomA(P•,M)

∼= D ExtnA(L,M)

where the third isomorphism follows from Lemma V.2.16 above.
��

We next prove the reciprocity theorem.

Theorem V.2.18 (Reciprocity theorem). Let A be an algebra, T a tilting A-
module and B = End TA. Then, BT is a tilting left B-module and we have an
isomorphism A ∼= (EndB T )op given by a �−→ (t �→ ta).

Proof . Applying HomA(−,B TA) to a short exact sequence

0 −→ AA −→ T0 −→ T1 −→ 0

with T0, T1 in add T , and using that HomA(A,B TA) ∼=B T whereas Ext1A(T , T ) =
0, we get an exact sequence

0 −→ HomA(T1,B TA) −→ HomA(T0,B TA) −→B T −→ 0

so that pdB T ≤ 1.
Next, D(BT ) ∼= D(BT ⊗A A) ∼= HomA(BTA, DA) where we have applied

Proposition V.2.17(a). Then, Lemma V.2.15(b) yields

Ext1B(DT , DT ) ∼= Ext1B(HomA(T , DA), HomA(T , DA)) ∼= Ext1A(DA, DA) = 0

because DA lies in T (T ). Therefore Ext1Bop (T , T ) = 0.
Finally, applying the functor HomA(−,B TA) to a projective resolution 0 −→

P1 −→ P0 −→ T −→ 0 in mod A, we get an exact sequence

0 −→B B −→ HomA(P0, T ) −→ HomA(P1, T ) −→ 0
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because Ext1A(T , T ) = 0. Now, HomA(P0, T ), HomA(P1, T ) both belong to add T .
This completes the proof that BT is a tilting module.

For each a ∈ A, the map ρa : t �→ ta is an endomorphism of BT . Also, η : a �→
ρa is an algebra morphism from A to (EndB T )op. If a ∈ Ker η, then T a = 0 and
hence a = 0, because T is faithful. Then, η is injective. On the other hand, the
isomorphism DT ∼= HomA(T ,DA) and Lemma V.2.15(a) yield isomorphisms of
vector spaces

A ∼= End DA ∼= End HomA(T , DA) ∼= End DT ∼= End T .

Therefore, η is an isomorphism of algebras. ��
Corollary V.2.19. Let X (TA),Y (TA) be the k-linear full subcategories defined by
X (TA) = {XB : X ⊗B T = 0} and Y (TA) = {YB : TorB1 (Y, T ) = 0} respectively.
Then, (X (TA),Y (TA)) is a torsion pair in mod B.

Proof . Because BT is tilting, it induces in mod Bop a torsion pair (T (BT ),

F (BT )) with T (BT ) = {BU : Ext1Bop (T , U) = 0} and F (BT ) =
{BV : HomBop (T , V ) = 0}. Therefore, (DF (BT ), DT (BT )) is a torsion pair
in mod B. Now, X lies in DF (BT ) if and only if DX lies in F (BT ), that is,
HomBop (T , DX) = 0, and this is equivalent to X ⊗B T = 0, or in other words X

lies in X (TA), because of Proposition V.2.17(a).
Similarly, Y lies in DT (BT ) if and only if DY lies in T (BT ), that is, if

and only if TorB1 (Y, T ) ∼= D Ext1B(Y, DT ) ∼= D Ext1Bop (T , DY ) = 0, because of
Proposition V.2.17(b). ��
Corollary V.2.20. If Y lies in Y (T ), then δY is an isomorphism.

Proof . Let P1
p1−→ P0

p0−→ Y −→ 0 be a projective presentation of Y . Setting
Z0 = Ker p0, Z1 = Ker p1, we get short exact sequences

0 −→ Z0 −→ P0 −→ Y −→ 0 and 0 −→ Z1 −→ P1 −→ Z0 −→ 0.

Because TorB1 (Y, T ) = 0, we deduce exact sequences

0 −→ Z0 ⊗B T −→ P0 ⊗B T −→ Y ⊗B T −→ 0

and

Z1 ⊗B T −→ P1 ⊗B T −→ Z0 ⊗B T −→ 0

from which we get an exact sequence

P1 ⊗B T −→ P0 ⊗B T −→ Y ⊗B T −→ 0.
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Because of Lemma V.1.5, this sequence lies in T (T ) and therefore, because of
Corollary V.2.11, the lower row in the commutative diagram below is exact

HomA(T , P1 ⊗B T ) HomA(T , P0 ⊗B T ) HomA(T , Y ⊗B T ) 0

P1 P0 0

δP1 δP0 δY

Y

Because of Lemma V.1.6, δP0 , δP1 are isomorphisms. Therefore, so is δY . ��
We now prove our second main result, known as the tilting theorem or the

Brenner–Butler theorem.

Theorem V.2.21 (Tilting theorem). Let A be an algebra, T a tilting A-module
and B = End TA. Then,

(a) The functors HomA(T ,−) and − ⊗B T induce quasi-inverse equivalences
between T (T ) and Y (T ).

(b) The functors Ext1A(T ,−) and TorB1 (−, T ) induce quasi-inverse equivalences
between F (T ) and X (T ).

Proof .

(a) If M lies in T (T ), there is an exact sequence 0 −→ L −→ T0 −→ M −→ 0
with T0 in add T and L in T (T ). Because of Corollary V.2.11, we have a short
exact sequence

0 −→ HomA(T ,L) −→ HomA(T , T0) −→ HomA(T ,M) −→ 0

Applying − ⊗B T and using Corollary V.2.12, we get a commutative diagram
with exact rows

0 TorB
1 (HomA(T,M),T ) HomA(T,L)⊗B T HomA(T,T0)⊗B T HomA(T,M)⊗B T 0

0 L T0 M 0

εL εT0 εM∼= ∼= ∼=

where the vertical arrows are isomorphisms and we also use the projectivity
of HomA(T , T0) in mod B. Therefore, TorB1 (HomA(T ,M), T ) = 0 and so
HomA(T ,M) lies in Y (T ). Thus, the functor HomA(T ,−) : T (T ) −→ Y (T )

is well-defined. Because of Lemma V.1.5, the functor − ⊗B T : Y (T ) −→
T (T ) is also well-defined. Finally, Corollary V.2.12 and Corollary V.2.20 above
state that, if M lies in T (T ), then HomA(T ,M) ⊗B T ∼= M and, if Y lies in
Y (T ), then Y ∼= HomA(T , Y ⊗B T ).
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(b) Let N belong to F (T ). There exists an exact sequence

0 −→ N −→ I −→ N ′ −→ 0

with I injective. Then, I lies in T (T ). Because T (T ) is closed under quotients,
also N ′ lies in T (T ). Applying HomA(T ,−) yields an exact sequence

0 −→ HomA(T , I ) −→ HomA(T ,N ′) −→ Ext1A(T ,N) −→ 0.

Because HomA(T ,N ′) lies in Y (T ), we have TorB1 (HomA(T ,N ′), T ) = 0. We
deduce a commutative diagram with exact rows

0 TorB
1 (Ext1A(T,N),T ) HomA(T,I) B T HomA(T,N ) B T Ext1A(T,N) B T 0

0 N I N 0

εI εN
∼= ∼=

⊗ ⊗ ⊗

where the vertical isomorphisms are those of Corollary V.2.12.
Therefore, Ext1A(T ,N) ⊗B T = 0, that is, Ext1A(T ,N) lies in X (T ). Also

TorB1 (Ext1A(T ,N), T ) ∼= N .
Similarly, let X belong to X (T ). There exists an exact sequence

0 −→ X′ −→ P −→ X −→ 0

with P projective. Then, P lies in Y (T ). Because Y (T ) is closed under taking
submodules, X′ is in Y (T ) as well. Applying −⊗B T yields an exact sequence

0 −→ TorB1 (X, T ) −→ X′ ⊗B T −→ P ⊗B T −→ 0.

Because X′ ⊗B T lies in T (T ), we have Ext1A(T ,X′ ⊗B T ) = 0. We get a
commutative diagram with exact rows

0 HomA(T,TorB
1 (X,T )) HomA(T,X B T ) HomA(T,P ⊗B T ) Ext1A(T,TorB

1 (X,T ) 0

0 X P X 0

δX δP
∼= ∼=

⊗

where the vertical isomorphisms are those of Corollary V.2.20. We deduce that
HomA(T , TorB1 (X, T )) = 0 so that TorB1 (X, T ) belongs to F (TA). Also X ∼=
Ext1A(T , TorB1 (X, T )).

��
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Example V.2.22. In Example V.2.2, a quick calculation shows that B is given by the
quiver

4

5

1

3

2δ

α

β

γ

bound by αδ = 0, γ δ = 0. While drawing this quiver, we should remember that
endomorphisms of a module compose in the reverse way to arrows in a quiver, and
thus the arrows are drawn in the opposite direction to morphisms. Then, Γ (mod B)
is given by

1 2 5

4

3

2
1

4
2
1

4
2

5
2

3
2

3
2 2

3 4
2

4 5
2

3 5
2

3 4 5
2

4 5

where Y (T ) is illustrated by the hatched area, whereas X (T ) is illustrated by the
dotted area. It is easy to compute the image of every indecomposable A-module
under the tilting functors HomA(T ,−) and Ext1A(T ,−). For instance, we have

HomA(T , 3) = 5
2 while Ext1A(T , 2) ∼= D HomA(2, τT ) ∼= 3 4

2 .

V.2.4 Consequences of the main results

As usual, we denote by A an algebra, T a tilting A-module and B = End TA. We
start by comparing the global dimensions of A and B.

Lemma V.2.23. Assume M lies in T (T ), then pd HomA(T ,M) ≤ pd M .
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Proof . By induction on d = pd M . If d = 0, then MA is projective and so, because
it lies in T (T ), it must belong to add T so that HomA(T ,M) is a projective B-
module.

Assume d ≥ 1. Because M lies in T (T ), there exists an exact sequence
0 −→ L −→ T0 −→ M −→ 0, with T0 in add T and L in T (T ). Because of
Corollary V.2.11, we have a short exact sequence

(∗) 0 −→ HomA(T ,L) −→ HomA(T , T0) −→ HomA(T ,M) −→ 0.

Also, applying HomA(−, N) where N is an arbitrary module yields an epimorphism
ExtdA(T0, N) −→ ExtdA(L,N), because d = pd M .

Assume first d = 1. Because L is in T (T ), there is an exact sequence 0 −→
N −→ T1 −→ L −→ 0 with T1 in add T and N lying in T (T ). In particular,
Ext1A(L,N) = 0; consequently, this sequence splits and L is a summand of T ,
hence lies in add T . The sequence (∗) then gives pd HomA(T ,M) ≤ 1.

If d > 1 and N is arbitrary, then pd T0 ≤ 1 gives ExtdA(L,N) = 0 so that
pd L ≤ d − 1. Because of the induction hypothesis, pd HomA(T ,L) ≤ d − 1 and
so pd HomA(T ,M) ≤ 1 + (d − 1) = d. ��
Theorem V.2.24. With the above notations, | gl. dim. A − gl. dim. B| ≤ 1.

Proof . Let Z be an arbitrary B-module. There exists a short exact sequence 0 −→
Y −→ P −→ Z −→ 0, with P projective. Because P lies in Y (T ), so does Y .
Because of Lemma V.2.23, we have pd Y ≤ gl. dim. A and so pd Z ≤ 1+pd Y ≤ 1+
gl. dim. A. Therefore, gl. dim. B ≤ 1 + gl. dim. A. The reciprocity theorem V.2.18
implies that gl. dim. A ≤ 1 + gl. dim. B. ��

The next theorem says that the numbers of isoclasses of indecomposable
projective A-modules and of indecomposable projective B-modules are equal.
Equivalently, the quivers of A and B have the same number of points.

Theorem V.2.25. The map f : K0(A) −→ K0(B) given by

M �→ dim HomA(T ,M) − dim Ext1A(T ,M)

is an isomorphism of abelian groups.

Proof . Because pd T ≤ 1, a short exact sequence 0 −→ L −→ M −→ N −→ 0
in mod A induces a long exact cohomology sequence in mod B

0 −→ HomA(T ,L) −→ HomA(T ,M) −→ HomA(T ,N)

−→ Ext1A(T ,L) −→ Ext1A(T ,M) −→ Ext1A(T ,N) −→ 0.

Taking dimensions shows that f : K0(A) −→ K0(B) defined as in the statement is
a morphism of groups.

Let S be a simple B-module. Either S lies in Y (T ), or in X (T ) (see the
remark after Lemma V.2.9). In the former case, S ∼= HomA(T , S ⊗B T ) whereas
Ext1A(T , S ⊗B T ) = 0, and in the latter, S ∼= Ext1A(T , TorB1 (S, T )) whereas
HomA(T , TorB1 (S, T )) = 0. In either case, dim S lies in the image of f . Thus,
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the canonical basis of K0(B) ∼= Z
n lies in Im f . Hence, f is surjective. Therefore,

rk K0(A) ≥ rk K0(B). The reciprocity theorem V.2.18 implies that rk K0(B) ≥
rk K0(A). We get rk K0(A) = rk K0(B); thus, f is an isomorphism. ��

The following corollary, due to Bongartz, simplifies considerably the task of
verifying whether a given module T is tilting or not.

Corollary V.2.26. Let T = ⊕m
i=1T

mi

i where the Ti are indecomposable and Ti 	∼=
Tj for i 	= j . Then, T is a tilting module if and only if it is a partial tilting module
and m = rk K0(A).

Proof . Necessity follows directly from Theorem V.2.25; thus, we prove sufficiency.
Because T is a partial tilting module, there exists E such that T ⊕ E is tilting, see
Proposition V.2.4. But then the theorem implies that the number of isoclasses of
indecomposable summands of T ⊕ E equals rk K0(A). Because of the hypothesis,
rk K0(A) equals the number of isoclasses of indecomposable summands of T .
Hence, E belongs to add T and T is tilting. ��

Thus, a partial tilting A-module is tilting if and only if the number of isoclasses
of indecomposable summands of T equals the number of isoclasses of simple A-
modules, that is, the number of points in the quiver of A.

In the language used at the end of Subsection V.2.3, the next proposition
states that, if A is hereditary and T is a tilting A-module, then the torsion pair
(X (T ),Y (T )) in mod B is split.

Proposition V.2.27. If A is hereditary, then every indecomposable B-module either
lies in X (T ) or in Y (T ).

Proof . We claim first that Ext1B(Y,X) = 0 for all Y in Y (T ) and all X in X (T ).
Indeed, because of the tilting theorem, there exist M in T (T ) and N in F (T )

such that Y ∼= HomA(T ,M) and X ∼= Ext1A(T ,N). Applying HomA(T ,−) to an
injective coresolution 0 −→ N −→ I0 −→ I1 −→ 0 yields a short exact sequence

0 −→ HomA(T , I0) −→ HomA(T , I1) −→ Ext1A(T ,N) −→ 0.

Because M lies in T (T ), we have pd HomA(T ,M) ≤ 1, see Lemma V.2.23;
therefore, there is an epimorphism

Ext1B(HomA(T ,M), HomA(T , I1)) −→
Ext1B(HomA(T ,M), Ext1A(T ,N)) = Ext1B(Y,X).

Lemma V.2.15 gives

Ext1B(HomA(T ,M), HomA(T , I1)) ∼= Ext1A(M, I1) = 0.

Therefore, Ext1B(Y,X) = 0, as required.
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Let now Z be an arbitrary indecomposable B-module. We have just proved that
its canonical sequence in the torsion pair (X (T ),Y (T )) splits. The indecompos-
ability of Z implies that Z lies either in X (T ) or in Y (T ). ��

Exercises for Section V.2

Exercise V.2.1. Prove that the following conditions are equivalent for a module
MA:

(a) M is faithful,
(b) AA is cogenerated by M ,
(c) DAA is generated by M ,
(d) Every left add M-approximation AA −→ T d is injective, see Exercise V.1.5.

Exercise V.2.2. Prove that a partial tilting module T is tilting if and only if, for
every indecomposable projective A-module Px , there exists a short exact sequence
0 −→ Px −→ T 0

x −→ T 1
x −→ 0 with T 0

x , T 1
x in add T .

Exercise V.2.3. Let T be an A-module such that pd T ≤ 1. Prove that T is a partial
tilting module if and only if Ext1A(T ,M) = 0 for every module M generated by T .

Exercise V.2.4. Let C be a full subcategory of mod A, k-linear and closed under
extensions. An object M in C is called Ext-projective in C if Ext1A(M,−)|C = 0
and Ext-injective in C if Ext1A(−,M)|C = 0.

(a) Let (T ,F ) be a torsion pair. Prove that M in T is Ext-projective in T if and
only if τM lies in F , and that M in F is Ext-injective in F if and only if
τ−1M lies in T .

(b) Let T be a tilting module. Prove that M is Ext-projective in T (T ) if and only
if M lies in add T , and that M is Ext-injective in T (T ) if and only if M is an
injective A-module.

Exercise V.2.5. Prove that a partial tilting module T is tilting if and only if, for
every E such that T ⊕ E is partial tilting, we have E in add T .

Exercise V.2.6. Let T be an A-module.

(a) If T is a faithful module and such that HomA(T , τT ) = 0, then T is a partial
tilting module.

(b) Prove that T is tilting if and only if HomA(T , τT ) = 0 and there is an exact
sequence 0 −→ AA −→ T0 −→ T1 −→ 0 with T0, T1 in add T .

Exercise V.2.7. Let T be a tilting module and 0 −→ L −→ M −→ N −→ 0 an
exact sequence with L in T (T ). Prove that Ext1A(T ,M) ∼= Ext1A(T ,N).

Exercise V.2.8. For each of the following bound quiver algebras, verify that the
given module T is tilting, compute the bound quivers of B = End T and the torsion
pairs (T (T ),F (T )) and (X (T ),Y (T )).
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(a)

321

4

αβ
γ

T = P1 ⊕ P4 ⊕ τ −2 P1 ⊕ S4

αβ = 0

(b) 1 2
αβ γ = 0

3 4
γ β α

T = P1 ⊕ τ−2P1 ⊕P3 ⊕P4

(c) 6

4

1

2

3

5

α

γ

λ

β

δ

μ

αβ = γδ , αλ = 0, γm = 0

T = P1 ⊕P3 ⊕P6 ⊕ τ − 1P2 ⊕ τ − 2P3 ⊕ τ − 2P1

(d) ε
αδ = 0, δm = 0, βγ = δε
T = τ − 1P3 ⊕S4 ⊕P5 ⊕P6 ⊕S3 ⊕ (P5/S 2)4

1

2

3

5

αβ

δ

μ

6γ

(e) 1 4 65 3

2

T = P2 ⊕ τ − 1P5 ⊕ τ − 3P5 ⊕ τ − 1P6 ⊕ τ − 3P6 ⊕ τ − 2P2

(f) 1

2

3

4

5
αλ = βm = γv
T = P4 ⊕ τ − 1P2 ⊕ τ − 1P3 ⊕ τ − 2P4 ⊕P5

α

β
γv

μ
λ

(g)

3

2

1

αβ

γ
T = τ − 1P1 ⊕P2 ⊕P3

αβ = 0

(h)
T = τ − 1P1 ⊕ P2 ⊕ P3 ⊕ P4 ⊕ P5

5

2

1

43

β α

γε

δ

αβ = 0, γδ = 0, δε = 0

Exercise V.2.9. Let A be as in Example V.2.2. Find a tilting module T such
that B = End T is hereditary and compute the torsion pairs (T (T ),F (T )) and
(X (T ),Y (T )).
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Exercise V.2.10. Let A be given by the quiver

βγ

δε

2

1

3

4 5
α

bound by αδ = 0 and βγ = δε. Prove that T = 4
2 3 ⊕ 3 is a partial tilting module.

Find an A-module E such that T ′ = T ⊕ E is tilting and compute the torsion pair
(T (T ′),F (T ′)).

Exercise V.2.11. Let T be a tilting module and, for a module M , denote by tT M

the trace of T in M . Prove that HomA(T ,M) ∼= HomA(T , tT M) and Ext1A(T ,M) ∼=
Ext1A(T ,M/tT M). Deduce that, if B = End TA, then tT M ∼= HomA(T ,M) ⊗B T

and M/tT M ∼= TorB1 (Ext1A(T ,M), T ).

Exercise V.2.12. Let T be a tilting module and N in F (T ) such that id N = 1.
Prove that Ext1B(Y, Ext1A(T ,N)) = 0 for all Y in Y (T ).

Exercise V.2.13. Prove that the following conditions are equivalent for a torsion
pair (T ,F ) in mod A:

(a) (T ,F ) is split,
(b) For every A-module, the canonical sequence splits,
(c) For every M in T , we have τ−1M in T ,
(d) For every N in F , we have τN in F .

Exercise V.2.14. If TA is a tilting module, show that the functor Ext1A(T ,−)∣∣F (T )

is exact.

Exercise V.2.15. Let TA be a partial tilting module and T (T ),F (T ) the k-linear
full subcategories of mod A defined by T (T ) = {M | M is generated by T } and
F (T ) = {M | HomA(T ,M) = 0}.
(a) Prove that (T (T ),F (T )) is a torsion pair.
(b) Let e ∈ A be an idempotent and T = eA. Prove that F (T ) is equivalent to

mod (A/AeA).

Exercise V.2.16. Let TA be a tilting module and N such that HomA(T ,N) = 0.
Prove that pd Ext1A(T ,N) ≤ 1 + max{1, pd N}.



Chapter VI
Representation-finite algebras

For a long time, researchers in the representation theory of algebras concentrated on
finding criteria allowing us to verify whether a given algebra is representation-finite
or not, and, if this was the case, of computing all its (isoclasses of) indecomposable
modules. Indeed, it was believed that this class of algebras would be relatively
easy to classify and that their indecomposable modules have a relatively simple
structure. This approach was largely successful. Actually, one of the first important
results of modern-day representation theory was Gabriel’s theorem, which says that
a hereditary algebra over an algebraically closed field is representation-finite if and
only if it is the path algebra of a quiver whose underlying graph is one of the well-
known Dynkin diagrams A, D or E. Nowadays, there exists a reasonable global
theory of representation-finite algebras. At present, we do not have a similar theory
for studying representation-infinite algebras, but the ideas and techniques developed
for representation-finite algebras still show their usefulness when applied to the
understanding of new classes. The aim of this chapter is to prove some of the most
important known results on representation-finite algebras highlighting the methods
that led to their proofs.

We start by showing how the representation-finiteness of an algebra is reflected
by the finiteness properties of the radical of its module category, then study the
Auslander algebra of a representation-finite algebra, and end the chapter proving the
so-called Four Terms in the Middle theorem, which gives a bound on the number of
indecomposable middle terms of almost split sequences over a representation-finite
algebra.
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VI.1 The Auslander–Reiten quiver and the radical

VI.1.1 The Harada–Sai lemma

A first attempt to characterise representation-finiteness can be made using the
Auslander–Reiten quiver. Indeed, an algebra is representation-finite if and only if its
Auslander-Reiten quiver is finite. As we have seen in Corollary II.4.8, the finiteness
of nonzero paths in Auslander–Reiten quivers (which is certainly implied by the
finiteness of the quiver itself) is closely related to the vanishing of some power of
the radical of the module category, and thus to the vanishing of the infinite radical.
This led to the question whether an algebra would be representation-finite provided
some (large enough) power of the radical would equal zero. Our objective in this
subsection is to prove this statement. We start with a useful result, which will be
applied to radical computations inside the module category.

Lemma VI.1.1 (Harada–Sai lemma). Let m ≥ 0 and

M1
f1−→ M2

f2−→ . . .
f2m−1−→ M2m

be a radical path where each Mi has composition length at most equal to m. Then,
f2m−1 . . . f2f1 = 0.

Proof . We prove by induction on n that, if

M1
f1−→ M2

f2−→ . . .
f2n−1−→ M2n

is a radical path, with all Mi satisfying l(Mi) ≤ m, then l(Im(f2n−1 . . . f2f1)) ≤
m − n. This immediately implies the statement upon setting m = n.

Let n = 1. Because f1 ∈ radA(M1,M2), it is not an isomorphism. Therefore
l(Im f1) ≤ m − 1 which proves the statement in this case.

Assume that the statement holds true for a given n and consider a radical path

M1
f1−→ M2 −→ . . .

f2n−1−→ M2n
f2n−→ M2n+1 −→ . . .

f2n+1−1−→ M2n+1

with l(Mi) ≤ m for all i. To simplify notation, we set f = f2n−1 . . . f2f1,
g = f2n and h = f2n+1−1 . . . f2n+2f2n+1. The induction hypothesis implies that
l(Im f ) ≤ m − n and l(Im h) ≤ m − n. If at least one of the inequalities is strict,
then l(Im hgf ) ≤ m − n − 1 and we have finished. We may thus restrict to the case
where l(Im h) = l(Im f ) = m − n.

We assume that l(Im hgf ) > m − n − 1 and reach a contradiction. Because
l(Im hgf ) ≤ l(Im h) ≤ m − n, the only possibility is that l(Im hgf ) = m − n.
However, it is well-known, see Exercise VI.1.1 that

Im hgf = Im f

Im f ∩ Ker hg
.
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Therefore, l(Im hgf ) = l(Im f ) implies that Im f ∩Ker hg = 0. On the other hand,
Im hgf ⊆ Im hg ⊆ Im h and l(Im hgf ) = l(Im h) = m − n imply l(Im hg) = m −
n = l(Im f ) as well. Therefore, l(Ker hg) = l(M2n)− l(Im hg) = l(M2n)− l(Im f )

and so M2n = Ker hg ⊕ Im f . However, M2n is indecomposable and f is nonzero
(because the length of its image is m − n). Therefore, Ker hg = 0. This shows that
hg is a monomorphism. Hence, so is g.

Similarly, one can show that M2n+1 = Ker h ⊕ Im gf . Because M2n+1 is
indecomposable and gf 	= 0, we get M2n+1 = Im(gf ). Therefore, gf is an
epimorphism and hence so is g.

We have shown that g is an isomorphism, contrary to the hypothesis that it
belongs to the radical. This is the required contradiction. ��

Exercise VI.1.2 below gives an example in which the bound in the Harada–Sai
lemma is sharp.

VI.1.2 The infinite radical and representation-finiteness

We now prove that an algebra is representation-finite if and only if the infinite
radical of its module category (or, equivalently, a power large enough of the radical)
vanishes. One implication is easy.

Lemma VI.1.2. Let A be a representation-finite algebra and m a bound on the
length of indecomposable A-modules. Then, rad2m−1

A = 0. In particular, rad∞
A = 0.

Proof . This follows immediately from the Harada–Sai lemma VI.1.1. ��
The Harada–Said lemma may be rephrased as follows: given a representation-

finite algebra A, there exists (at least) an n > 0 such that radn
A = 0, which clearly

implies that rad∞
A = 0. We shall see in the sequel that if, conversely, rad∞

A = 0, then
A is representation-finite, but before that, we look at an easy consequence.

Corollary VI.1.3. Let A be a representation-finite algebra, M,N indecomposable
A-modules and f ∈ radA(M,N) a nonzero morphism. Then:

(a) f is a sum of compositions of irreducible morphisms.
(b) There exists a path M � N of irreducible morphisms.

Proof . This follows from Lemma VI.1.2, Corollary II.4.6 and Corollary II.4.8. ��
In particular, if A is representation-finite, and M,N are indecomposable

modules such that there is no path M � N of irreducible morphisms, then
HomA(M,N)= 0.

We now set out to prove the converse of Lemma VI.1.2. We need one further
result. For an A-module M and every m ≥ 1, we denote by radm

A(M,−) and
radm

A(−,M) the obvious subfunctors of HomA(−,M) and HomA(M,−) respec-
tively, defined as we did for radA(−,M) and radA(M,−) in Subsection II.1.3.
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Lemma VI.1.4. Let A be an algebra such that rad∞
A = 0, and M an indecompos-

able A-module. Then:

(a) There exists mM > 0 such that radmM

A (M,−) = 0.
(b) There exists nM > 0 such that radnM

A (−,M) = 0.

Proof . We only prove (a), because the proof of (b) is dual.
Let DA be the minimal injective cogenerator of mod A. Because of Lemma II.4.1,

there exists a least m > 0 such that radm
A(M, DA) = rad∞

A (M, DA) = 0. We claim
that, for every indecomposable A-module N , we have radm

A(M,N) = 0. Because
DA is the minimal injective cogenerator, there exist t > 0 and a monomorphism
j : N −→ (DA)t . If f ∈ radm

A(M,N), then jf ∈ radm
A(M, (DA)t ). However,

radm
A(M, DA) = 0. Hence, jf = 0. But j is a monomorphism. Thus, f = 0. ��

Theorem VI.1.5. A finite dimensional algebra A is representation-finite if and only
if rad∞

A = 0.

Proof . Because of Lemma VI.1.2, if A is representation-finite, then rad∞
A = 0.

Conversely, if rad∞
A = 0, then, because of Lemma VI.1.4, for each indecomposable

projective A-module P , there exists a least mP > 0 such that radmP

A (P,−) = 0. Let
m be the maximum of all mP , as P runs through the isoclasses of indecomposable
projective A-modules. Let M be an indecomposable A-module. There exists an
indecomposable projective A-module P0 such that HomA(P0,M) 	= 0. However,
radm

A(P0,M) = 0. Therefore, because of Corollary II.4.8, there exists a path P0 �
M of irreducible morphisms of length at most m − 1 with nonzero composition.
We observe that given a module L and a positive integer l, there are only finitely
many indecomposable modules that have a path of irreducible morphisms from
L, with length at most l: this is because the Auslander–Reiten quiver is locally
finite, see Definition IV.1.17. Thus, because there are only finitely many isoclasses
of indecomposable projective A-modules, we infer that A is representation-finite.

��

VI.1.3 Auslander’s theorem

We have already stated and used in several examples Auslander’s theorem, which
asserts that if the Auslander–Reiten quiver Γ (mod A) of an algebra A admits a finite
connected component Γ , then Γ (mod A) = Γ and hence A is representation-finite.
To prove it, we start by interpreting in terms of the Auslander–Reiten quiver some
results of Chapter II.

Because irreducible morphisms correspond to arrows in the Auslander–Reiten
quiver, there is a path of irreducible morphisms between indecomposables from M

to N if and only if there is a path in Γ (mod A) from the point M to the point N . In
particular, if this is the case, then M and N belong to the same connected component
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of Γ (mod A). We may then restate Corollary II.4.8 and Proposition II.4.9 as follows:
let M,N be indecomposable A-modules and assume that radA(M,N) 	= 0. Then,
we have two cases to consider.

If rad∞
A (M,N) = 0, then there exists a path M � N in Γ (mod A). In addition,

there exists t ≥ 1 such that radt
A(M,N) \ radt+1

A (M,N) 	= 0. In this case, there
exists a path M � N in Γ (mod A) of length t .

If rad∞
A (M,N) 	= 0, then, for every i > 0, one can find a path of length i

in Γ (mod A) from M to some M ′ with nonzero composition, and a morphism in
rad∞

A (M ′, N) whose composition with the previous path is still nonzero. Dually,
there exists a path of length i in Γ (mod A) from some N ′ to N with nonzero
composition and a morphism in rad∞

A (M,N ′) whose composition with the previous
path is still nonzero.

We need one additional lemma.

Lemma VI.1.6. Let Γ be a connected component of Γ (mod A), all of whose
modules have length bounded by m, and M,N indecomposable A-modules such
that HomA(M,N) 	= 0. Then, M lies in Γ if and only if N does too, and, if this is
the case, then there exists a path of irreducible morphisms M � N .

Proof . We may clearly assume M 	∼= N and thus radA(M,N) 	= 0. Assume that M

lies in Γ . To prove that N also lies in Γ , it suffices to prove that there exists a path
of irreducible morphisms

M = M0 −→ M1 −→ . . . −→ Ml = N

of length l < 2m − 1. Assume that this is not the case. Because of Corollary II.4.8
and Proposition II.4.9, there exists a path of irreducible morphisms

M = M0 −→ M1 −→ . . . −→ M2m−1

with nonzero composition, and this contradicts the Harada–Sai lemma VI.1.1.
Therefore, N belongs to Γ .

Dually, if N lies in Γ , then so does M . ��
We now prove Auslander’s theorem.

Theorem VI.1.7. Let A be a finite dimensional algebra such that Γ (mod A) has
a connected component Γ whose modules have bounded composition length. Then,
Γ (mod A) = Γ and A is representation-finite.

Proof . Let M be an indecomposable module lying in Γ and P an indecomposable
projective A-module P such that HomA(P,M) 	= 0. Because of Lemma VI.1.6,
P lies in Γ . Now, let P ′ be an arbitrary indecomposable projective A-module.
Because the algebra A is connected, there exists a sequence of indecomposable
projective A-modules P = P0, P1, . . . , Pt = P ′ such that, for each i, we have
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HomA(Pi, Pi+1) 	= 0 or HomA(Pi+1, Pi) 	= 0. Because of Lemma VI.1.6 and an
easy induction, P ′ lies in Γ . Thus, all indecomposable projective A-modules lie
in Γ . Now, let N be an arbitrary indecomposable A-module. Then, there exists an
indecomposable projective A-module P ′ such that HomA(P ′, N) 	= 0. But P ′ in Γ

implies that N also lies in Γ . This proves that Γ (mod A) = Γ .
It remains to show that Γ is finite. For every indecomposable module N , there

exists an indecomposable projective module P ′ such that HomA(P ′, N) 	= 0.
Therefore, as observed in the proof of Lemma VI.1.6, there exists a path P ′ � N

of irreducible morphisms of length smaller than 2m − 1, where m is a bound on
the length of modules in Γ . Because there are only finitely many isoclasses of
indecomposable projectives, and Γ (mod A) is locally finite, we deduce that Γ is
finite. Therefore, A is representation-finite. ��

As a first and obvious corollary, we get the following statement, which was the
statement used effectively in the examples of Chapter IV.

Corollary VI.1.8. If Γ (mod A) admits a finite connected component Γ , then
Γ (mod A) = Γ . In particular, A is representation-finite. ��

The next corollary is of great historical importance, as it answered positively a
conjecture that motivated several of the developments of modern-day representation
theory. This conjecture is known as the first Brauer–Thrall conjecture (now a
theorem).

Corollary VI.1.9. An algebra A is either representation-finite or there exist inde-
composable A-modules that have arbitrarily large length.

Proof . Indeed, if the indecomposable A-modules have bounded length, then Aus-
lander’s theorem implies that A is representation-finite. ��

Exercises for Section VI.1

Exercise VI.1.1. Let f : L −→ M , g : M −→ N be morphisms of modules. Prove
that

Im gf = Im f

Im f ∩ Ker g
.

Exercise VI.1.2. Let A be given by the quiver

α β

bound by α2 = 0, β2 = 0, αβ = 0, βα = 0, and S denote the unique simple
A-module. Construct morphisms
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AA
f1−→ AA

S

f2−→ (DA)A
f3−→ S

f4−→ AA
f5−→ AA

S

f6−→ (DA)A

such that f6f5f4f3f2f1 	= 0 (thus, the Harada–Sai bound is sharp in this example).

Exercise VI.1.3. Prove that the following conditions are equivalent for an algebra
A:

(a) A is representation-finite.
(b) for every indecomposable module M , there exists mM > 0 such that

radmM

A (M,−) = 0.
(c) for every indecomposable module N , there exists nN > 0 such that

radnN

A (−, N) = 0.
(d) for every indecomposable projective module P , there exists mP > 0 such that

radmP

A (P,−) = 0.
(e) for every indecomposable injective module I , there exists nI > 0 such that

radnI

A (−, I ) = 0.

Exercise VI.1.4. Let F : mod A −→ mod k be a functor. Its support Supp F is the
full subcategory of ind A consisting of the objects M such that F(M) 	= 0. Prove
that the following conditions are equivalent for an algebra A.

(a) A is representation-finite.
(b) For every M in ind A, Supp HomA(M,−) is finite.
(c) For every N in ind A, Supp HomA(−, N) is finite.
(d) For every indecomposable projective P , Supp HomA(P,−) is finite.
(e) For every indecomposable injective I , Supp HomA(−, I ) is finite.

Exercise VI.1.5.

(a) Let A be an algebra such that all indecomposable projectives belong to
one component Γ of Γ (mod A). Prove that A is representation-finite and
Γ (mod A) = Γ if and only if the modules in Γ have bounded length.

(b) Give an example of a representation-infinite algebra, all of whose indecompos-
able projective modules lie in the same component Γ of Γ (mod A) and prove
that, in this example, the modules in Γ have unbounded length.

Exercise VI.1.6. Let A be a finite dimensional algebra. Prove that the following
conditions are equivalent:

(a) A is representation-finite,
(b) Γ (mod A) admits one connected component, all of whose indecomposable

modules are of bounded length,
(c) Γ (mod A) admits one finite connected component,
(d) rad∞

A = 0,
(e) There exists m > 0 such that radm

A = 0.
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VI.2 Representation-finiteness using depths

VI.2.1 A characterisation using depths

We give another characterisation of representation-finiteness for an algebra A in
terms of the radical of its module category.

In this section, for each simple module S, we fix a projective cover pS : PS −→ S

and an injective envelope iS : S −→ IS .

Theorem VI.2.1. The following statements are equivalent for an algebra A:

(a) A is representation-finite.
(b) The depth of every nonzero morphism is finite.
(c) The depth of pS is finite for every simple module S.
(d) The depth of ιS is finite for every simple module S.

Proof . Because (d) is dual to (c), it suffices to prove the equivalence of the first
three conditions.

(a) implies (b). Assume that A is representation-finite. We have seen in
Lemma VI.1.2 that there exists m > 0 such that radm

A = 0. Then, the definition of
depth implies that every morphism has a depth of at most m − 1.

(b) implies (c). This is trivial.
(c) implies (a). Suppose that the depth of pS is finite for every simple module

S. Denote by d the maximal depth of the pS when S runs through all isoclasses of
simple A-modules.

Let M be an indecomposable A-module, and Γ the component of the Auslander–
Reiten quiver of A containing M . Let S be any simple summand of the top of M .
Then, there exists a surjective morphism q : M −→ S. Because q is surjective
and PS is indecomposable projective, the lifting property of projectives yields
f : PS −→ M such that qf = pS . Then, dp(f ) ≤ dp(pS) ≤ d. Because of
Corollary II.4.8, there exists a path of irreducible morphisms PS � M of length
at most d. Now, Γ is locally finite and contains at most finitely many isoclasses of
indecomposable projective modules. Therefore, Γ is finite. Because of Auslander’s
theorem VI.1.7, A is representation-finite and the result is proven. ��

VI.2.2 The nilpotency index

In this subsection, we let A be a representation-finite algebra. Because of
Lemma VI.1.2, there exists m > 0 such that radm

A = 0. The least such m is
called the nilpotency index of the radical of the module category. We show
how one can compute this index in terms of the depths of the morphisms of the
form fS = iSpS : PS −→ IS , from each indecomposable projective PS to the
corresponding injective IS and having as an image the simple module S. We need a
couple of lemmata.
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Lemma VI.2.2. Let S be a simple A-module. If a morphism f : PS −→ IS is
nonzero, then there exist g ∈ End(PS) and h ∈ End(IS) such that hfg = fS .

Proof . Because of the Harada–Sai lemma VI.1.1, there exists a maximal integer
r ≥ 0 for which one can find a radical path

IS = IS0

h1−→ IS1 −→ . . . −→ ISr−1

hr−→ ISr

where the Si are simple modules and hr . . . h1f 	= 0. Writing h = hr . . . h1 if r > 0
and h = 1 if r = 0, it yields hf 	= 0.

Now consider the short exact sequence

0 −→ Sr

iSr−→ ISr

q−→ ISr

Sr

−→ 0

where q is the cokernel of iSr .
We claim that qhf is zero. Indeed, if this is not the case, then there exists a simple

module S′ and a morphism p : ISr /Sr −→ IS′ such that p(qhf ) 	= 0. However,
pq ∈ rad(ISr , IS′) because q is radical. This contradicts the maximality of r and
establishes our claim.

As a consequence, hf factors through iSr , which is the kernel of q. That is, there
exists u : PS −→ Sr such that hf = iSr u. Because hf 	= 0, we have u 	= 0;
therefore, u is an epimorphism and S = Sr . Because HomA(PS, S) is generated
by pS as right End PS-module, there exists g ∈ End(PS) such that hfg = iSug =
iSpS = fS , as required. ��
Lemma VI.2.3. Let S be a simple A-module. If f : M −→ IS is a nonzero
morphism, then there exists a morphism g : PS −→ M such that fg 	= 0.

Proof . Let j : K −→ M be the kernel of f . We have an induced sequence

0 −→ K
j−→ M

q−→ M

K
−→ 0.

Because fj = 0, there exists q ′ : M/K −→ IS such that f = q ′q. Then,
f 	= 0 implies HomA(M/K, IS) 	= 0. In particular, M/K has the simple S as a
composition factor and thus there exist submodules L,N of M with K ⊆ N ⊆ L ⊆
M and L/N ∼= S. Recalling that PS is projective, we get a commutative diagram
with an exact row
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where w, u, h are inclusion maps and v is the cokernel of u. Suppose f hp = 0.
Because j is the kernel of f , there exists k : PS −→ K such that hp = jk = huwk.
Because h is a monomorphism, we get p = uwk. Therefore, pS = vp = vuwk = 0,
a contradiction. Thus, f (hp) 	= 0, and the result is proven. ��
Theorem VI.2.4. Let A be a representation-finite algebra and m the maximal depth
of the fS with S ranging over all isoclasses of simple modules. Then, the nilpotency
index of radA is m + 1.

Proof . Because of the definition of m, we have radm
A 	= 0. Then let

M = M0
f1−→ M1 −→ . . .

fm+1−→ Mm+1 = N

be a radical path of length m + 1 in ind A. We must prove that f = fm+1 . . . f1 is
zero. Assume that this is not the case; then, L = Im(f ) contains a simple module S

as a composition factor.
We first claim that there exist morphisms g : PS −→ M and h : N −→ IS such

that hfg = fS . Let f = qp be the canonical factorisation of f through its image L.
Because S is a composition factor of L, there exists a nonzero morphism u : L −→
IS . Because IS is injective and q a monomorphism, there exists v : N −→ IS such
that u = vq. Because u 	= 0 and p is an epimorphism, we get

vf = vqp = up 	= 0.

Applying Lemma VI.2.3 above yields a morphism w : PS −→ M such that vf w 	=
0. Because of Lemma VI.2.2, there exist morphisms g′, h′ such that h′(vf w)g′ =
fS . Setting h = h′v and g = wg′, we get hfg = fS . This establishes our claim.

But then hfg = fS implies that dp(fS) ≥ dp(f ) ≥ m + 1, and this contradicts
the definition of m. The proof is now complete. ��

The number m in the theorem above can be seen as the length of a maximal
path of irreducible morphisms with nonzero composition from an indecomposable
projective module to the corresponding indecomposable injective, passing through
the corresponding simple. The nilpotency index that we have just computed is
usually smaller than the Harada–Sai bound, as the following example shows.
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Example VI.2.5. Let A be given by the quiver

3

γ

α β

1 2

bound by βα = 0. As already seen, its Auslander–Reiten quiver is

1

2

3
1 2

2
1

2 3
1 2

3
1 2

2 3
1

3

3
2

where one has to identify the two copies of the simple S2. The maximal length of
an indecomposable module is equal to 4; thus, the bound given by the Harada–Sai
lemma is 24 −1 = 15. In particular, rad15

A = 0. However, the lengths of the maximal
paths from Px to Ix passing through Sx with nonzero composition are 3, 6 and 3 for
x = 1, 2 and 3 respectively. Therefore, 7 is the nilpotency index of A (and so,
rad7

A = 0).

Exercises for Section VI.2

Exercise VI.2.1. Let A be given by the quiver

2

β

γ α 31

bound by αβ = 0, β2 = 0, βγ = 0, αγ = 0 (that is, rad2 A = 0).

(a) Compute the Auslander–Reiten quiver of A.
(b) For each isoclass of simple module S, compute the depths of iS, pS, fS .
(c) Deduce the nilpotency index of radA.



282 VI Representation-finite algebras

Exercise VI.2.2. Let A be given by the quiver

α 1 2
β

bound by αβ = 0 and α2 = 0, see Example IV.3.2. For each of S1 and S2, compute
the depth of the corresponding morphisms iSi

, pSi
and fSi

for i = 1, 2, and deduce
the nilpotency index of the radical of mod A.

VI.3 The Auslander algebra of a representation-finite
algebra

VI.3.1 The Auslander algebra

In this section, we assume that A is a representation-finite algebra. Then, as we shall
see, the Auslander–Reiten quiver Γ (mod A) has a clear and interesting interpreta-
tion. Let M1, . . . ,Mm denote a complete set of the (finitely many) isoclasses of
indecomposable A-modules, and set M = ⊕m

i=1Mi . Then, mod A = add M , which
is expressed by saying that M is an additive generator of the category mod A. The
algebra A = EndA M is called the Auslander algebra of A. The main result of
this subsection states that the ordinary quiver QA of A is precisely the Auslander–
Reiten quiver Γ (mod A) of A.

We start by looking at the evaluation functor E : Fun A −→ mod A , defined by
F �→ F(M), considered in Subsection V.1.1, when we assume additionally that A

is representation-finite.

Lemma VI.3.1. If A is representation-finite, then Fun A ∼= mod A .

Proof . In view of the projectivisation theorem V.1.2, it suffices to prove that
pres P(M) coincides with Fun A. We recall that pres P(M) consists of all F in
Fun A such that there exist M0,M1 in add M and an exact sequence

HomA(−,M1) −→ HomA(−,M0) −→ F −→ 0.

Let F be an object in Fun A. Because F(M) is a finite dimensional k-vector space,
and hence, as seen in Subsection V.1.1, is a finitely generated A -module, there
exists an exact sequence in mod A

P1 −→ P0 −→ F(M) −→ 0

with P0, P1 projective A -modules. Therefore, because of Corollary V.1.4, there
exist M0,M1 in add M such that the previous sequence becomes

HomA(M,M1) −→ HomA(M,M0) −→ F(M) −→ 0.
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Because mod A = add M and the functors considered are k-functors, this yields an
exact sequence in Fun A

HomA(−,M1) −→ HomA(−,M0) −→ F −→ 0,

that is, F lies in pres P(M), as required. ��
We prove the main result of this subsection.

Theorem VI.3.2. If A is a representation-finite algebra, then the Auslander–Reiten
quiver of A is isomorphic to the ordinary quiver of the Auslander algebra A of A.

Proof . Because of Corollary V.1.4(b), the A -modules Pi = HomA(M,Mi) with
Mi an indecomposable A-module and 1 ≤ i ≤ m form a complete set of
representatives of the isoclasses of indecomposable projective A -modules. Thus,
the map Pi −→ Mi induces a bijection between the sets of points (QA )0 and
Γ (mod A)0 of the two quivers. To prove that there is a bijection between the
arrows, let Mi,Mj be indecomposable A-modules, and Pi = HomA(M,Mi),
Pj = HomA(M,Mj ) the corresponding indecomposable projective A -modules.
Applying Lemma V.1.1, we get

radA(Mi,Mj ) ∼= rad(HomA(−,Mi), HomA(−,Mj ))

∼= Hom(HomA(−,Mi), radA(−,Mj ))

∼= HomA (Pi, rad Pj )

and, similarly

rad2
A(Mi,Mj ) ∼= Hom(HomA(−,Mi), rad2

A(−,Mj ))

∼= HomA (Pi, rad2 Pj ).

Let ei, ej be the idempotents of A such that Pi = eiA , Pj = ejA . Then, we have

radA(Mi,Mj )

rad2
A(Mi,Mj )

∼= HomA(Pi, rad Pj )

HomA(Pi, rad2 Pj )
∼= ei

(
rad A

rad2 A

)
ej .

This proves the required statement. ��
Although this theorem characterises the ordinary quiver of an Auslander algebra,

it does not give a complete system of relations on this quiver. There are, however,
obvious relations in the quiver of an Auslander algebra. Indeed, let N be an
indecomposable nonprojective A-module. There exists an almost split sequence

0 −→ L
f−→ ⊕t

i=1Mi
g−→ N −→ 0
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with the Mi indecomposable and pairwise nonisomorphic (because A is
representation-finite and so Proposition IV.1.7 holds). Exactness of the sequence
yields gf = 0, which means that in the corresponding mesh

we have
∑t

i=1 αiβi = 0. This is clearly a relation in QA . In several important
cases, such as those in which the Auslander–Reiten quiver of A is acyclic, relations
of this form constitute a complete set of relations on QA . But in general, this is not
true. The proof lies beyond the scope of this text, but we give an example.

Example VI.3.3. Let A be given by the quiver

μ λ1 2 3

with λμ = 0. Then Γ (mod A) is

3
2

2
1

1 2 3

Thus, the ordinary quiver of the Auslander algebra A is

2 3γ β1 δ 5α4

As mentioned above, we have the relations αβ = 0, γ δ = 0 on QA induced
from the almost split sequences in mod A. We prove that these are all the possible
relations on QA . Indeed, QA is a tree; hence, the only possible relations are
zero-relations. Now, the only path of length at least two in QA , which is possibly
nonzero, is βγ . The path βγ corresponds to the composed morphism
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in mod A. The latter being nonzero, we have βγ 	= 0 and so the given relations
αβ = 0, γ δ = 0 are the only ones on QA .

VI.3.2 Characterisation of the Auslander algebra

One may ask: is there a criterion allowing us to verify whether or not a given algebra
is the Auslander algebra of some representation-finite algebra? And, if this is the
case, can one explicitly compute this representation-finite algebra?

Our objective in this subsection is to answer these two questions. Surprisingly,
the criterion sought is of a purely homological nature. We start with two lemmata.

Lemma VI.3.4. Let A be an algebra, and I an indecomposable injective A-
module, then HomA(−, I ) is an indecomposable projective–injective object in
Fun A.

Proof . Clearly, HomA(−, I ) is indecomposable and projective. We just have to
prove its injectivity.

Let e ∈ A be a primitive idempotent such that I = D(Ae). We have a canonical
isomorphism

HomA(−, D(Ae)) ∼= D HomA(eA,−),

see Lemma I.1.19. Let F be an object in Fun A. We have isomorphisms of functors

Hom(F, HomA(−, D(Ae)) ∼= Hom(F, D HomA(eA,−))

∼= Hom(HomA(eA,−), DF)

∼= DF(eA)

where we applied the covariant version of Yoneda’s lemma. Applying the contravari-
ant version, we get

F(eA) ∼= Hom(HomA(−, eA), F ).

Therefore,

Hom(F, HomA(−, D(Ae)) ∼= D Hom(HomA(−, eA), F ).

Because Hom(−, HomA(−, D(Ae)) is of the form D Hom(G,−), where G =
HomA(−, eA) is a projective functor, then HomA(−, D(Ae)) is injective. ��

Let now I denote a full subcategory of an abelian category C consisting of
injective objects. We define a new category m(I ) as follows. The objects of m(I )

are morphisms between objects of I . A morphism from an object f : J0 −→ J1 to
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an object f ′ : J ′
0 −→ J ′

1 in I is a pair (u0, u1) of morphisms in C , with u0 : J0 −→
J ′

0, u1 : J1 −→ J ′
1 satisfying u1f = f ′u0, that is, the square below commutes

Finally, the composition of morphisms in m(I ) is induced from the composition
in C .

A morphism (u0, u1) : f −→ f ′ as above is called cancellable if there exists
s : J1 −→ J ′

0 such that u0 = sf . Clearly, this implies f ′u0 = u1f = f ′sf .
Thus, if we set C = mod A, cancellable morphisms are negligible in the sense
of Subsection III.1.2. The converse is clearly not true. We denote by N0(f, f ′)
the set of cancellable morphisms from f to f ′. One can prove directly that
the sets N0(f, f ′) constitute an ideal N0 in m(I ), see Exercise VI.3.1 below.
However, this follows from the next lemma, which the reader should compare with
Theorems III.1.4 and III.1.5.

Lemma VI.3.5. With the above notation, the functor K : m(I ) −→ C , which
maps each object f of m(I ) to its kernel, induces a full and faithful functor

K : m(I )

N0
−→ C .

Proof . We first prove that K induces a faithful functor K : m(I )
N0

−→ C by
proving that N0 is the kernel of K (and so, an ideal of m(I )).

Let (u0, u1) be in N0(f, f ′). We have a commutative diagram with exact rows

We claim that u = 0. Indeed, because (u0, u1) is cancellable, there exists s : J1 −→
J ′

0 such that u0 = sf . Then, j ′u = u0j = sfj = 0 because fj = 0. Now, j ′ is a
monomorphism. Hence, u = 0, as required.

Conversely, let (u0, u1) : f −→ f ′ be a morphism such that, in the diagram
above, we have u = 0. Then, u0j = 0 and so u0 factors through Im f . Letting
f = ip : J0 −→ Im f −→ J1 be the canonical factorisation of f , there
exists s′ : Im f −→ J ′

0 such that u0 = s′p. Because J ′
0 is injective and i is a

monomorphism, there exists s : J1 −→ J ′
0 such that si = s′. Hence, sf = sip =

s′p = u0 and so (u0, u1) is cancellable. This establishes our claim.
Fullness follows from the injectivity of J ′

0 and J ′
1. Indeed, if u : K (f ) −→

K (f ′) is given, then, because J ′
0 is injective, there exists u0 : J0 −→ J ′

0 such that
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u0j = j ′u. Letting i, p be as before and f ′ = i′p′ the canonical factorisation of
f ′, the morphisms u and u0 imply the existence of u′ : Im f −→ Im f ′ such that
u′p = p′u0. Then, injectivity of J ′

1 yields a morphism u1 : J1 −→ J ′
1 such that

i′u′ = u1i. Therefore,

u1f = u1ip = i′u′p = i′p′u0 = f ′u0

and we have finished. ��
We now state and prove our homological characterisation of Auslander algebras.

Theorem VI.3.6. An algebra A is the Auslander algebra of some representation-
finite algebra if and only if the following conditions are satisfied:

(a) gl. dim. A ≤ 2 ;
(b) For every indecomposable projective A -module P , there exists an exact

sequence

0 −→ P −→ J0 −→ J1

where J0 and J1 are projective–injective.

Proof . Necessity. Assume first that A is the Auslander algebra of some
representation-finite algebra A. Because of Lemma VI.3.1, we have a category
equivalence mod A ∼= Fun A that restricts to an equivalence proj A ∼= add M =
mod A given by HomA(−,M0) �→ M0. Now, to prove that gl. dim. A ≤ 2, it
suffices to prove that the kernel of every morphism between projectives is projective.
Let g : P1 −→ P0 be a morphism between projective A -modules. There exist A-
modules M0,M1 and a morphism f : M1 −→ M0 such that we have a commutative
square

so Ker g ∼= Ker HomA(M, f ) ∼= HomA(M, Ker f ) because the Hom-functors are
left exact. Hence, Ker g is projective. This proves (a).

Let P be any projective A -module. Then there exists an A-module U such that
P ∼= HomA(M,U). We have an injective copresentation

0 −→ U −→ I0 −→ I1

in mod A. Because the Hom-functors are left exact, it induces an exact sequence

0 −→ HomA(−, U) −→ HomA(−, I0) −→ HomA(−, I1)

in Fun A and then also in proj A . Because of Lemma VI.3.4, HomA(−, I0) and
HomA(−, I1) are projective–injective in Fun A. This establishes (b).
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Sufficiency. Conversely, assume that the algebra A satisfies both conditions (a)
and (b) and let I denote the full subcategory of mod A consisting of all projective–
injective A -modules. We claim that the kernel functor K : m(I ) −→ mod A
induces an equivalence

K : m(I )

N0

∼=−→ proj A .

Indeed, because of condition (a), the kernel of every morphism between objects
in I lies in proj A so that K : m(I ) −→ proj A is a well-defined functor.
Lemma VI.3.5 states that there is an induced full and faithful functor

K : m(I )

N0
−→ proj A .

It remains to show that this functor is dense. Let P be any projective A -module.
Because of (b), there exists an exact sequence

0 −→ P −→ J0
f−→ J1

where J0, J1 are projective–injective. Therefore, f lies in m(I ) and P = K (f ).
This establishes our claim.

Let ind I denote a complete set of representatives of the isoclasses of the
indecomposable objects in I . Because A is a finite dimensional algebra, ind I
is a finite set. Let A be the endomorphism algebra of the direct sum of all X in
ind I . We claim that m(I )/N0 ∼= mod A.

Because of Corollary V.1.4(c), we have an equivalence between I =
add(ind I ) and inj A given by

M0 �→ D HomA(M0,M).

Consider the kernel functor K : m(I )/N0 −→ mod A. It is full and faithful
because of Lemma VI.3.5, and also dense, because every A-module admits an
injective copresentation. This proves our last claim.

Composing the equivalences in our two claims, we get an equivalence proj A ∼=
mod A. This implies that A is representation-finite, because there are only finitely
many isoclasses of indecomposable projective A -modules. In addition, A , which
is the endomorphism algebra of a complete set of representatives of the isoclasses
of the indecomposable projective A -modules is isomorphic to the endomorphism
algebra of a complete set of representatives of the isoclasses of all indecomposable
A-modules. That is, A is the Auslander algebra of A. ��

The proof just given is constructive: namely, starting from an Auslander algebra
A , the proof shows how to recover A as the endomorphism algebra of a complete set
of representatives of the isoclasses of indecomposable projective–injective modules.
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Condition (b) in the theorem is sometimes expressed by saying that A has
dominant dimension at least two. Because of condition (a) and the equivalence
Fun A = mod A , for every indecomposable A-module N , the simple functor SN

admits a projective resolution of length at most two

0 −→ HomA(−, L) −→ HomA(−,M) −→ HomA(−, N) −→ SN −→ 0.

We thus recover, for representation-finite algebras, the result of Theorem II.3.10.
Recall from Proposition II.3.11 that, if L 	= 0, then N is nonprojective and the
sequence

0 −→ L −→ M −→ N −→ 0

is almost split in mod A.

Example VI.3.7. Consider the algebra A given by the quiver

2 3γ β1 δ 5α4

bound by αβ = 0, γ δ = 0. Its global dimension equals two: indeed, we have
projective resolutions of the simple modules

whereas 1 is simple projective. Also, three indecomposable projectives, namely

are projective–injective, whereas there exist exact sequences for the others
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with both the second and the third terms projective–injective. Therefore, A is the
Auslander algebra of some representation-finite algebra A. To find the latter, we
take a complete set of representatives of isoclasses of indecomposable projective–
injective modules, that is,

and let A = EndA (P2 ⊕ P4 ⊕ P5). We have morphisms

where each of f, g is nonzero, but gf = 0. Thus, A is the Auslander algebra of the
algebra A given by the quiver

1 2 3μ λ

bound by λμ = 0.

VI.3.3 The representation dimension

As an application, we give a criterion of representation-finiteness using a homo-
logical invariant called representation dimension. This invariant was introduced
by Auslander who expected it to be a measure of how far an algebra would be
from being representation-finite. Let A be an algebra. An A-module T is called
a generator–cogenerator of mod A if it is at the same time a generator and
a cogenerator of the module category, that is, if for every A-module M , there
exist T0, T1 in add T , an epimorphism T0 −→ M (so that T generates M)
and a monomorphism M −→ T1 (so that T cogenerates M). Because every
indecomposable projective module is a direct summand of any generator of mod A,
and dually, every indecomposable injective module is a direct summand of any
cogenerator, we infer that both AA and (DA)A are direct summands of any
generator–cogenerator.

Definition VI.3.8. Let A be a nonsemisimple algebra. The representation dimen-
sion of A, denoted as rep. dim. A, is the minimum of the global dimensions of
End TA, as T ranges over all generator–cogenerators of mod A.

The representation dimension is meant to measure the complexity of the mor-
phisms in mod A. Indeed, a nonzero morphism from M to N , say, preserves at least
one common simple composition factor S of both M and N . But then, there exists
a nonzero morphism from the projective cover of S to M , and another one from N
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to the injective envelope of S. These three morphisms have a nonzero composition,
which is a morphism from AA to (DA)A. In this sense, all nonzero morphisms in
mod A are counted inside the endomorphism algebra of any generator–cogenerator.

Our objective is to prove that, for any nonsemisimple algebra A, we have
rep. dim. A ≥ 2 and that the least value 2 occurs if and only if A is representation-
finite. Our first lemma can be thought of as a partial converse of Lemma VI.3.4.

Lemma VI.3.9. Let T be a generator–cogenerator of mod A and B = End TA. If
HomA(T ,M) is injective in mod B, then M is injective in mod A.

Proof . Let LA be a submodule of AA. Because T is a generator, there exists an

exact sequence T1
f1−→ T0

p−→ L −→ 0 with T0, T1 in add T . Composing p with
the inclusion j : L −→ A yields an exact sequence

T1
f1−→ T0

f0−→ A

with f0 = jp. Because this exact sequence lies in add T , applying HomA(T ,−)

gives an exact sequence in mod B

HomA(T , T0)
HomA(T ,f1)−→ HomA(T , T0)

HomA(T ,f0)−→ HomA(T ,A)

using Corollary V.1.4. Because HomA(T ,M) is injective, we get a commutative
diagram with exact rows

HomB(HomA(T,A), HomA(T,M)) HomB(HomA(T,T0), HomA(T,M)) HomB(HomA(T,T1), HomA(T,M))

HomA(A,M) HomA(T0,M ) HomA(T1, M)

∼= ∼=∼=
HomA(f0,M ) HomA(f1,M )

where we again used Corollary V.1.4. On the other hand, applying HomA(−,M)

to the exact sequence T1
f1−→ T0 −→ L −→ 0 yields HomA(L,M) =

Ker HomA(f1,M).
Now, the morphism HomA(j,M) : HomA(A,M) −→ HomA(L,M) is

surjective: let u ∈ HomA(L,M). Then, pf1 = 0 implies that

up ∈ HomA(p,M)(u) ∈ Ker HomA(f1,M) = Im HomA(f0,M)

thus, there exists v : A −→ M such that up = vf0 = vjp. Because p is an
epimorphism, u = vj = HomA(j,M)(v); that is, HomA(j,M) is indeed surjective.
But this surjectivity means exactly that the module MA is injective. ��

The second lemma says that, in the terminology used in Subsection VI.3.2,
endomorphism rings of generator–cogenerators have dominant dimension at least
two.
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Lemma VI.3.10. Let T be a generator–cogenerator of mod A and B = End TA.
Then, there exists a minimal injective copresentation

0 −→ BB −→ J0 −→ J1

in mod B such that J0, J1 are projective–injective and End J0 is Morita equivalent
to A.

Proof . Take a minimal injective copresentation of T in mod A

0 −→ T −→ I0 −→ I1.

Because this sequence lies in add T , applying HomA(T ,−) to it gives an exact
sequence of B-modules

0 −→ HomA(T , T ) −→ HomA(T , I0) −→ HomA(T , I1)

using Corollary V.1.4. Now, because of Lemma I.1.19, we have HomA(T , DA) ∼=
D HomA(A, T ). The module A being a direct summand of T , the left B-module
HomA(A, T ) is projective and therefore the right B-module D HomA(A, T ) is
injective. This proves that the last exact sequence is an injective copresentation
of BB . On the other hand, the fact that DA lies in add T implies that J0 =
HomA(T , I0), J1 = HomA(T , I1) are also projective and therefore projective–
injective. Finally, the resulting injective copresentation 0 −→ BB −→ J0 −→ J1
is minimal because the original injective copresentation of T is also minimal.

The embedding BB −→ J0 implies that every indecomposable projective–
injective B-module occurs as a direct summand of J0 and, because J0 itself is
projective–injective, then add J0 is the full subcategory of mod B consisting of all
the projective–injective B-modules. Because of Lemma VI.3.5, such B-modules are
of the form HomA(T , I ) with I an injective A-module. Therefore, End J0 is Morita
equivalent to EndB HomA(T , DA) ∼= EndA DA, and thus to A. ��
Corollary VI.3.11. For every nonsemisimple algebra A, we have rep. dim. A ≥ 2.

Proof . Let T be a generator–cogenerator of mod A and B = End TA. We assume
that gl. dim. B ≤ 1 and we reach a contradiction. Indeed, in this case, a minimal
injective copresentation of B is a short exact sequence

0 −→ BB −→ J0 −→ J1 −→ 0.

Because of Lemma VI.3.10, J1 is projective; thus, the sequence splits. Therefore,
BB is a direct summand of J0; hence, is injective, that is, B is a selfinjective
algebra. But the global dimension of a nonsemisimple selfinjective algebra is
infinite. Therefore, B is semisimple and we have BB = J0 (because the above
copresentation is minimal). Because of Lemma VI.3.10, A is Morita equivalent to
End J0 = End BB

∼= B. Therefore, A itself is semisimple, a contradiction. ��
We now state and prove the aforementioned criterion of representation-finiteness.

Theorem VI.3.12. Let A be a nonsemisimple algebra. Then, A is representation-
finite if and only if rep. dim. A = 2.
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Proof . Let A be representation-finite, T the direct sum of a complete set of
representatives of the isoclasses of indecomposable A-modules and B = End TA.
Because of Theorem VI.3.6, we have gl. dim. B ≤ 2. Therefore, rep. dim. A ≤ 2.
Corollary VI.3.11 gives rep. dim. A = 2.

Conversely, if rep. dim. A = 2, there exists a generator–cogenerator T of mod A

such that B = End TA has global dimension 2. We claim that B satisfies the
conditions of Theorem VI.3.6. As condition (a) is granted by the hypothesis, we
prove (b).

Let P ∗ be a projective B-module. Applying Theorem V.1.2, there exists T ∗ in
add T such that P ∗ = HomA(T , T ∗) = E HomA(−, T ∗), where E is the evaluation
functor of Subsection V.1.1. But now T ∗ has a minimal injective copresentation

0 −→ T ∗ −→ I0 −→ I1

in mod A. Because T is a generator–cogenerator, I0, I1 are in add T ; thus, the
previous sequence lies completely in add T . Applying Theorem V.1.2 again, an
exact sequence in Fun A

0 −→ HomA(−, T ∗) −→ HomA(−, I0) −→ HomA(−, I1).

corresponds to the previous sequence. Because of Lemma VI.3.4, HomA(−, I0)

and HomA(−, I1) are projective–injective. Setting J0 = E HomA(−, I0), J1 =
E HomA(−, I1), we get an injective copresentation

0 −→ P ∗ −→ J0 −→ J1

in mod B with J0, J1 projective–injective. This proves condition (b).
Applying Theorem VI.3.6, there exists a representation-finite algebra A′ such

that B is the Auslander algebra of A′. In addition, A′ is the endomorphism algebra of
the direct sum of a complete set of representatives of isoclasses of indecomposable
projective–injective B-modules. To complete the proof, we just need to show that
A′ is Morita equivalent to A.

Because of Lemma VI.3.5, every projective–injective B-module is of the form
HomA(T , I ) with I an injective A-module. Therefore, A′ is Morita equivalent to
EndB HomA(T , DA) ∼= EndA(DA) and thus to A. ��

Computing the representation dimension of a given algebra is usually very
difficult. The main tool is the following result.

Theorem VI.3.13. Let A be a nonsemisimple algebra. Then rep. dim. A ≤ d + 2 if
and only if there exists a generator–cogenerator T of mod A that has the property
that for any A-module M , there exists an exact sequence

0 −→ Td −→ . . . −→ T0 −→ M −→ 0

with the Ti in add T , such that the induced sequence

0 −→ HomA(T , Td) −→ . . . −→ HomA(T , T0) −→ HomA(T ,M) −→ 0

is also exact.
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Proof . Sufficiency. Let T be a generator–cogenerator satisfying the stated property
and B = End T . We claim that gl. dim. B ≤ d + 2.

Let X be a B-module. Because of Theorem V.1.2, there exist F in Fun A and
T ′, T ′′ in add T such that X = E F = F(T ) and we have an exact sequence

HomA(−, T ′′) −→ HomA(−, T ′) −→ F −→ 0

in Fun A. Because of Yoneda’s lemma, there exists a morphism f : T ′′ −→ T ′
such that F = Coker HomA(−, f ). Let M = Ker f . The hypothesis implies the
existence of an exact sequence

0 −→ Td −→ . . . −→ T0 −→ M −→ 0

with the Ti in add T such that the induced sequence

0 −→ HomA(T , Td) −→ . . . −→ HomA(T , T0) −→ HomA(T ,M) −→ 0

is exact in mod B. On the other hand, applying the evaluation functor E to the above
exact sequence in Fun A yields another exact sequence

0 −→ HomA(T ,M)−→ HomA(T , T ′′)−→ HomA(T , T ′)−→ F(T ) ∼= X −→ 0.

Splicing both sequences, we get an exact sequence

0 −→ HomA(T , Td) −→ . . . −→ HomA(T , T0) −→ HomA(T , T ′′)

−→ HomA(T , T ′) −→ X −→ 0.

which is a projective resolution of X in mod B. Therefore, pd X ≤ d + 2.
This establishes our claim that gl. dim. B ≤ d + 2 which, in turn, implies that
rep. dim. A ≤ d + 2.

Necessity. Assume that rep. dim. A = s ≤ d + 2. Then, there exists a generator–
cogenerator T of mod A such that B = End TA satisfies gl. dim. B = s. Let M be an
A-module. We wish to prove the existence of an exact sequence as in the statement.
Without loss of generality, we may assume that M does not lie in add T . Then a
minimal injective coresolution

0 −→ M −→ I0
f−→ I1

induces an exact sequence of functors

0 −→ HomA(−,M) −→ HomA(−, I0)
HomA(−,f )−−−−−−−→ HomA(−, I1) −→ F −→ 0

where F = Coker HomA(−, f ). Because T is a generator–cogenerator, I0, I1
belong to add T . Evaluating this sequence of functors on T , and using that F(T )

is a B-module, we have

pd HomA(T ,M) = pd F(T ) − 2 ≤ s − 2.
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Let

0 −→ HomA(T , Ts−2) −→ . . . −→ HomA(T , T0) −→ HomA(T ,M) −→ 0

be a projective resolution with the Ti in add T . Corresponding to it, there is an exact
sequence of functors from add T to mod B

0 −→ HomA(−, Ts−2) −→ . . . −→ HomA(−, T0) −→ HomA(−,M) −→ 0.

Evaluating this sequence on AA, which lies in add T , we get an exact sequence

0 −→ Ts−2 −→ . . . −→ T0 −→ M −→ 0

in mod A. This completes the proof. ��
Example VI.3.14. Let A be a hereditary nonsemisimple algebra and T = A ⊕ DA.
Let M be any module. Without loss of generality, we may assume that M is not
in add T . But then M is noninjective and so HomA(DA,M) = 0, because of
Lemma IV.2.5(b). Therefore, HomA(T ,M) ∼= HomA(A,M) and every projective
resolution 0 −→ P1 −→ P0 −→ M −→ 0 induces an exact sequence

0 −→ HomA(T , P1) −→ HomA(T , P0) −→ HomA(T ,M) −→ 0.

Theorem VI.3.13 gives rep. dim. A ≤ 3. In addition, if A is representation-
infinite, then it follows from Theorem VI.3.12 that rep. dim. A ≥ 3. Therefore, if
A is a representation-infinite hereditary algebra, then we have rep. dim. A = 3.

Exercises for Section VI.3

Exercise VI.3.1. Prove directly that N0 is an ideal in m(I ).

Exercise VI.3.2. Let A be the path algebra of the quiver

1 2 3

(a) Prove that the Auslander algebra of A is given by the quiver

γε

βδ

αλ

bound by αβ = 0, βδ + γ ε = 0, δλ = 0.
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(b) Conversely, starting from the algebra given by the bound quiver of (a), prove that
it satisfies the conditions of Theorem VI.3.6. Then verify that the endomorphism
algebra of the direct sum of a complete set of representatives of the isoclasses
of its indecomposable projective–injectives is precisely A.

Exercise VI.3.3. Let A be a representation-finite algebra, T the direct sum of a
complete set of representatives of the isoclasses of indecomposable A-modules and
A = End T the Auslander algebra. Given an indecomposable A-module M , let S

denote the top of HomA(T ,M) in mod A . Prove the following statements:

(a) S is simple projective in mod A if and only if M is simple projective in
mod A.

(b) pd S = 1 if and only if M is projective but not simple.
(c) pd S = 2 if and only if M is not projective.
(d) Assume that M is not projective and that

0 −→ HomA(T ,K) −→ HomA(T ,L) −→ HomA(T ,M) −→ S −→ 0

is a minimal projective resolution of S. Prove that

0 −→ K −→ L −→ M −→ 0

is an almost split sequence in mod A.

Exercise VI.3.4. Prove that each of the following bound quiver algebras is the
Auslander algebra of some representation-finite algebra. Compute the latter.

(a) αβ = γδ,β λ = 0, δ m = 0

4

5

63

1

2

λ

m δ γ

β α

(b) β αγδλ ε αβ = 0,γδ = 0 ,
ελ = 01 2 3 4 5 6 7

(c) 1 2 αβ = 0
α

β

(d)
αγ = 0,βδ = 0,
γλ = δm,νη = 0.1 2

4

5

63
¹ δ

λ γ 7

8

α

β

νη
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Exercise VI.3.5. For each of the following hereditary algebras A, compute the
endomorphism algebra of A ⊕ DA and prove directly that the global dimension
equals 3.

(a) 1 2

(b)

4

5

3

1

2

Exercise VI.3.6. Let A be an algebra, T a generator of mod A and B = End TA.
Let M be an A-module.

(a) Prove that every projective presentation

HomA(T , T1) −→ HomA(T , T0) −→ HomA(T ,M) −→ 0

in mod B is induced by an exact sequence T1 −→ T0 −→ M −→ 0.
(b) Prove that there exists an epimorphism p : T0 −→ M with T0 in add T such

that HomA(T , p) : HomA(T , T0) −→ HomA(T ,M) is a projective cover in
mod B.

Exercise VI.3.7. Let A be an algebra, T a generator–cogenerator of mod A and
B = End TA. Prove that the following are equivalent:

(a) gl. dim. B ≤ 3,
(b) For every A-module M , there exists a short exact sequence

0 −→ T1 −→ T0
p−→ M −→ 0

with T0, T1 in add T and HomA(T , p) : HomA(T , T0)−→ HomA(T ,M) a
projective cover in mod B,

(c) For every A-module M , there exists a short exact sequence

0 −→ T1 −→ T0
p−→ M −→ 0

with T0, T1 in add T and p : T0 −→ M a right minimal add T -approximation
(see Exercise V.1.4).

In addition, prove that, if any of these conditions are satisfied, then rep. dim. A ≤ 3.
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VI.4 The Four Terms in the Middle theorem

VI.4.1 Preparatory lemmata

Let A be a finite dimensional algebra and 0 −→ L −→ M −→ N −→ 0 an almost
split sequence in mod A. The middle term of the sequence may be decomposed into
indecomposable direct summands as M = ⊕t

i=1Mi . It is known that the integer t is
uniquely determined by M whereas the Mi are unique up to isomorphism. However,
to decompose a module M into indecomposable direct summands is in general
a difficult problem. Therefore, a measure of the complexity of such an almost
split sequence is the invariant t , called the number of middle terms. A reasonable
question is then: how large may the integer t be? It is always finite, because we deal
with finitely generated modules, but easy examples show that the integer t may be
arbitrarily large, see Exercise VI.4.2 below.

It turns out that, if the algebra A is representation-finite, then t ≤ 4, and, if
t = 4, then exactly one of the indecomposable summands of the middle term is
projective–injective. This is called the Four Terms in the Middle theorem, or the
Bautista–Brenner theorem. Our objective in this section is to prove this theorem.
We mostly follow the neat proof given by Liu and Krause.

Throughout, we assume that A is a representation-finite algebra. In this case,
because of Proposition IV.1.7, the set M+ of all arrows leaving a point M in the
Auslander–Reiten quiver Γ (mod A) can and will be identified to the set of direct
successors of M , no two of which are isomorphic. In particular, |M+| is the number
of direct successors of M . Similarly, the set M− of all arrows entering M can and
will be identified with the set of all its direct predecessors, no two of which are
isomorphic, and |M−| is the number of these direct predecessors. In this proof, we
use essentially the notion of sectional path, see Definition IV.1.21.

Lemma VI.4.1. Let M be an indecomposable A-module. Then, there exists s ≥ 0
such that τ sM has a projective sectional predecessor.

Proof . There exists an indecomposable projective module P such that
HomA(P,M) 	= 0. Because A is representation-finite, Corollary VI.1.3 yields
a path P = M0 −→ M1 −→ . . . −→ Mm−1 −→ Mm = M of irreducible
morphisms. Therefore, there exists i ≥ 0 maximal with the property that L = τ tMi

is projective for some t ≥ 0. Then, we clearly get a sectional path for some s ≥ t .
��

Lemma VI.4.2. Let Mm −→ . . . −→ M1 −→ M0 = M be a sectional path. If

∑
L∈M−

l(L) − l(M1) ≥ l(M),

then none of the Mi , with 0 ≤ i ≤ m, is projective.

Proof . Assume that M is projective, then l(M) >
∑

L∈M− l(L), contrary to the
hypothesis. Therefore, M itself is not projective. In addition,
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l(τM) =
∑

L∈M−
l(L) − l(M) ≥ l(M1).

Because τM ∈ M−
1 , this shows that M1 is not projective. The given path is sectional;

thus, τM 	= M2 and we have

∑

L1∈M−
1

l(L1) − l(M2) ≥ l(τM) ≥ l(M1).

The same argument as before gives that M2 is not projective. We finish the proof by
induction. ��
Corollary VI.4.3. Let M be nonprojective such that l(τM) ≥ l(L) for all L ∈ M−.
Then, no sectional predecessor of M is projective.

Proof . Let X = Mm −→ . . . −→ M1 −→ M0 = M be a sectional path. Because
of the hypothesis, we have l(τM) ≥ l(M1). Then,

∑
L∈M−

l(L) = l(τM) + l(M)

yields

∑
L∈M−

l(L) − l(M1) = l(M) + l(τM) − l(M1) ≥ l(M).

Because of Lemma VI.4.2, X is not projective. ��
Lemma VI.4.4. Let N1, N2 be distinct elements of M+. If l(M) ≥ l(N1) + l(N2),

then

(a) M,N1, N2 are not projective; and
(b) l(τM) ≥ ∑

L∈M− l(L) − l(τN1) − l(τN2).

Proof . For i ∈ {1, 2}, we have l(Ni) ≤ l(N1) + l(N2) ≤ l(M); hence, neither N1
nor N2 is projective. The two inequalities l(Ni) + l(τNi) ≥ l(M) for i = 1, 2 give
that

l(τN1) + l(τN2) ≥ 2l(M) − l(N1) − l(N2) ≥ l(M)

where we used the inequality in the hypothesis. Therefore, M is not projective and
we have proven (a).

In addition, we have

l(τM) =
∑

L∈M−
l(L) − l(M) ≥

∑
L∈M−

l(L) − l(τN1) − l(τN2)

where we used the inequality that we just proved. This proves (b). ��
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Lemma VI.4.5. Assume that f : M −→ ⊕4
i=1Ni is irreducible, with M and the

Ni indecomposable. If no Ni is projective, then f is a monomorphism and l(M) <

l(τ−1M).

Proof . We assume that f is an epimorphism, or that l(M) ≥ l(τ−1M) with M

noninjective, and try to reach a contradiction.
We first claim that 2l(M) ≥ ∑4

i=1 l(Ni). This is clear if f is an epimorphism.
On the other hand, if M is noninjective and l(M) ≥ l(τ−1M), then 2l(M) ≥ l(M)+
l(τ−1M) ≥ ∑4

i=1 l(Ni), as required.
This inequality implies that l(M) ≥ l(N1) + l(N2) or l(M) ≥ l(N3) + l(N4).

We may, without loss of generality, assume the former. Because of Lemma VI.4.4
above, M is not projective. We claim that, for any L ∈ M−, we have l(τM) ≥ l(L).

There are two cases to consider. If L 	= τNi for every i, then

l(τM) ≥ l(L) +
4∑

i=1

l(τNi) − l(M)

≥ l(L) +
4∑

i=1

[l(M) − l(Ni)] − l(M)

= l(L) + 3l(M) −
4∑

i=1

l(Ni)

≥ l(L) + l(M)

≥ l(L)

because 2l(M) ≥ ∑4
i=1 l(Ni). On the other hand, if L ∼= τNi for some i, say, for

i = 1, we have

l(τM) ≥
4∑

i=1

l(τNi) − l(M)

≥ l(L) +
4∑

i=2

[l(M) − l(Ni)] − l(M)

= l(L) + 2l(M) −
4∑

i=2

l(Ni)

≥ l(L).

This establishes our claim. Because of Corollary VI.4.3, no sectional predecessor of
M is projective. In particular, no τNi is projective. Then we have
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l(τM) ≥
4∑

i=1

l(τNi) − l(M)

≥
4∑

i=1

[l(M) − l(Ni)] − l(M)

= 3l(M) −
4∑

i=1

l(Ni)

≥ l(M).

Because τNi is not projective for every i, and τM is noninjective with l(τM) ≥
l(M) = l(τ−1(τM)), we may repeat this reasoning for τM , getting that no sectional
predecessor of τM is projective. Inductively, for every s ≥ 0, τ sM has no projective
sectional predecessor. This contradicts Lemma VI.4.1. ��

In the statement, the facts that f is an irreducible monomorphism and that M is
indecomposable imply that M cannot be injective; thus, τ−1M exists.

We need to state the dual of Lemma VI.4.5: assume that g : ⊕4
i=1 Li −→ M is

irreducible, with M and the Li indecomposable. If no Li is injective, then g is an
epimorphism and l(τM) > l(M). Now, a last lemma.

Lemma VI.4.6. Assume that M has an injective sectional successor and let
f : M −→ ⊕t

i=1Ni be left minimal almost split, with the Ni indecomposable.
Then:

(a) t ≤ 4;
(b) If t = 4, then one of the Ni is projective.

Proof . Let M = M0 −→ M1 −→ . . . −→ Mm = I be a sectional path of shortest
length with I injective. First, if m = 0, then M itself is injective. Hence, f is an
epimorphism. If t ≥ 4, then, because of Lemma VI.4.5, f is a monomorphism, a
contradiction. Therefore, t < 4 in this case.

Assume, thus, that m ≥ 1. Because of the dual of Lemma VI.4.2, we have∑
N∈M+ l(N) − l(M1) < l(M). Let M+ = {M1 = N1, . . . , Nt }. Then we

have l(M) >
∑

i≥2 l(Ni). Assume t > 4, then the composition f ′ of the left
minimal almost split morphism f with the projection ⊕t

i=1Ni −→ ⊕t
i≥2Ni is

irreducible, because of Corollary II.2.25, and the last inequality implies that f ′ is
an epimorphism. But, because of Lemma VI.4.4, it is a monomorphism whenever
t > 4, a contradiction. Therefore, t ≤ 4 and we have proven (a).

Assume now t = 4, and no Ni projective. As before, we have l(M) >∑
N∈M+ l(N) − l(M1). In particular, for any two indices i, j ∈ {2, 3, 4}, l(M) >

l(Ni)+ l(Nj ). Because of Lemma VI.4.4, M,Ni,Nj are not projective and we have

l(τM) ≥
∑

L∈M−
l(L) − l(τNi) − l(τNj )
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We claim that l(τM) ≥ l(L) for every L ∈ M−. Indeed, taking i = 2 and j = 3,
we get l(τM) ≥ l(τN1), l(τM) ≥ l(τN4) and l(τM) ≥ l(L) for L 	= τNi . Next,
taking i = 3, j = 4, we get l(τM) ≥ l(τN2). Finally, i = 2, j = 4 yields
l(τM) ≥ l(τN3). This establishes our claim. Invoking Corollary VI.4.3, we get
that no sectional predecessor of M is projective. In particular, no τNi is projective
and clearly, no τNi is injective either. Applying Lemma VI.4.5 to the irreducible
morphism τM −→ ⊕4

i=1τNi , we get l(τM) < l(τ−1(τM)) = l(M). Applying
its dual to the irreducible morphism ⊕4

i=1τNi −→ M , we get l(τM) > l(M), a
contradiction. Therefore, one of the Ni is projective. This proves (b). ��
Proposition VI.4.7. Let M be an indecomposable A-module. Then

(a) |M+| ≤ 4;
(b) If |M+| = 4, then M is noninjective and M+ contains a projective.

Proof . Because of the dual of Lemma VI.4.1, there exists a least s ≥ 0 such that
N = τ−sM has an injective sectional successor. The minimality of s says that, for
every t such that 0 ≤ t < s, there is no sectional path τ−tM � I , with I injective.
In particular, the almost split sequence starting with τ−tM for every t < 5 has no
injective middle term. Therefore, |M+| ≤ |N+|.

Because of Lemma VI.4.6, we have |N+| ≤ 4. Therefore, |M+| ≤ 4. Assume
|M+| = 4. Because |M+| ≤ |N+|, we have |N+| = 4 and actually, for every t ≤ s,
we have |(τ−tM)+| = 4. Because of Lemma VI.4.6, one of the elements of N+ is
projective and this can only happen if s = 0. Therefore, M+ contains a projective.

Because no projective has an injective as immediate predecessor in Γ (mod A),
then M is noninjective. ��

VI.4.2 The theorem

The Four Terms in the Middle theorem says that over a representation-finite algebra,
an almost split sequence has at most four middle terms and, if it has four, then
exactly one of these middle terms is projective–injective.

Theorem VI.4.8. Let A be a representation-finite algebra and

0 −→ L −→ ⊕t
i=1Mi −→ N −→ 0

be an almost split sequence, with the Mi indecomposable. Then, t ≤ 4 and, if t = 4,
then one of the Mi is projective–injective, but the others are neither projective nor
injective.

Proof . Because of Proposition VI.4.7, we have |L+| ≤ 4. In addition, if |L+| = 4,
then one of the Mi is projective. Dually, |N−| = 4 implies that one of the Mj

is injective. Because of Proposition III.3.2, we have i = j and Mi is projective–
injective, whereas all Mk with k 	= i are neither projective nor injective. The proof
is complete. ��
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Besides the intrinsic interest of the theorem, the proof shows how to use
properties of the Auslander–Reiten quiver efficiently to obtain a new result. We
end with an example.

Example VI.4.9. Let A be given by the quiver

bound by all possible commutativity relations, that is, α1β1 = α2β2 = α3β3. The
projective–injective indecomposable module P5 = I1 is a direct summand of the
middle term of the following almost split sequence with four middle terms:

0 −→ rad P5 −→ P5 ⊕ S2 ⊕ S3 ⊕ S4 −→ P5

soc P5
−→ 0.

The algebra A is representation-finite and its Auslander–Reiten quiver is

1 53
1

2
1

4
1

2 3 4
1 1

2 4
1 1 3 5 5

2 4
5 5 5

3

3 4
1 2 5

3 4
5
2

5
4

5
2 342 3

1

5

1

2 3 4
2 3 4 2 3 4

2 3 4

Exercises for Section VI.4

Exercise VI.4.1. For each of the following bound quiver algebras, construct an
almost split sequence satisfying the conditions of the Four Terms in the Middle
theorem. Then, show that the algebras of (a) and (b) are representation-finite,
whereas that of (c) is representation-infinite.
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(a)

α1

α2

α3

β3

γ3

β2

β1

α1β1 = α2β2 = α3β3γ31

2

3

4 5

6

(b)

α1

α2

α3

β3

γ3

β2

β1

α1β1 = α2β2γ2 = α3β3γ31

2

3 4

5 6

γ2 7

(c)

α1

α2

α3

β3

γ3

β2

γ1

α1β1γ1 = α2β2γ2 = α3β3γ31

2 3

4           5

6

γ2

7

β1

8

Exercise VI.4.2. Give an example of a bound quiver algebra that has an almost
split sequence with a projective–injective middle term and as many middle terms as
required.

Exercise VI.4.3. Let A be a representation-finite algebra that has an acyclic
Auslander–Reiten quiver Γ (mod A) and M � N a sectional path in Γ (mod A).

(a) Prove that dimk HomA(M,N) ≤ 1 whereas HomA(N,M) = 0.
(b) Prove that Ext1A(M,N) = 0 and Ext1A(N,M) = 0.

Exercise VI.4.4. Construct an example of a representation-finite algebra and an
almost split sequence with three middle terms, two of which are nonisomorphic
projectives.
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